1 /* tr -- a filter to translate characters
2 Copyright (C) 1991-2023 Free Software Foundation, Inc.
3
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <https://www.gnu.org/licenses/>. */
16
17 /* Written by Jim Meyering */
18
19 #include <config.h>
20
21 #include <stdio.h>
22 #include <sys/types.h>
23 #include <getopt.h>
24
25 #include "system.h"
26 #include "assure.h"
27 #include "fadvise.h"
28 #include "quote.h"
29 #include "safe-read.h"
30 #include "xbinary-io.h"
31 #include "xstrtol.h"
32
33 /* The official name of this program (e.g., no 'g' prefix). */
34 #define PROGRAM_NAME "tr"
35
36 #define AUTHORS proper_name ("Jim Meyering")
37
38 enum { N_CHARS = UCHAR_MAX + 1 };
39
40 /* An unsigned integer type big enough to hold a repeat count or an
41 unsigned character. POSIX requires support for repeat counts as
42 high as 2**31 - 1. Since repeat counts might need to expand to
43 match the length of an argument string, we need at least size_t to
44 avoid arbitrary internal limits. It doesn't cost much to use
45 uintmax_t, though. */
46 typedef uintmax_t count;
47
48 /* The value for Spec_list->state that indicates to
49 get_next that it should initialize the tail pointer.
50 Its value should be as large as possible to avoid conflict
51 a valid value for the state field -- and that may be as
52 large as any valid repeat_count. */
53 #define BEGIN_STATE (UINTMAX_MAX - 1)
54
55 /* The value for Spec_list->state that indicates to
56 get_next that the element pointed to by Spec_list->tail is
57 being considered for the first time on this pass through the
58 list -- it indicates that get_next should make any necessary
59 initializations. */
60 #define NEW_ELEMENT (BEGIN_STATE + 1)
61
62 /* The maximum possible repeat count. Due to how the states are
63 implemented, it can be as much as BEGIN_STATE. */
64 #define REPEAT_COUNT_MAXIMUM BEGIN_STATE
65
66 /* The following (but not CC_NO_CLASS) are indices into the array of
67 valid character class strings. */
68 enum Char_class
69 {
70 CC_ALNUM = 0, CC_ALPHA = 1, CC_BLANK = 2, CC_CNTRL = 3,
71 CC_DIGIT = 4, CC_GRAPH = 5, CC_LOWER = 6, CC_PRINT = 7,
72 CC_PUNCT = 8, CC_SPACE = 9, CC_UPPER = 10, CC_XDIGIT = 11,
73 CC_NO_CLASS = 9999
74 };
75
76 /* Character class to which a character (returned by get_next) belonged;
77 but it is set only if the construct from which the character was obtained
78 was one of the character classes [:upper:] or [:lower:]. The value
79 is used only when translating and then, only to make sure that upper
80 and lower class constructs have the same relative positions in string1
81 and string2. */
82 enum Upper_Lower_class
83 {
84 UL_LOWER,
85 UL_UPPER,
86 UL_NONE
87 };
88
89 /* The type of a List_element. See build_spec_list for more details. */
90 enum Range_element_type
91 {
92 RE_NORMAL_CHAR,
93 RE_RANGE,
94 RE_CHAR_CLASS,
95 RE_EQUIV_CLASS,
96 RE_REPEATED_CHAR
97 };
98
99 /* One construct in one of tr's argument strings.
100 For example, consider the POSIX version of the classic tr command:
101 tr -cs 'a-zA-Z_' '[\n*]'
102 String1 has 3 constructs, two of which are ranges (a-z and A-Z),
103 and a single normal character, '_'. String2 has one construct. */
104 struct List_element
105 {
106 enum Range_element_type type;
107 struct List_element *next;
108 union
109 {
110 unsigned char normal_char;
111 struct /* unnamed */
112 {
113 unsigned char first_char;
114 unsigned char last_char;
115 }
116 range;
117 enum Char_class char_class;
118 unsigned char equiv_code;
119 struct /* unnamed */
120 {
121 unsigned char the_repeated_char;
122 count repeat_count;
123 }
124 repeated_char;
125 }
126 u;
127 };
128
129 /* Each of tr's argument strings is parsed into a form that is easier
130 to work with: a linked list of constructs (struct List_element).
131 Each Spec_list structure also encapsulates various attributes of
132 the corresponding argument string. The attributes are used mainly
133 to verify that the strings are valid in the context of any options
134 specified (like -s, -d, or -c). The main exception is the member
135 'tail', which is first used to construct the list. After construction,
136 it is used by get_next to save its state when traversing the list.
137 The member 'state' serves a similar function. */
138 struct Spec_list
139 {
140 /* Points to the head of the list of range elements.
141 The first struct is a dummy; its members are never used. */
142 struct List_element *head;
143
144 /* When appending, points to the last element. When traversing via
145 get_next(), points to the element to process next. Setting
146 Spec_list.state to the value BEGIN_STATE before calling get_next
147 signals get_next to initialize tail to point to head->next. */
148 struct List_element *tail;
149
150 /* Used to save state between calls to get_next. */
151 count state;
152
153 /* Length, in the sense that length ('a-z[:digit:]123abc')
154 is 42 ( = 26 + 10 + 6). */
155 count length;
156
157 /* The number of [c*] and [c*0] constructs that appear in this spec. */
158 size_t n_indefinite_repeats;
159
160 /* If n_indefinite_repeats is nonzero, this points to the List_element
161 corresponding to the last [c*] or [c*0] construct encountered in
162 this spec. Otherwise it is undefined. */
163 struct List_element *indefinite_repeat_element;
164
165 /* True if this spec contains at least one equivalence
166 class construct e.g. [=c=]. */
167 bool has_equiv_class;
168
169 /* True if this spec contains at least one character class
170 construct. E.g. [:digit:]. */
171 bool has_char_class;
172
173 /* True if this spec contains at least one of the character class
174 constructs (all but upper and lower) that aren't allowed in s2. */
175 bool has_restricted_char_class;
176 };
177
178 /* A representation for escaped string1 or string2. As a string is parsed,
179 any backslash-escaped characters (other than octal or \a, \b, \f, \n,
180 etc.) are marked as such in this structure by setting the corresponding
181 entry in the ESCAPED vector. */
182 struct E_string
183 {
184 char *s;
185 bool *escaped;
186 size_t len;
187 };
188
189 /* Return nonzero if the Ith character of escaped string ES matches C
190 and is not escaped itself. */
191 static inline bool
es_match(struct E_string const * es,size_t i,char c)192 es_match (struct E_string const *es, size_t i, char c)
193 {
194 return es->s[i] == c && !es->escaped[i];
195 }
196
197 /* When true, each sequence in the input of a repeated character
198 (call it c) is replaced (in the output) by a single occurrence of c
199 for every c in the squeeze set. */
200 static bool squeeze_repeats = false;
201
202 /* When true, removes characters in the delete set from input. */
203 static bool delete = false;
204
205 /* Use the complement of set1 in place of set1. */
206 static bool complement = false;
207
208 /* When tr is performing translation and string1 is longer than string2,
209 POSIX says that the result is unspecified. That gives the implementer
210 of a POSIX conforming version of tr two reasonable choices for the
211 semantics of this case.
212
213 * The BSD tr pads string2 to the length of string1 by
214 repeating the last character in string2.
215
216 * System V tr ignores characters in string1 that have no
217 corresponding character in string2. That is, string1 is effectively
218 truncated to the length of string2.
219
220 When nonzero, this flag causes GNU tr to imitate the behavior
221 of System V tr when translating with string1 longer than string2.
222 The default is to emulate BSD tr. This flag is ignored in modes where
223 no translation is performed. Emulating the System V tr
224 in this exceptional case causes the relatively common BSD idiom:
225
226 tr -cs A-Za-z0-9 '\012'
227
228 to break (it would convert only zero bytes, rather than all
229 non-alphanumerics, to newlines).
230
231 WARNING: This switch does not provide general BSD or System V
232 compatibility. For example, it doesn't disable the interpretation
233 of the POSIX constructs [:alpha:], [=c=], and [c*10], so if by
234 some unfortunate coincidence you use such constructs in scripts
235 expecting to use some other version of tr, the scripts will break. */
236 static bool truncate_set1 = false;
237
238 /* An alias for (!delete && non_option_args == 2).
239 It is set in main and used there and in validate(). */
240 static bool translating;
241
242 static char io_buf[BUFSIZ];
243
244 static char const *const char_class_name[] =
245 {
246 "alnum", "alpha", "blank", "cntrl", "digit", "graph",
247 "lower", "print", "punct", "space", "upper", "xdigit"
248 };
249
250 /* Array of boolean values. A character 'c' is a member of the
251 squeeze set if and only if in_squeeze_set[c] is true. The squeeze
252 set is defined by the last (possibly, the only) string argument
253 on the command line when the squeeze option is given. */
254 static bool in_squeeze_set[N_CHARS];
255
256 /* Array of boolean values. A character 'c' is a member of the
257 delete set if and only if in_delete_set[c] is true. The delete
258 set is defined by the first (or only) string argument on the
259 command line when the delete option is given. */
260 static bool in_delete_set[N_CHARS];
261
262 /* Array of character values defining the translation (if any) that
263 tr is to perform. Translation is performed only when there are
264 two specification strings and the delete switch is not given. */
265 static char xlate[N_CHARS];
266
267 static struct option const long_options[] =
268 {
269 {"complement", no_argument, nullptr, 'c'},
270 {"delete", no_argument, nullptr, 'd'},
271 {"squeeze-repeats", no_argument, nullptr, 's'},
272 {"truncate-set1", no_argument, nullptr, 't'},
273 {GETOPT_HELP_OPTION_DECL},
274 {GETOPT_VERSION_OPTION_DECL},
275 {nullptr, 0, nullptr, 0}
276 };
277
278 void
usage(int status)279 usage (int status)
280 {
281 if (status != EXIT_SUCCESS)
282 emit_try_help ();
283 else
284 {
285 printf (_("\
286 Usage: %s [OPTION]... STRING1 [STRING2]\n\
287 "),
288 program_name);
289 fputs (_("\
290 Translate, squeeze, and/or delete characters from standard input,\n\
291 writing to standard output. STRING1 and STRING2 specify arrays of\n\
292 characters ARRAY1 and ARRAY2 that control the action.\n\
293 \n\
294 -c, -C, --complement use the complement of ARRAY1\n\
295 -d, --delete delete characters in ARRAY1, do not translate\n\
296 -s, --squeeze-repeats replace each sequence of a repeated character\n\
297 that is listed in the last specified ARRAY,\n\
298 with a single occurrence of that character\n\
299 -t, --truncate-set1 first truncate ARRAY1 to length of ARRAY2\n\
300 "), stdout);
301 fputs (HELP_OPTION_DESCRIPTION, stdout);
302 fputs (VERSION_OPTION_DESCRIPTION, stdout);
303 fputs (_("\
304 \n\
305 ARRAYs are specified as strings of characters. Most represent themselves.\n\
306 Interpreted sequences are:\n\
307 \n\
308 \\NNN character with octal value NNN (1 to 3 octal digits)\n\
309 \\\\ backslash\n\
310 \\a audible BEL\n\
311 \\b backspace\n\
312 \\f form feed\n\
313 \\n new line\n\
314 \\r return\n\
315 \\t horizontal tab\n\
316 "), stdout);
317 fputs (_("\
318 \\v vertical tab\n\
319 CHAR1-CHAR2 all characters from CHAR1 to CHAR2 in ascending order\n\
320 [CHAR*] in ARRAY2, copies of CHAR until length of ARRAY1\n\
321 [CHAR*REPEAT] REPEAT copies of CHAR, REPEAT octal if starting with 0\n\
322 [:alnum:] all letters and digits\n\
323 [:alpha:] all letters\n\
324 [:blank:] all horizontal whitespace\n\
325 [:cntrl:] all control characters\n\
326 [:digit:] all digits\n\
327 "), stdout);
328 fputs (_("\
329 [:graph:] all printable characters, not including space\n\
330 [:lower:] all lower case letters\n\
331 [:print:] all printable characters, including space\n\
332 [:punct:] all punctuation characters\n\
333 [:space:] all horizontal or vertical whitespace\n\
334 [:upper:] all upper case letters\n\
335 [:xdigit:] all hexadecimal digits\n\
336 [=CHAR=] all characters which are equivalent to CHAR\n\
337 "), stdout);
338 fputs (_("\
339 \n\
340 Translation occurs if -d is not given and both STRING1 and STRING2 appear.\n\
341 -t is only significant when translating. ARRAY2 is extended to length of\n\
342 ARRAY1 by repeating its last character as necessary. Excess characters\n\
343 of ARRAY2 are ignored. Character classes expand in unspecified order;\n\
344 while translating, [:lower:] and [:upper:] may be used in pairs to\n\
345 specify case conversion. Squeezing occurs after translation or deletion.\n\
346 "), stdout);
347 emit_ancillary_info (PROGRAM_NAME);
348 }
349 exit (status);
350 }
351
352 /* Return nonzero if the character C is a member of the
353 equivalence class containing the character EQUIV_CLASS. */
354
355 static inline bool
is_equiv_class_member(unsigned char equiv_class,unsigned char c)356 is_equiv_class_member (unsigned char equiv_class, unsigned char c)
357 {
358 return (equiv_class == c);
359 }
360
361 /* Return true if the character C is a member of the
362 character class CHAR_CLASS. */
363
364 ATTRIBUTE_PURE
365 static bool
is_char_class_member(enum Char_class char_class,unsigned char c)366 is_char_class_member (enum Char_class char_class, unsigned char c)
367 {
368 int result;
369
370 switch (char_class)
371 {
372 case CC_ALNUM:
373 result = isalnum (c);
374 break;
375 case CC_ALPHA:
376 result = isalpha (c);
377 break;
378 case CC_BLANK:
379 result = isblank (c);
380 break;
381 case CC_CNTRL:
382 result = iscntrl (c);
383 break;
384 case CC_DIGIT:
385 result = isdigit (c);
386 break;
387 case CC_GRAPH:
388 result = isgraph (c);
389 break;
390 case CC_LOWER:
391 result = islower (c);
392 break;
393 case CC_PRINT:
394 result = isprint (c);
395 break;
396 case CC_PUNCT:
397 result = ispunct (c);
398 break;
399 case CC_SPACE:
400 result = isspace (c);
401 break;
402 case CC_UPPER:
403 result = isupper (c);
404 break;
405 case CC_XDIGIT:
406 result = isxdigit (c);
407 break;
408 default:
409 unreachable ();
410 }
411
412 return !! result;
413 }
414
415 static void
es_free(struct E_string * es)416 es_free (struct E_string *es)
417 {
418 free (es->s);
419 free (es->escaped);
420 }
421
422 /* Perform the first pass over each range-spec argument S, converting all
423 \c and \ddd escapes to their one-byte representations. If an invalid
424 quote sequence is found print an error message and return false;
425 Otherwise set *ES to the resulting string and return true.
426 The resulting array of characters may contain zero-bytes;
427 however, on input, S is assumed to be null-terminated, and hence
428 cannot contain actual (non-escaped) zero bytes. */
429
430 static bool
unquote(char const * s,struct E_string * es)431 unquote (char const *s, struct E_string *es)
432 {
433 size_t len = strlen (s);
434
435 es->s = xmalloc (len);
436 es->escaped = xcalloc (len, sizeof es->escaped[0]);
437
438 unsigned int j = 0;
439 for (unsigned int i = 0; s[i]; i++)
440 {
441 unsigned char c;
442 int oct_digit;
443
444 switch (s[i])
445 {
446 case '\\':
447 es->escaped[j] = true;
448 switch (s[i + 1])
449 {
450 case '\\':
451 c = '\\';
452 break;
453 case 'a':
454 c = '\a';
455 break;
456 case 'b':
457 c = '\b';
458 break;
459 case 'f':
460 c = '\f';
461 break;
462 case 'n':
463 c = '\n';
464 break;
465 case 'r':
466 c = '\r';
467 break;
468 case 't':
469 c = '\t';
470 break;
471 case 'v':
472 c = '\v';
473 break;
474 case '0':
475 case '1':
476 case '2':
477 case '3':
478 case '4':
479 case '5':
480 case '6':
481 case '7':
482 c = s[i + 1] - '0';
483 oct_digit = s[i + 2] - '0';
484 if (0 <= oct_digit && oct_digit <= 7)
485 {
486 c = 8 * c + oct_digit;
487 ++i;
488 oct_digit = s[i + 2] - '0';
489 if (0 <= oct_digit && oct_digit <= 7)
490 {
491 if (8 * c + oct_digit < N_CHARS)
492 {
493 c = 8 * c + oct_digit;
494 ++i;
495 }
496 else
497 {
498 /* A 3-digit octal number larger than \377 won't
499 fit in 8 bits. So we stop when adding the
500 next digit would put us over the limit and
501 give a warning about the ambiguity. POSIX
502 isn't clear on this, and we interpret this
503 lack of clarity as meaning the resulting behavior
504 is undefined, which means we're allowed to issue
505 a warning. */
506 error (0, 0, _("warning: the ambiguous octal escape\
507 \\%c%c%c is being\n\tinterpreted as the 2-byte sequence \\0%c%c, %c"),
508 s[i], s[i + 1], s[i + 2],
509 s[i], s[i + 1], s[i + 2]);
510 }
511 }
512 }
513 break;
514 case '\0':
515 error (0, 0, _("warning: an unescaped backslash "
516 "at end of string is not portable"));
517 /* POSIX is not clear about this. */
518 es->escaped[j] = false;
519 i--;
520 c = '\\';
521 break;
522 default:
523 c = s[i + 1];
524 break;
525 }
526 ++i;
527 es->s[j++] = c;
528 break;
529 default:
530 es->s[j++] = s[i];
531 break;
532 }
533 }
534 es->len = j;
535 return true;
536 }
537
538 /* If CLASS_STR is a valid character class string, return its index
539 in the global char_class_name array. Otherwise, return CC_NO_CLASS. */
540
541 ATTRIBUTE_PURE
542 static enum Char_class
look_up_char_class(char const * class_str,size_t len)543 look_up_char_class (char const *class_str, size_t len)
544 {
545 enum Char_class i;
546
547 for (i = 0; i < ARRAY_CARDINALITY (char_class_name); i++)
548 if (STREQ_LEN (class_str, char_class_name[i], len)
549 && strlen (char_class_name[i]) == len)
550 return i;
551 return CC_NO_CLASS;
552 }
553
554 /* Return a newly allocated string with a printable version of C.
555 This function is used solely for formatting error messages. */
556
557 static char *
make_printable_char(unsigned char c)558 make_printable_char (unsigned char c)
559 {
560 char *buf = xmalloc (5);
561
562 if (isprint (c))
563 {
564 buf[0] = c;
565 buf[1] = '\0';
566 }
567 else
568 {
569 sprintf (buf, "\\%03o", c);
570 }
571 return buf;
572 }
573
574 /* Return a newly allocated copy of S which is suitable for printing.
575 LEN is the number of characters in S. Most non-printing
576 (isprint) characters are represented by a backslash followed by
577 3 octal digits. However, the characters represented by \c escapes
578 where c is one of [abfnrtv] are represented by their 2-character \c
579 sequences. This function is used solely for printing error messages. */
580
581 static char *
make_printable_str(char const * s,size_t len)582 make_printable_str (char const *s, size_t len)
583 {
584 /* Worst case is that every character expands to a backslash
585 followed by a 3-character octal escape sequence. */
586 char *printable_buf = xnmalloc (len + 1, 4);
587 char *p = printable_buf;
588
589 for (size_t i = 0; i < len; i++)
590 {
591 char buf[5];
592 char const *tmp = nullptr;
593 unsigned char c = s[i];
594
595 switch (c)
596 {
597 case '\\':
598 tmp = "\\";
599 break;
600 case '\a':
601 tmp = "\\a";
602 break;
603 case '\b':
604 tmp = "\\b";
605 break;
606 case '\f':
607 tmp = "\\f";
608 break;
609 case '\n':
610 tmp = "\\n";
611 break;
612 case '\r':
613 tmp = "\\r";
614 break;
615 case '\t':
616 tmp = "\\t";
617 break;
618 case '\v':
619 tmp = "\\v";
620 break;
621 default:
622 if (isprint (c))
623 {
624 buf[0] = c;
625 buf[1] = '\0';
626 }
627 else
628 sprintf (buf, "\\%03o", c);
629 tmp = buf;
630 break;
631 }
632 p = stpcpy (p, tmp);
633 }
634 return printable_buf;
635 }
636
637 /* Append a newly allocated structure representing a
638 character C to the specification list LIST. */
639
640 static void
append_normal_char(struct Spec_list * list,unsigned char c)641 append_normal_char (struct Spec_list *list, unsigned char c)
642 {
643 struct List_element *new = xmalloc (sizeof *new);
644 new->next = nullptr;
645 new->type = RE_NORMAL_CHAR;
646 new->u.normal_char = c;
647 list->tail->next = new;
648 list->tail = new;
649 }
650
651 /* Append a newly allocated structure representing the range
652 of characters from FIRST to LAST to the specification list LIST.
653 Return false if LAST precedes FIRST in the collating sequence,
654 true otherwise. This means that '[c-c]' is acceptable. */
655
656 static bool
append_range(struct Spec_list * list,unsigned char first,unsigned char last)657 append_range (struct Spec_list *list, unsigned char first, unsigned char last)
658 {
659 if (last < first)
660 {
661 char *tmp1 = make_printable_char (first);
662 char *tmp2 = make_printable_char (last);
663
664 error (0, 0,
665 _("range-endpoints of '%s-%s' are in reverse collating sequence order"),
666 tmp1, tmp2);
667 free (tmp1);
668 free (tmp2);
669 return false;
670 }
671 struct List_element *new = xmalloc (sizeof *new);
672 new->next = nullptr;
673 new->type = RE_RANGE;
674 new->u.range.first_char = first;
675 new->u.range.last_char = last;
676 list->tail->next = new;
677 list->tail = new;
678 return true;
679 }
680
681 /* If CHAR_CLASS_STR is a valid character class string, append a
682 newly allocated structure representing that character class to the end
683 of the specification list LIST and return true. If CHAR_CLASS_STR is not
684 a valid string return false. */
685
686 static bool
append_char_class(struct Spec_list * list,char const * char_class_str,size_t len)687 append_char_class (struct Spec_list *list,
688 char const *char_class_str, size_t len)
689 {
690 enum Char_class char_class = look_up_char_class (char_class_str, len);
691 if (char_class == CC_NO_CLASS)
692 return false;
693 struct List_element *new = xmalloc (sizeof *new);
694 new->next = nullptr;
695 new->type = RE_CHAR_CLASS;
696 new->u.char_class = char_class;
697 list->tail->next = new;
698 list->tail = new;
699 return true;
700 }
701
702 /* Append a newly allocated structure representing a [c*n]
703 repeated character construct to the specification list LIST.
704 THE_CHAR is the single character to be repeated, and REPEAT_COUNT
705 is a non-negative repeat count. */
706
707 static void
append_repeated_char(struct Spec_list * list,unsigned char the_char,count repeat_count)708 append_repeated_char (struct Spec_list *list, unsigned char the_char,
709 count repeat_count)
710 {
711 struct List_element *new = xmalloc (sizeof *new);
712 new->next = nullptr;
713 new->type = RE_REPEATED_CHAR;
714 new->u.repeated_char.the_repeated_char = the_char;
715 new->u.repeated_char.repeat_count = repeat_count;
716 list->tail->next = new;
717 list->tail = new;
718 }
719
720 /* Given a string, EQUIV_CLASS_STR, from a [=str=] context and
721 the length of that string, LEN, if LEN is exactly one, append
722 a newly allocated structure representing the specified
723 equivalence class to the specification list, LIST and return true.
724 If LEN is not 1, return false. */
725
726 static bool
append_equiv_class(struct Spec_list * list,char const * equiv_class_str,size_t len)727 append_equiv_class (struct Spec_list *list,
728 char const *equiv_class_str, size_t len)
729 {
730 if (len != 1)
731 return false;
732
733 struct List_element *new = xmalloc (sizeof *new);
734 new->next = nullptr;
735 new->type = RE_EQUIV_CLASS;
736 new->u.equiv_code = *equiv_class_str;
737 list->tail->next = new;
738 list->tail = new;
739 return true;
740 }
741
742 /* Search forward starting at START_IDX for the 2-char sequence
743 (PRE_BRACKET_CHAR,']') in the string P of length P_LEN. If such
744 a sequence is found, set *RESULT_IDX to the index of the first
745 character and return true. Otherwise return false. P may contain
746 zero bytes. */
747
748 static bool
find_closing_delim(const struct E_string * es,size_t start_idx,char pre_bracket_char,size_t * result_idx)749 find_closing_delim (const struct E_string *es, size_t start_idx,
750 char pre_bracket_char, size_t *result_idx)
751 {
752 for (size_t i = start_idx; i < es->len - 1; i++)
753 if (es->s[i] == pre_bracket_char && es->s[i + 1] == ']'
754 && !es->escaped[i] && !es->escaped[i + 1])
755 {
756 *result_idx = i;
757 return true;
758 }
759 return false;
760 }
761
762 /* Parse the bracketed repeat-char syntax. If the P_LEN characters
763 beginning with P[ START_IDX ] comprise a valid [c*n] construct,
764 then set *CHAR_TO_REPEAT, *REPEAT_COUNT, and *CLOSING_BRACKET_IDX
765 and return zero. If the second character following
766 the opening bracket is not '*' or if no closing bracket can be
767 found, return -1. If a closing bracket is found and the
768 second char is '*', but the string between the '*' and ']' isn't
769 empty, an octal number, or a decimal number, print an error message
770 and return -2. */
771
772 static int
find_bracketed_repeat(const struct E_string * es,size_t start_idx,unsigned char * char_to_repeat,count * repeat_count,size_t * closing_bracket_idx)773 find_bracketed_repeat (const struct E_string *es, size_t start_idx,
774 unsigned char *char_to_repeat, count *repeat_count,
775 size_t *closing_bracket_idx)
776 {
777 affirm (start_idx + 1 < es->len);
778 if (!es_match (es, start_idx + 1, '*'))
779 return -1;
780
781 for (size_t i = start_idx + 2; i < es->len && !es->escaped[i]; i++)
782 {
783 if (es->s[i] == ']')
784 {
785 size_t digit_str_len = i - start_idx - 2;
786
787 *char_to_repeat = es->s[start_idx];
788 if (digit_str_len == 0)
789 {
790 /* We've matched [c*] -- no explicit repeat count. */
791 *repeat_count = 0;
792 }
793 else
794 {
795 /* Here, we have found [c*s] where s should be a string
796 of octal (if it starts with '0') or decimal digits. */
797 char const *digit_str = &es->s[start_idx + 2];
798 char *d_end;
799 if ((xstrtoumax (digit_str, &d_end, *digit_str == '0' ? 8 : 10,
800 repeat_count, nullptr)
801 != LONGINT_OK)
802 || REPEAT_COUNT_MAXIMUM < *repeat_count
803 || digit_str + digit_str_len != d_end)
804 {
805 char *tmp = make_printable_str (digit_str, digit_str_len);
806 error (0, 0,
807 _("invalid repeat count %s in [c*n] construct"),
808 quote (tmp));
809 free (tmp);
810 return -2;
811 }
812 }
813 *closing_bracket_idx = i;
814 return 0;
815 }
816 }
817 return -1; /* No bracket found. */
818 }
819
820 /* Return true if the string at ES->s[IDX] matches the regular
821 expression '\*[0-9]*]', false otherwise. The string does not
822 match if any of its characters are escaped. */
823
824 ATTRIBUTE_PURE
825 static bool
star_digits_closebracket(const struct E_string * es,size_t idx)826 star_digits_closebracket (const struct E_string *es, size_t idx)
827 {
828 if (!es_match (es, idx, '*'))
829 return false;
830
831 for (size_t i = idx + 1; i < es->len; i++)
832 if (!ISDIGIT (to_uchar (es->s[i])) || es->escaped[i])
833 return es_match (es, i, ']');
834 return false;
835 }
836
837 /* Convert string UNESCAPED_STRING (which has been preprocessed to
838 convert backslash-escape sequences) of length LEN characters into
839 a linked list of the following 5 types of constructs:
840 - [:str:] Character class where 'str' is one of the 12 valid strings.
841 - [=c=] Equivalence class where 'c' is any single character.
842 - [c*n] Repeat the single character 'c' 'n' times. n may be omitted.
843 However, if 'n' is present, it must be a non-negative octal or
844 decimal integer.
845 - r-s Range of characters from 'r' to 's'. The second endpoint must
846 not precede the first in the current collating sequence.
847 - c Any other character is interpreted as itself. */
848
849 static bool
build_spec_list(const struct E_string * es,struct Spec_list * result)850 build_spec_list (const struct E_string *es, struct Spec_list *result)
851 {
852 char const *p = es->s;
853
854 /* The main for-loop below recognizes the 4 multi-character constructs.
855 A character that matches (in its context) none of the multi-character
856 constructs is classified as 'normal'. Since all multi-character
857 constructs have at least 3 characters, any strings of length 2 or
858 less are composed solely of normal characters. Hence, the index of
859 the outer for-loop runs only as far as LEN-2. */
860 size_t i;
861 for (i = 0; i + 2 < es->len; /* empty */)
862 {
863 if (es_match (es, i, '['))
864 {
865 bool matched_multi_char_construct;
866 size_t closing_bracket_idx;
867 unsigned char char_to_repeat;
868 count repeat_count;
869 int err;
870
871 matched_multi_char_construct = true;
872 if (es_match (es, i + 1, ':') || es_match (es, i + 1, '='))
873 {
874 size_t closing_delim_idx;
875
876 if (find_closing_delim (es, i + 2, p[i + 1], &closing_delim_idx))
877 {
878 size_t opnd_str_len = closing_delim_idx - 1 - (i + 2) + 1;
879 char const *opnd_str = p + i + 2;
880
881 if (opnd_str_len == 0)
882 {
883 if (p[i + 1] == ':')
884 error (0, 0, _("missing character class name '[::]'"));
885 else
886 error (0, 0,
887 _("missing equivalence class character '[==]'"));
888 return false;
889 }
890
891 if (p[i + 1] == ':')
892 {
893 /* FIXME: big comment. */
894 if (!append_char_class (result, opnd_str, opnd_str_len))
895 {
896 if (star_digits_closebracket (es, i + 2))
897 goto try_bracketed_repeat;
898 else
899 {
900 char *tmp = make_printable_str (opnd_str,
901 opnd_str_len);
902 error (0, 0, _("invalid character class %s"),
903 quote (tmp));
904 free (tmp);
905 return false;
906 }
907 }
908 }
909 else
910 {
911 /* FIXME: big comment. */
912 if (!append_equiv_class (result, opnd_str, opnd_str_len))
913 {
914 if (star_digits_closebracket (es, i + 2))
915 goto try_bracketed_repeat;
916 else
917 {
918 char *tmp = make_printable_str (opnd_str,
919 opnd_str_len);
920 error (0, 0,
921 _("%s: equivalence class operand must be a single character"),
922 tmp);
923 free (tmp);
924 return false;
925 }
926 }
927 }
928
929 i = closing_delim_idx + 2;
930 continue;
931 }
932 /* Else fall through. This could be [:*] or [=*]. */
933 }
934
935 try_bracketed_repeat:
936
937 /* Determine whether this is a bracketed repeat range
938 matching the RE \[.\*(dec_or_oct_number)?]. */
939 err = find_bracketed_repeat (es, i + 1, &char_to_repeat,
940 &repeat_count,
941 &closing_bracket_idx);
942 if (err == 0)
943 {
944 append_repeated_char (result, char_to_repeat, repeat_count);
945 i = closing_bracket_idx + 1;
946 }
947 else if (err == -1)
948 {
949 matched_multi_char_construct = false;
950 }
951 else
952 {
953 /* Found a string that looked like [c*n] but the
954 numeric part was invalid. */
955 return false;
956 }
957
958 if (matched_multi_char_construct)
959 continue;
960
961 /* We reach this point if P does not match [:str:], [=c=],
962 [c*n], or [c*]. Now, see if P looks like a range '[-c'
963 (from '[' to 'c'). */
964 }
965
966 /* Look ahead one char for ranges like a-z. */
967 if (es_match (es, i + 1, '-'))
968 {
969 if (!append_range (result, p[i], p[i + 2]))
970 return false;
971 i += 3;
972 }
973 else
974 {
975 append_normal_char (result, p[i]);
976 ++i;
977 }
978 }
979
980 /* Now handle the (2 or fewer) remaining characters p[i]..p[es->len - 1]. */
981 for (; i < es->len; i++)
982 append_normal_char (result, p[i]);
983
984 return true;
985 }
986
987 /* Advance past the current construct.
988 S->tail must be non-null. */
989 static void
skip_construct(struct Spec_list * s)990 skip_construct (struct Spec_list *s)
991 {
992 s->tail = s->tail->next;
993 s->state = NEW_ELEMENT;
994 }
995
996 /* Given a Spec_list S (with its saved state implicit in the values
997 of its members 'tail' and 'state'), return the next single character
998 in the expansion of S's constructs. If the last character of S was
999 returned on the previous call or if S was empty, this function
1000 returns -1. For example, successive calls to get_next where S
1001 represents the spec-string 'a-d[y*3]' will return the sequence
1002 of values a, b, c, d, y, y, y, -1. Finally, if the construct from
1003 which the returned character comes is [:upper:] or [:lower:], the
1004 parameter CLASS is given a value to indicate which it was. Otherwise
1005 CLASS is set to UL_NONE. This value is used only when constructing
1006 the translation table to verify that any occurrences of upper and
1007 lower class constructs in the spec-strings appear in the same relative
1008 positions. */
1009
1010 static int
get_next(struct Spec_list * s,enum Upper_Lower_class * class)1011 get_next (struct Spec_list *s, enum Upper_Lower_class *class)
1012 {
1013 struct List_element *p;
1014 int return_val;
1015 int i;
1016
1017 if (class)
1018 *class = UL_NONE;
1019
1020 if (s->state == BEGIN_STATE)
1021 {
1022 s->tail = s->head->next;
1023 s->state = NEW_ELEMENT;
1024 }
1025
1026 p = s->tail;
1027 if (p == nullptr)
1028 return -1;
1029
1030 switch (p->type)
1031 {
1032 case RE_NORMAL_CHAR:
1033 return_val = p->u.normal_char;
1034 s->state = NEW_ELEMENT;
1035 s->tail = p->next;
1036 break;
1037
1038 case RE_RANGE:
1039 if (s->state == NEW_ELEMENT)
1040 s->state = p->u.range.first_char;
1041 else
1042 ++(s->state);
1043 return_val = s->state;
1044 if (s->state == p->u.range.last_char)
1045 {
1046 s->tail = p->next;
1047 s->state = NEW_ELEMENT;
1048 }
1049 break;
1050
1051 case RE_CHAR_CLASS:
1052 if (class)
1053 {
1054 switch (p->u.char_class)
1055 {
1056 case CC_LOWER:
1057 *class = UL_LOWER;
1058 break;
1059 case CC_UPPER:
1060 *class = UL_UPPER;
1061 break;
1062 default:
1063 break;
1064 }
1065 }
1066
1067 if (s->state == NEW_ELEMENT)
1068 {
1069 for (i = 0; i < N_CHARS; i++)
1070 if (is_char_class_member (p->u.char_class, i))
1071 break;
1072 affirm (i < N_CHARS);
1073 s->state = i;
1074 }
1075 assure (is_char_class_member (p->u.char_class, s->state));
1076 return_val = s->state;
1077 for (i = s->state + 1; i < N_CHARS; i++)
1078 if (is_char_class_member (p->u.char_class, i))
1079 break;
1080 if (i < N_CHARS)
1081 s->state = i;
1082 else
1083 {
1084 s->tail = p->next;
1085 s->state = NEW_ELEMENT;
1086 }
1087 break;
1088
1089 case RE_EQUIV_CLASS:
1090 /* FIXME: this assumes that each character is alone in its own
1091 equivalence class (which appears to be correct for my
1092 LC_COLLATE. But I don't know of any function that allows
1093 one to determine a character's equivalence class. */
1094
1095 return_val = p->u.equiv_code;
1096 s->state = NEW_ELEMENT;
1097 s->tail = p->next;
1098 break;
1099
1100 case RE_REPEATED_CHAR:
1101 /* Here, a repeat count of n == 0 means don't repeat at all. */
1102 if (p->u.repeated_char.repeat_count == 0)
1103 {
1104 s->tail = p->next;
1105 s->state = NEW_ELEMENT;
1106 return_val = get_next (s, class);
1107 }
1108 else
1109 {
1110 if (s->state == NEW_ELEMENT)
1111 {
1112 s->state = 0;
1113 }
1114 ++(s->state);
1115 return_val = p->u.repeated_char.the_repeated_char;
1116 if (s->state == p->u.repeated_char.repeat_count)
1117 {
1118 s->tail = p->next;
1119 s->state = NEW_ELEMENT;
1120 }
1121 }
1122 break;
1123
1124 default:
1125 unreachable ();
1126 }
1127
1128 return return_val;
1129 }
1130
1131 /* This is a minor kludge. This function is called from
1132 get_spec_stats to determine the cardinality of a set derived
1133 from a complemented string. It's a kludge in that some of the
1134 same operations are (duplicated) performed in set_initialize. */
1135
1136 static int
card_of_complement(struct Spec_list * s)1137 card_of_complement (struct Spec_list *s)
1138 {
1139 int c;
1140 int cardinality = N_CHARS;
1141 bool in_set[N_CHARS] = {0};
1142
1143 s->state = BEGIN_STATE;
1144 while ((c = get_next (s, nullptr)) != -1)
1145 {
1146 cardinality -= (!in_set[c]);
1147 in_set[c] = true;
1148 }
1149 return cardinality;
1150 }
1151
1152 /* Discard the lengths associated with a case conversion,
1153 as using the actual number of upper or lower case characters
1154 is problematic when they don't match in some locales.
1155 Also ensure the case conversion classes in string2 are
1156 aligned correctly with those in string1.
1157 Note POSIX says the behavior of 'tr "[:upper:]" "[:upper:]"'
1158 is undefined. Therefore we allow it (unlike Solaris)
1159 and treat it as a no-op. */
1160
1161 static void
validate_case_classes(struct Spec_list * s1,struct Spec_list * s2)1162 validate_case_classes (struct Spec_list *s1, struct Spec_list *s2)
1163 {
1164 size_t n_upper = 0;
1165 size_t n_lower = 0;
1166 int c1 = 0;
1167 int c2 = 0;
1168 MAYBE_UNUSED count old_s1_len = s1->length, old_s2_len = s2->length;
1169 struct List_element *s1_tail = s1->tail;
1170 struct List_element *s2_tail = s2->tail;
1171 bool s1_new_element = true;
1172 bool s2_new_element = true;
1173
1174 if (complement || !s2->has_char_class)
1175 return;
1176
1177 for (int i = 0; i < N_CHARS; i++)
1178 {
1179 if (isupper (i))
1180 n_upper++;
1181 if (islower (i))
1182 n_lower++;
1183 }
1184
1185 s1->state = BEGIN_STATE;
1186 s2->state = BEGIN_STATE;
1187
1188 while (c1 != -1 && c2 != -1)
1189 {
1190 enum Upper_Lower_class class_s1, class_s2;
1191
1192 c1 = get_next (s1, &class_s1);
1193 c2 = get_next (s2, &class_s2);
1194
1195 /* If c2 transitions to a new case class, then
1196 c1 must also transition at the same time. */
1197 if (s2_new_element && class_s2 != UL_NONE
1198 && !(s1_new_element && class_s1 != UL_NONE))
1199 error (EXIT_FAILURE, 0,
1200 _("misaligned [:upper:] and/or [:lower:] construct"));
1201
1202 /* If case converting, quickly skip over the elements. */
1203 if (class_s2 != UL_NONE)
1204 {
1205 skip_construct (s1);
1206 skip_construct (s2);
1207 /* Discount insignificant/problematic lengths. */
1208 s1->length -= (class_s1 == UL_UPPER ? n_upper : n_lower) - 1;
1209 s2->length -= (class_s2 == UL_UPPER ? n_upper : n_lower) - 1;
1210 }
1211
1212 s1_new_element = s1->state == NEW_ELEMENT; /* Next element is new. */
1213 s2_new_element = s2->state == NEW_ELEMENT; /* Next element is new. */
1214 }
1215
1216 affirm (old_s1_len >= s1->length && old_s2_len >= s2->length);
1217
1218 s1->tail = s1_tail;
1219 s2->tail = s2_tail;
1220 }
1221
1222 /* Gather statistics about the spec-list S in preparation for the tests
1223 in validate that determine the consistency of the specs. This function
1224 is called at most twice; once for string1, and again for any string2.
1225 LEN_S1 < 0 indicates that this is the first call and that S represents
1226 string1. When LEN_S1 >= 0, it is the length of the expansion of the
1227 constructs in string1, and we can use its value to resolve any
1228 indefinite repeat construct in S (which represents string2). Hence,
1229 this function has the side-effect that it converts a valid [c*]
1230 construct in string2 to [c*n] where n is large enough (or 0) to give
1231 string2 the same length as string1. For example, with the command
1232 tr a-z 'A[\n*]Z' on the second call to get_spec_stats, LEN_S1 would
1233 be 26 and S (representing string2) would be converted to 'A[\n*24]Z'. */
1234
1235 static void
get_spec_stats(struct Spec_list * s)1236 get_spec_stats (struct Spec_list *s)
1237 {
1238 struct List_element *p;
1239 count length = 0;
1240
1241 s->n_indefinite_repeats = 0;
1242 s->has_equiv_class = false;
1243 s->has_restricted_char_class = false;
1244 s->has_char_class = false;
1245 for (p = s->head->next; p; p = p->next)
1246 {
1247 count len = 0;
1248 count new_length;
1249
1250 switch (p->type)
1251 {
1252 case RE_NORMAL_CHAR:
1253 len = 1;
1254 break;
1255
1256 case RE_RANGE:
1257 affirm (p->u.range.last_char >= p->u.range.first_char);
1258 len = p->u.range.last_char - p->u.range.first_char + 1;
1259 break;
1260
1261 case RE_CHAR_CLASS:
1262 s->has_char_class = true;
1263 for (int i = 0; i < N_CHARS; i++)
1264 if (is_char_class_member (p->u.char_class, i))
1265 ++len;
1266 switch (p->u.char_class)
1267 {
1268 case CC_UPPER:
1269 case CC_LOWER:
1270 break;
1271 default:
1272 s->has_restricted_char_class = true;
1273 break;
1274 }
1275 break;
1276
1277 case RE_EQUIV_CLASS:
1278 for (int i = 0; i < N_CHARS; i++)
1279 if (is_equiv_class_member (p->u.equiv_code, i))
1280 ++len;
1281 s->has_equiv_class = true;
1282 break;
1283
1284 case RE_REPEATED_CHAR:
1285 if (p->u.repeated_char.repeat_count > 0)
1286 len = p->u.repeated_char.repeat_count;
1287 else
1288 {
1289 s->indefinite_repeat_element = p;
1290 ++(s->n_indefinite_repeats);
1291 }
1292 break;
1293
1294 default:
1295 unreachable ();
1296 }
1297
1298 /* Check for arithmetic overflow in computing length. Also, reject
1299 any length greater than the maximum repeat count, in case the
1300 length is later used to compute the repeat count for an
1301 indefinite element. */
1302 new_length = length + len;
1303 if (! (length <= new_length && new_length <= REPEAT_COUNT_MAXIMUM))
1304 error (EXIT_FAILURE, 0, _("too many characters in set"));
1305 length = new_length;
1306 }
1307
1308 s->length = length;
1309 }
1310
1311 static void
get_s1_spec_stats(struct Spec_list * s1)1312 get_s1_spec_stats (struct Spec_list *s1)
1313 {
1314 get_spec_stats (s1);
1315 if (complement)
1316 s1->length = card_of_complement (s1);
1317 }
1318
1319 static void
get_s2_spec_stats(struct Spec_list * s2,count len_s1)1320 get_s2_spec_stats (struct Spec_list *s2, count len_s1)
1321 {
1322 get_spec_stats (s2);
1323 if (len_s1 >= s2->length && s2->n_indefinite_repeats == 1)
1324 {
1325 s2->indefinite_repeat_element->u.repeated_char.repeat_count =
1326 len_s1 - s2->length;
1327 s2->length = len_s1;
1328 }
1329 }
1330
1331 static void
spec_init(struct Spec_list * spec_list)1332 spec_init (struct Spec_list *spec_list)
1333 {
1334 struct List_element *new = xmalloc (sizeof *new);
1335 spec_list->head = spec_list->tail = new;
1336 spec_list->head->next = nullptr;
1337 }
1338
1339 /* This function makes two passes over the argument string S. The first
1340 one converts all \c and \ddd escapes to their one-byte representations.
1341 The second constructs a linked specification list, SPEC_LIST, of the
1342 characters and constructs that comprise the argument string. If either
1343 of these passes detects an error, this function returns false. */
1344
1345 static bool
parse_str(char const * s,struct Spec_list * spec_list)1346 parse_str (char const *s, struct Spec_list *spec_list)
1347 {
1348 struct E_string es;
1349 bool ok = unquote (s, &es) && build_spec_list (&es, spec_list);
1350 es_free (&es);
1351 return ok;
1352 }
1353
1354 /* Given two specification lists, S1 and S2, and assuming that
1355 S1->length > S2->length, append a single [c*n] element to S2 where c
1356 is the last character in the expansion of S2 and n is the difference
1357 between the two lengths.
1358 Upon successful completion, S2->length is set to S1->length. The only
1359 way this function can fail to make S2 as long as S1 is when S2 has
1360 zero-length, since in that case, there is no last character to repeat.
1361 So S2->length is required to be at least 1. */
1362
1363 static void
string2_extend(const struct Spec_list * s1,struct Spec_list * s2)1364 string2_extend (const struct Spec_list *s1, struct Spec_list *s2)
1365 {
1366 struct List_element *p;
1367 unsigned char char_to_repeat;
1368
1369 affirm (translating);
1370 affirm (s1->length > s2->length);
1371 affirm (s2->length > 0);
1372
1373 p = s2->tail;
1374 switch (p->type)
1375 {
1376 case RE_NORMAL_CHAR:
1377 char_to_repeat = p->u.normal_char;
1378 break;
1379 case RE_RANGE:
1380 char_to_repeat = p->u.range.last_char;
1381 break;
1382 case RE_CHAR_CLASS:
1383 /* Note BSD allows extending of classes in string2. For example:
1384 tr '[:upper:]0-9' '[:lower:]'
1385 That's not portable however, contradicts POSIX and is dependent
1386 on your collating sequence. */
1387 error (EXIT_FAILURE, 0,
1388 _("when translating with string1 longer than string2,\n"
1389 "the latter string must not end with a character class"));
1390
1391 case RE_REPEATED_CHAR:
1392 char_to_repeat = p->u.repeated_char.the_repeated_char;
1393 break;
1394
1395 case RE_EQUIV_CLASS:
1396 /* This shouldn't happen, because validate exits with an error
1397 if it finds an equiv class in string2 when translating. */
1398 affirm (false);
1399
1400 default:
1401 unreachable ();
1402 }
1403
1404 append_repeated_char (s2, char_to_repeat, s1->length - s2->length);
1405 s2->length = s1->length;
1406 }
1407
1408 /* Return true if S is a non-empty list in which exactly one
1409 character (but potentially, many instances of it) appears.
1410 E.g., [X*] or xxxxxxxx. */
1411
1412 static bool
homogeneous_spec_list(struct Spec_list * s)1413 homogeneous_spec_list (struct Spec_list *s)
1414 {
1415 int b, c;
1416
1417 s->state = BEGIN_STATE;
1418
1419 if ((b = get_next (s, nullptr)) == -1)
1420 return false;
1421
1422 while ((c = get_next (s, nullptr)) != -1)
1423 if (c != b)
1424 return false;
1425
1426 return true;
1427 }
1428
1429 /* Die with an error message if S1 and S2 describe strings that
1430 are not valid with the given command line switches.
1431 A side effect of this function is that if a valid [c*] or
1432 [c*0] construct appears in string2, it is converted to [c*n]
1433 with a value for n that makes s2->length == s1->length. By
1434 the same token, if the --truncate-set1 option is not
1435 given, S2 may be extended. */
1436
1437 static void
validate(struct Spec_list * s1,struct Spec_list * s2)1438 validate (struct Spec_list *s1, struct Spec_list *s2)
1439 {
1440 get_s1_spec_stats (s1);
1441 if (s1->n_indefinite_repeats > 0)
1442 error (EXIT_FAILURE, 0,
1443 _("the [c*] repeat construct may not appear in string1"));
1444
1445 if (s2)
1446 {
1447 get_s2_spec_stats (s2, s1->length);
1448
1449 if (s2->n_indefinite_repeats > 1)
1450 error (EXIT_FAILURE, 0,
1451 _("only one [c*] repeat construct may appear in string2"));
1452
1453 if (translating)
1454 {
1455 if (s2->has_equiv_class)
1456 error (EXIT_FAILURE, 0,
1457 _("[=c=] expressions may not appear in string2"
1458 " when translating"));
1459
1460 if (s2->has_restricted_char_class)
1461 error (EXIT_FAILURE, 0,
1462 _("when translating, the only character classes"
1463 " that may appear in\n"
1464 "string2 are 'upper' and 'lower'"));
1465
1466 validate_case_classes (s1, s2);
1467
1468 if (s1->length > s2->length)
1469 {
1470 if (!truncate_set1)
1471 {
1472 /* string2 must be non-empty unless --truncate-set1 is
1473 given or string1 is empty. */
1474
1475 if (s2->length == 0)
1476 error (EXIT_FAILURE, 0,
1477 _("when not truncating set1,"
1478 " string2 must be non-empty"));
1479 string2_extend (s1, s2);
1480 }
1481 }
1482
1483 if (complement && s1->has_char_class
1484 && ! (s2->length == s1->length && homogeneous_spec_list (s2)))
1485 error (EXIT_FAILURE, 0,
1486 _("when translating with complemented character classes,\n"
1487 "string2 must map all characters in the domain to one"));
1488 }
1489 else
1490 /* Not translating. */
1491 {
1492 if (s2->n_indefinite_repeats > 0)
1493 error (EXIT_FAILURE, 0,
1494 _("the [c*] construct may appear in string2"
1495 " only when translating"));
1496 }
1497 }
1498 }
1499
1500 /* Read buffers of SIZE bytes via the function READER (if READER is
1501 null, read from stdin) until EOF. When non-null, READER is either
1502 read_and_delete or read_and_xlate. After each buffer is read, it is
1503 processed and written to stdout. The buffers are processed so that
1504 multiple consecutive occurrences of the same character in the input
1505 stream are replaced by a single occurrence of that character if the
1506 character is in the squeeze set. */
1507
1508 static void
squeeze_filter(char * buf,size_t size,size_t (* reader)(char *,size_t))1509 squeeze_filter (char *buf, size_t size, size_t (*reader) (char *, size_t))
1510 {
1511 /* A value distinct from any character that may have been stored in a
1512 buffer as the result of a block-read in the function squeeze_filter. */
1513 const int NOT_A_CHAR = INT_MAX;
1514
1515 int char_to_squeeze = NOT_A_CHAR;
1516 size_t i = 0;
1517 size_t nr = 0;
1518
1519 while (true)
1520 {
1521 if (i >= nr)
1522 {
1523 nr = reader (buf, size);
1524 if (nr == 0)
1525 break;
1526 i = 0;
1527 }
1528
1529 size_t begin = i;
1530
1531 if (char_to_squeeze == NOT_A_CHAR)
1532 {
1533 size_t out_len;
1534 /* Here, by being a little tricky, we can get a significant
1535 performance increase in most cases when the input is
1536 reasonably large. Since tr will modify the input only
1537 if two consecutive (and identical) input characters are
1538 in the squeeze set, we can step by two through the data
1539 when searching for a character in the squeeze set. This
1540 means there may be a little more work in a few cases and
1541 perhaps twice as much work in the worst cases where most
1542 of the input is removed by squeezing repeats. But most
1543 uses of this functionality seem to remove less than 20-30%
1544 of the input. */
1545 for (; i < nr && !in_squeeze_set[to_uchar (buf[i])]; i += 2)
1546 continue;
1547
1548 /* There is a special case when i == nr and we've just
1549 skipped a character (the last one in buf) that is in
1550 the squeeze set. */
1551 if (i == nr && in_squeeze_set[to_uchar (buf[i - 1])])
1552 --i;
1553
1554 if (i >= nr)
1555 out_len = nr - begin;
1556 else
1557 {
1558 char_to_squeeze = buf[i];
1559 /* We're about to output buf[begin..i]. */
1560 out_len = i - begin + 1;
1561
1562 /* But since we stepped by 2 in the loop above,
1563 out_len may be one too large. */
1564 if (i > 0 && buf[i - 1] == char_to_squeeze)
1565 --out_len;
1566
1567 /* Advance i to the index of first character to be
1568 considered when looking for a char different from
1569 char_to_squeeze. */
1570 ++i;
1571 }
1572 if (out_len > 0
1573 && fwrite (&buf[begin], 1, out_len, stdout) != out_len)
1574 write_error ();
1575 }
1576
1577 if (char_to_squeeze != NOT_A_CHAR)
1578 {
1579 /* Advance i to index of first char != char_to_squeeze
1580 (or to nr if all the rest of the characters in this
1581 buffer are the same as char_to_squeeze). */
1582 for (; i < nr && buf[i] == char_to_squeeze; i++)
1583 continue;
1584 if (i < nr)
1585 char_to_squeeze = NOT_A_CHAR;
1586 /* If (i >= nr) we've squeezed the last character in this buffer.
1587 So now we have to read a new buffer and continue comparing
1588 characters against char_to_squeeze. */
1589 }
1590 }
1591 }
1592
1593 static size_t
plain_read(char * buf,size_t size)1594 plain_read (char *buf, size_t size)
1595 {
1596 size_t nr = safe_read (STDIN_FILENO, buf, size);
1597 if (nr == SAFE_READ_ERROR)
1598 error (EXIT_FAILURE, errno, _("read error"));
1599 return nr;
1600 }
1601
1602 /* Read buffers of SIZE bytes from stdin until one is found that
1603 contains at least one character not in the delete set. Store
1604 in the array BUF, all characters from that buffer that are not
1605 in the delete set, and return the number of characters saved
1606 or 0 upon EOF. */
1607
1608 static size_t
read_and_delete(char * buf,size_t size)1609 read_and_delete (char *buf, size_t size)
1610 {
1611 size_t n_saved;
1612
1613 /* This enclosing do-while loop is to make sure that
1614 we don't return zero (indicating EOF) when we've
1615 just deleted all the characters in a buffer. */
1616 do
1617 {
1618 size_t nr = plain_read (buf, size);
1619
1620 if (nr == 0)
1621 return 0;
1622
1623 /* This first loop may be a waste of code, but gives much
1624 better performance when no characters are deleted in
1625 the beginning of a buffer. It just avoids the copying
1626 of buf[i] into buf[n_saved] when it would be a NOP. */
1627
1628 size_t i;
1629 for (i = 0; i < nr && !in_delete_set[to_uchar (buf[i])]; i++)
1630 continue;
1631 n_saved = i;
1632
1633 for (++i; i < nr; i++)
1634 if (!in_delete_set[to_uchar (buf[i])])
1635 buf[n_saved++] = buf[i];
1636 }
1637 while (n_saved == 0);
1638
1639 return n_saved;
1640 }
1641
1642 /* Read at most SIZE bytes from stdin into the array BUF. Then
1643 perform the in-place and one-to-one mapping specified by the global
1644 array 'xlate'. Return the number of characters read, or 0 upon EOF. */
1645
1646 static size_t
read_and_xlate(char * buf,size_t size)1647 read_and_xlate (char *buf, size_t size)
1648 {
1649 size_t bytes_read = plain_read (buf, size);
1650
1651 for (size_t i = 0; i < bytes_read; i++)
1652 buf[i] = xlate[to_uchar (buf[i])];
1653
1654 return bytes_read;
1655 }
1656
1657 /* Initialize a boolean membership set, IN_SET, with the character
1658 values obtained by traversing the linked list of constructs S
1659 using the function 'get_next'. IN_SET is expected to have been
1660 initialized to all zeros by the caller. If COMPLEMENT_THIS_SET
1661 is true the resulting set is complemented. */
1662
1663 static void
set_initialize(struct Spec_list * s,bool complement_this_set,bool * in_set)1664 set_initialize (struct Spec_list *s, bool complement_this_set, bool *in_set)
1665 {
1666 int c;
1667
1668 s->state = BEGIN_STATE;
1669 while ((c = get_next (s, nullptr)) != -1)
1670 in_set[c] = true;
1671 if (complement_this_set)
1672 for (size_t i = 0; i < N_CHARS; i++)
1673 in_set[i] = (!in_set[i]);
1674 }
1675
1676 int
main(int argc,char ** argv)1677 main (int argc, char **argv)
1678 {
1679 int c;
1680 int non_option_args;
1681 int min_operands;
1682 int max_operands;
1683 struct Spec_list buf1, buf2;
1684 struct Spec_list *s1 = &buf1;
1685 struct Spec_list *s2 = &buf2;
1686
1687 initialize_main (&argc, &argv);
1688 set_program_name (argv[0]);
1689 setlocale (LC_ALL, "");
1690 bindtextdomain (PACKAGE, LOCALEDIR);
1691 textdomain (PACKAGE);
1692
1693 atexit (close_stdout);
1694
1695 while ((c = getopt_long (argc, argv, "+AcCdst", long_options, nullptr)) != -1)
1696 {
1697 switch (c)
1698 {
1699 case 'A':
1700 /* Undocumented option, for compatibility with AIX. */
1701 setlocale (LC_COLLATE, "C");
1702 setlocale (LC_CTYPE, "C");
1703 break;
1704
1705 case 'c':
1706 case 'C':
1707 complement = true;
1708 break;
1709
1710 case 'd':
1711 delete = true;
1712 break;
1713
1714 case 's':
1715 squeeze_repeats = true;
1716 break;
1717
1718 case 't':
1719 truncate_set1 = true;
1720 break;
1721
1722 case_GETOPT_HELP_CHAR;
1723
1724 case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
1725
1726 default:
1727 usage (EXIT_FAILURE);
1728 break;
1729 }
1730 }
1731
1732 non_option_args = argc - optind;
1733 translating = (non_option_args == 2 && !delete);
1734 min_operands = 1 + (delete == squeeze_repeats);
1735 max_operands = 1 + (delete <= squeeze_repeats);
1736
1737 if (non_option_args < min_operands)
1738 {
1739 if (non_option_args == 0)
1740 error (0, 0, _("missing operand"));
1741 else
1742 {
1743 error (0, 0, _("missing operand after %s"), quote (argv[argc - 1]));
1744 fprintf (stderr, "%s\n",
1745 _(squeeze_repeats
1746 ? N_("Two strings must be given when "
1747 "both deleting and squeezing repeats.")
1748 : N_("Two strings must be given when translating.")));
1749 }
1750 usage (EXIT_FAILURE);
1751 }
1752
1753 if (max_operands < non_option_args)
1754 {
1755 error (0, 0, _("extra operand %s"), quote (argv[optind + max_operands]));
1756 if (non_option_args == 2)
1757 fprintf (stderr, "%s\n",
1758 _("Only one string may be given when "
1759 "deleting without squeezing repeats."));
1760 usage (EXIT_FAILURE);
1761 }
1762
1763 spec_init (s1);
1764 if (!parse_str (argv[optind], s1))
1765 main_exit (EXIT_FAILURE);
1766
1767 if (non_option_args == 2)
1768 {
1769 spec_init (s2);
1770 if (!parse_str (argv[optind + 1], s2))
1771 main_exit (EXIT_FAILURE);
1772 }
1773 else
1774 s2 = nullptr;
1775
1776 validate (s1, s2);
1777
1778 /* Use binary I/O, since 'tr' is sometimes used to transliterate
1779 non-printable characters, or characters which are stripped away
1780 by text-mode reads (like CR and ^Z). */
1781 xset_binary_mode (STDIN_FILENO, O_BINARY);
1782 xset_binary_mode (STDOUT_FILENO, O_BINARY);
1783 fadvise (stdin, FADVISE_SEQUENTIAL);
1784
1785 if (squeeze_repeats && non_option_args == 1)
1786 {
1787 set_initialize (s1, complement, in_squeeze_set);
1788 squeeze_filter (io_buf, sizeof io_buf, plain_read);
1789 }
1790 else if (delete && non_option_args == 1)
1791 {
1792 set_initialize (s1, complement, in_delete_set);
1793
1794 while (true)
1795 {
1796 size_t nr = read_and_delete (io_buf, sizeof io_buf);
1797 if (nr == 0)
1798 break;
1799 if (fwrite (io_buf, 1, nr, stdout) != nr)
1800 write_error ();
1801 }
1802 }
1803 else if (squeeze_repeats && delete && non_option_args == 2)
1804 {
1805 set_initialize (s1, complement, in_delete_set);
1806 set_initialize (s2, false, in_squeeze_set);
1807 squeeze_filter (io_buf, sizeof io_buf, read_and_delete);
1808 }
1809 else if (translating)
1810 {
1811 if (complement)
1812 {
1813 bool *in_s1 = in_delete_set;
1814
1815 set_initialize (s1, false, in_s1);
1816 s2->state = BEGIN_STATE;
1817 for (int i = 0; i < N_CHARS; i++)
1818 xlate[i] = i;
1819 for (int i = 0; i < N_CHARS; i++)
1820 {
1821 if (!in_s1[i])
1822 {
1823 int ch = get_next (s2, nullptr);
1824 affirm (ch != -1 || truncate_set1);
1825 if (ch == -1)
1826 {
1827 /* This will happen when tr is invoked like e.g.
1828 tr -cs A-Za-z0-9 '\012'. */
1829 break;
1830 }
1831 xlate[i] = ch;
1832 }
1833 }
1834 }
1835 else
1836 {
1837 int c1, c2;
1838 enum Upper_Lower_class class_s1;
1839 enum Upper_Lower_class class_s2;
1840
1841 for (int i = 0; i < N_CHARS; i++)
1842 xlate[i] = i;
1843 s1->state = BEGIN_STATE;
1844 s2->state = BEGIN_STATE;
1845 while (true)
1846 {
1847 c1 = get_next (s1, &class_s1);
1848 c2 = get_next (s2, &class_s2);
1849
1850 if (class_s1 == UL_LOWER && class_s2 == UL_UPPER)
1851 {
1852 for (int i = 0; i < N_CHARS; i++)
1853 if (islower (i))
1854 xlate[i] = toupper (i);
1855 }
1856 else if (class_s1 == UL_UPPER && class_s2 == UL_LOWER)
1857 {
1858 for (int i = 0; i < N_CHARS; i++)
1859 if (isupper (i))
1860 xlate[i] = tolower (i);
1861 }
1862 else
1863 {
1864 /* The following should have been checked by validate... */
1865 if (c1 == -1 || c2 == -1)
1866 break;
1867 xlate[c1] = c2;
1868 }
1869
1870 /* When case-converting, skip the elements as an optimization. */
1871 if (class_s2 != UL_NONE)
1872 {
1873 skip_construct (s1);
1874 skip_construct (s2);
1875 }
1876 }
1877 affirm (c1 == -1 || truncate_set1);
1878 }
1879 if (squeeze_repeats)
1880 {
1881 set_initialize (s2, false, in_squeeze_set);
1882 squeeze_filter (io_buf, sizeof io_buf, read_and_xlate);
1883 }
1884 else
1885 {
1886 while (true)
1887 {
1888 size_t bytes_read = read_and_xlate (io_buf, sizeof io_buf);
1889 if (bytes_read == 0)
1890 break;
1891 if (fwrite (io_buf, 1, bytes_read, stdout) != bytes_read)
1892 write_error ();
1893 }
1894 }
1895 }
1896
1897 if (close (STDIN_FILENO) != 0)
1898 error (EXIT_FAILURE, errno, _("standard input"));
1899
1900 main_exit (EXIT_SUCCESS);
1901 }
1902