1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
skb_frag_size(const skb_frag_t * frag)328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
skb_frag_size_set(skb_frag_t * frag,unsigned int size)333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
skb_frag_size_add(skb_frag_t * frag,int delta)338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
skb_frag_size_sub(skb_frag_t * frag,int delta)343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
skb_frag_must_loop(struct page * p)348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470 void mm_unaccount_pinned_pages(struct mmpin *mmp);
471 
472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 					struct ubuf_info *uarg);
475 
sock_zerocopy_get(struct ubuf_info * uarg)476 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477 {
478 	refcount_inc(&uarg->refcnt);
479 }
480 
481 void sock_zerocopy_put(struct ubuf_info *uarg);
482 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483 
484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485 
486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 			     struct msghdr *msg, int len,
488 			     struct ubuf_info *uarg);
489 
490 /* This data is invariant across clones and lives at
491  * the end of the header data, ie. at skb->end.
492  */
493 struct skb_shared_info {
494 	__u8		__unused;
495 	__u8		meta_len;
496 	__u8		nr_frags;
497 	__u8		tx_flags;
498 	unsigned short	gso_size;
499 	/* Warning: this field is not always filled in (UFO)! */
500 	unsigned short	gso_segs;
501 	struct sk_buff	*frag_list;
502 	struct skb_shared_hwtstamps hwtstamps;
503 	unsigned int	gso_type;
504 	u32		tskey;
505 
506 	/*
507 	 * Warning : all fields before dataref are cleared in __alloc_skb()
508 	 */
509 	atomic_t	dataref;
510 
511 	/* Intermediate layers must ensure that destructor_arg
512 	 * remains valid until skb destructor */
513 	void *		destructor_arg;
514 
515 	/* must be last field, see pskb_expand_head() */
516 	skb_frag_t	frags[MAX_SKB_FRAGS];
517 };
518 
519 /* We divide dataref into two halves.  The higher 16 bits hold references
520  * to the payload part of skb->data.  The lower 16 bits hold references to
521  * the entire skb->data.  A clone of a headerless skb holds the length of
522  * the header in skb->hdr_len.
523  *
524  * All users must obey the rule that the skb->data reference count must be
525  * greater than or equal to the payload reference count.
526  *
527  * Holding a reference to the payload part means that the user does not
528  * care about modifications to the header part of skb->data.
529  */
530 #define SKB_DATAREF_SHIFT 16
531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532 
533 
534 enum {
535 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
536 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
537 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
538 };
539 
540 enum {
541 	SKB_GSO_TCPV4 = 1 << 0,
542 
543 	/* This indicates the skb is from an untrusted source. */
544 	SKB_GSO_DODGY = 1 << 1,
545 
546 	/* This indicates the tcp segment has CWR set. */
547 	SKB_GSO_TCP_ECN = 1 << 2,
548 
549 	SKB_GSO_TCP_FIXEDID = 1 << 3,
550 
551 	SKB_GSO_TCPV6 = 1 << 4,
552 
553 	SKB_GSO_FCOE = 1 << 5,
554 
555 	SKB_GSO_GRE = 1 << 6,
556 
557 	SKB_GSO_GRE_CSUM = 1 << 7,
558 
559 	SKB_GSO_IPXIP4 = 1 << 8,
560 
561 	SKB_GSO_IPXIP6 = 1 << 9,
562 
563 	SKB_GSO_UDP_TUNNEL = 1 << 10,
564 
565 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
566 
567 	SKB_GSO_PARTIAL = 1 << 12,
568 
569 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
570 
571 	SKB_GSO_SCTP = 1 << 14,
572 
573 	SKB_GSO_ESP = 1 << 15,
574 
575 	SKB_GSO_UDP = 1 << 16,
576 
577 	SKB_GSO_UDP_L4 = 1 << 17,
578 };
579 
580 #if BITS_PER_LONG > 32
581 #define NET_SKBUFF_DATA_USES_OFFSET 1
582 #endif
583 
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 typedef unsigned int sk_buff_data_t;
586 #else
587 typedef unsigned char *sk_buff_data_t;
588 #endif
589 
590 /**
591  *	struct sk_buff - socket buffer
592  *	@next: Next buffer in list
593  *	@prev: Previous buffer in list
594  *	@tstamp: Time we arrived/left
595  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
596  *	@sk: Socket we are owned by
597  *	@dev: Device we arrived on/are leaving by
598  *	@cb: Control buffer. Free for use by every layer. Put private vars here
599  *	@_skb_refdst: destination entry (with norefcount bit)
600  *	@sp: the security path, used for xfrm
601  *	@len: Length of actual data
602  *	@data_len: Data length
603  *	@mac_len: Length of link layer header
604  *	@hdr_len: writable header length of cloned skb
605  *	@csum: Checksum (must include start/offset pair)
606  *	@csum_start: Offset from skb->head where checksumming should start
607  *	@csum_offset: Offset from csum_start where checksum should be stored
608  *	@priority: Packet queueing priority
609  *	@ignore_df: allow local fragmentation
610  *	@cloned: Head may be cloned (check refcnt to be sure)
611  *	@ip_summed: Driver fed us an IP checksum
612  *	@nohdr: Payload reference only, must not modify header
613  *	@pkt_type: Packet class
614  *	@fclone: skbuff clone status
615  *	@ipvs_property: skbuff is owned by ipvs
616  *	@tc_skip_classify: do not classify packet. set by IFB device
617  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
618  *	@tc_redirected: packet was redirected by a tc action
619  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620  *	@peeked: this packet has been seen already, so stats have been
621  *		done for it, don't do them again
622  *	@nf_trace: netfilter packet trace flag
623  *	@protocol: Packet protocol from driver
624  *	@destructor: Destruct function
625  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626  *	@_nfct: Associated connection, if any (with nfctinfo bits)
627  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628  *	@skb_iif: ifindex of device we arrived on
629  *	@tc_index: Traffic control index
630  *	@hash: the packet hash
631  *	@queue_mapping: Queue mapping for multiqueue devices
632  *	@xmit_more: More SKBs are pending for this queue
633  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
634  *	@ndisc_nodetype: router type (from link layer)
635  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
636  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
637  *		ports.
638  *	@sw_hash: indicates hash was computed in software stack
639  *	@wifi_acked_valid: wifi_acked was set
640  *	@wifi_acked: whether frame was acked on wifi or not
641  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
642  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
643  *	@dst_pending_confirm: need to confirm neighbour
644  *	@decrypted: Decrypted SKB
645   *	@napi_id: id of the NAPI struct this skb came from
646  *	@secmark: security marking
647  *	@mark: Generic packet mark
648  *	@vlan_proto: vlan encapsulation protocol
649  *	@vlan_tci: vlan tag control information
650  *	@inner_protocol: Protocol (encapsulation)
651  *	@inner_transport_header: Inner transport layer header (encapsulation)
652  *	@inner_network_header: Network layer header (encapsulation)
653  *	@inner_mac_header: Link layer header (encapsulation)
654  *	@transport_header: Transport layer header
655  *	@network_header: Network layer header
656  *	@mac_header: Link layer header
657  *	@tail: Tail pointer
658  *	@end: End pointer
659  *	@head: Head of buffer
660  *	@data: Data head pointer
661  *	@truesize: Buffer size
662  *	@users: User count - see {datagram,tcp}.c
663  */
664 
665 struct sk_buff {
666 	union {
667 		struct {
668 			/* These two members must be first. */
669 			struct sk_buff		*next;
670 			struct sk_buff		*prev;
671 
672 			union {
673 				struct net_device	*dev;
674 				/* Some protocols might use this space to store information,
675 				 * while device pointer would be NULL.
676 				 * UDP receive path is one user.
677 				 */
678 				unsigned long		dev_scratch;
679 			};
680 		};
681 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
682 		struct list_head	list;
683 	};
684 
685 	union {
686 		struct sock		*sk;
687 		int			ip_defrag_offset;
688 	};
689 
690 	union {
691 		ktime_t		tstamp;
692 		u64		skb_mstamp;
693 	};
694 	/*
695 	 * This is the control buffer. It is free to use for every
696 	 * layer. Please put your private variables there. If you
697 	 * want to keep them across layers you have to do a skb_clone()
698 	 * first. This is owned by whoever has the skb queued ATM.
699 	 */
700 	char			cb[48] __aligned(8);
701 
702 	union {
703 		struct {
704 			unsigned long	_skb_refdst;
705 			void		(*destructor)(struct sk_buff *skb);
706 		};
707 		struct list_head	tcp_tsorted_anchor;
708 	};
709 
710 #ifdef CONFIG_XFRM
711 	struct	sec_path	*sp;
712 #endif
713 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
714 	unsigned long		 _nfct;
715 #endif
716 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
717 	struct nf_bridge_info	*nf_bridge;
718 #endif
719 	unsigned int		len,
720 				data_len;
721 	__u16			mac_len,
722 				hdr_len;
723 
724 	/* Following fields are _not_ copied in __copy_skb_header()
725 	 * Note that queue_mapping is here mostly to fill a hole.
726 	 */
727 	__u16			queue_mapping;
728 
729 /* if you move cloned around you also must adapt those constants */
730 #ifdef __BIG_ENDIAN_BITFIELD
731 #define CLONED_MASK	(1 << 7)
732 #else
733 #define CLONED_MASK	1
734 #endif
735 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
736 
737 	__u8			__cloned_offset[0];
738 	__u8			cloned:1,
739 				nohdr:1,
740 				fclone:2,
741 				peeked:1,
742 				head_frag:1,
743 				xmit_more:1,
744 				pfmemalloc:1;
745 
746 	/* fields enclosed in headers_start/headers_end are copied
747 	 * using a single memcpy() in __copy_skb_header()
748 	 */
749 	/* private: */
750 	__u32			headers_start[0];
751 	/* public: */
752 
753 /* if you move pkt_type around you also must adapt those constants */
754 #ifdef __BIG_ENDIAN_BITFIELD
755 #define PKT_TYPE_MAX	(7 << 5)
756 #else
757 #define PKT_TYPE_MAX	7
758 #endif
759 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
760 
761 	__u8			__pkt_type_offset[0];
762 	__u8			pkt_type:3;
763 	__u8			ignore_df:1;
764 	__u8			nf_trace:1;
765 	__u8			ip_summed:2;
766 	__u8			ooo_okay:1;
767 
768 	__u8			l4_hash:1;
769 	__u8			sw_hash:1;
770 	__u8			wifi_acked_valid:1;
771 	__u8			wifi_acked:1;
772 	__u8			no_fcs:1;
773 	/* Indicates the inner headers are valid in the skbuff. */
774 	__u8			encapsulation:1;
775 	__u8			encap_hdr_csum:1;
776 	__u8			csum_valid:1;
777 
778 	__u8			csum_complete_sw:1;
779 	__u8			csum_level:2;
780 	__u8			csum_not_inet:1;
781 	__u8			dst_pending_confirm:1;
782 #ifdef CONFIG_IPV6_NDISC_NODETYPE
783 	__u8			ndisc_nodetype:2;
784 #endif
785 	__u8			ipvs_property:1;
786 
787 	__u8			inner_protocol_type:1;
788 	__u8			remcsum_offload:1;
789 #ifdef CONFIG_NET_SWITCHDEV
790 	__u8			offload_fwd_mark:1;
791 	__u8			offload_mr_fwd_mark:1;
792 #endif
793 #ifdef CONFIG_NET_CLS_ACT
794 	__u8			tc_skip_classify:1;
795 	__u8			tc_at_ingress:1;
796 	__u8			tc_redirected:1;
797 	__u8			tc_from_ingress:1;
798 #endif
799 #ifdef CONFIG_TLS_DEVICE
800 	__u8			decrypted:1;
801 #endif
802 
803 #ifdef CONFIG_NET_SCHED
804 	__u16			tc_index;	/* traffic control index */
805 #endif
806 
807 	union {
808 		__wsum		csum;
809 		struct {
810 			__u16	csum_start;
811 			__u16	csum_offset;
812 		};
813 	};
814 	__u32			priority;
815 	int			skb_iif;
816 	__u32			hash;
817 	__be16			vlan_proto;
818 	__u16			vlan_tci;
819 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
820 	union {
821 		unsigned int	napi_id;
822 		unsigned int	sender_cpu;
823 	};
824 #endif
825 #ifdef CONFIG_NETWORK_SECMARK
826 	__u32		secmark;
827 #endif
828 
829 	union {
830 		__u32		mark;
831 		__u32		reserved_tailroom;
832 	};
833 
834 	union {
835 		__be16		inner_protocol;
836 		__u8		inner_ipproto;
837 	};
838 
839 	__u16			inner_transport_header;
840 	__u16			inner_network_header;
841 	__u16			inner_mac_header;
842 
843 	__be16			protocol;
844 	__u16			transport_header;
845 	__u16			network_header;
846 	__u16			mac_header;
847 
848 	/* private: */
849 	__u32			headers_end[0];
850 	/* public: */
851 
852 	/* These elements must be at the end, see alloc_skb() for details.  */
853 	sk_buff_data_t		tail;
854 	sk_buff_data_t		end;
855 	unsigned char		*head,
856 				*data;
857 	unsigned int		truesize;
858 	refcount_t		users;
859 };
860 
861 #ifdef __KERNEL__
862 /*
863  *	Handling routines are only of interest to the kernel
864  */
865 
866 #define SKB_ALLOC_FCLONE	0x01
867 #define SKB_ALLOC_RX		0x02
868 #define SKB_ALLOC_NAPI		0x04
869 
870 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)871 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
872 {
873 	return unlikely(skb->pfmemalloc);
874 }
875 
876 /*
877  * skb might have a dst pointer attached, refcounted or not.
878  * _skb_refdst low order bit is set if refcount was _not_ taken
879  */
880 #define SKB_DST_NOREF	1UL
881 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
882 
883 #define SKB_NFCT_PTRMASK	~(7UL)
884 /**
885  * skb_dst - returns skb dst_entry
886  * @skb: buffer
887  *
888  * Returns skb dst_entry, regardless of reference taken or not.
889  */
skb_dst(const struct sk_buff * skb)890 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
891 {
892 	/* If refdst was not refcounted, check we still are in a
893 	 * rcu_read_lock section
894 	 */
895 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
896 		!rcu_read_lock_held() &&
897 		!rcu_read_lock_bh_held());
898 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
899 }
900 
901 /**
902  * skb_dst_set - sets skb dst
903  * @skb: buffer
904  * @dst: dst entry
905  *
906  * Sets skb dst, assuming a reference was taken on dst and should
907  * be released by skb_dst_drop()
908  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)909 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
910 {
911 	skb->_skb_refdst = (unsigned long)dst;
912 }
913 
914 /**
915  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
916  * @skb: buffer
917  * @dst: dst entry
918  *
919  * Sets skb dst, assuming a reference was not taken on dst.
920  * If dst entry is cached, we do not take reference and dst_release
921  * will be avoided by refdst_drop. If dst entry is not cached, we take
922  * reference, so that last dst_release can destroy the dst immediately.
923  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)924 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
925 {
926 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
927 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
928 }
929 
930 /**
931  * skb_dst_is_noref - Test if skb dst isn't refcounted
932  * @skb: buffer
933  */
skb_dst_is_noref(const struct sk_buff * skb)934 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
935 {
936 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
937 }
938 
skb_rtable(const struct sk_buff * skb)939 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
940 {
941 	return (struct rtable *)skb_dst(skb);
942 }
943 
944 /* For mangling skb->pkt_type from user space side from applications
945  * such as nft, tc, etc, we only allow a conservative subset of
946  * possible pkt_types to be set.
947 */
skb_pkt_type_ok(u32 ptype)948 static inline bool skb_pkt_type_ok(u32 ptype)
949 {
950 	return ptype <= PACKET_OTHERHOST;
951 }
952 
skb_napi_id(const struct sk_buff * skb)953 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
954 {
955 #ifdef CONFIG_NET_RX_BUSY_POLL
956 	return skb->napi_id;
957 #else
958 	return 0;
959 #endif
960 }
961 
962 /* decrement the reference count and return true if we can free the skb */
skb_unref(struct sk_buff * skb)963 static inline bool skb_unref(struct sk_buff *skb)
964 {
965 	if (unlikely(!skb))
966 		return false;
967 	if (likely(refcount_read(&skb->users) == 1))
968 		smp_rmb();
969 	else if (likely(!refcount_dec_and_test(&skb->users)))
970 		return false;
971 
972 	return true;
973 }
974 
975 void skb_release_head_state(struct sk_buff *skb);
976 void kfree_skb(struct sk_buff *skb);
977 void kfree_skb_list(struct sk_buff *segs);
978 void skb_tx_error(struct sk_buff *skb);
979 void consume_skb(struct sk_buff *skb);
980 void __consume_stateless_skb(struct sk_buff *skb);
981 void  __kfree_skb(struct sk_buff *skb);
982 extern struct kmem_cache *skbuff_head_cache;
983 
984 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
985 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
986 		      bool *fragstolen, int *delta_truesize);
987 
988 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
989 			    int node);
990 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
991 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)992 static inline struct sk_buff *alloc_skb(unsigned int size,
993 					gfp_t priority)
994 {
995 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
996 }
997 
998 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
999 				     unsigned long data_len,
1000 				     int max_page_order,
1001 				     int *errcode,
1002 				     gfp_t gfp_mask);
1003 
1004 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1005 struct sk_buff_fclones {
1006 	struct sk_buff	skb1;
1007 
1008 	struct sk_buff	skb2;
1009 
1010 	refcount_t	fclone_ref;
1011 };
1012 
1013 /**
1014  *	skb_fclone_busy - check if fclone is busy
1015  *	@sk: socket
1016  *	@skb: buffer
1017  *
1018  * Returns true if skb is a fast clone, and its clone is not freed.
1019  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1020  * so we also check that this didnt happen.
1021  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1022 static inline bool skb_fclone_busy(const struct sock *sk,
1023 				   const struct sk_buff *skb)
1024 {
1025 	const struct sk_buff_fclones *fclones;
1026 
1027 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1028 
1029 	return skb->fclone == SKB_FCLONE_ORIG &&
1030 	       refcount_read(&fclones->fclone_ref) > 1 &&
1031 	       fclones->skb2.sk == sk;
1032 }
1033 
alloc_skb_fclone(unsigned int size,gfp_t priority)1034 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1035 					       gfp_t priority)
1036 {
1037 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1038 }
1039 
1040 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1041 void skb_headers_offset_update(struct sk_buff *skb, int off);
1042 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1043 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1044 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1045 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1046 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1047 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1048 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1049 					  gfp_t gfp_mask)
1050 {
1051 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1052 }
1053 
1054 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1055 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1056 				     unsigned int headroom);
1057 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1058 				int newtailroom, gfp_t priority);
1059 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1060 				     int offset, int len);
1061 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1062 			      int offset, int len);
1063 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1064 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1065 
1066 /**
1067  *	skb_pad			-	zero pad the tail of an skb
1068  *	@skb: buffer to pad
1069  *	@pad: space to pad
1070  *
1071  *	Ensure that a buffer is followed by a padding area that is zero
1072  *	filled. Used by network drivers which may DMA or transfer data
1073  *	beyond the buffer end onto the wire.
1074  *
1075  *	May return error in out of memory cases. The skb is freed on error.
1076  */
skb_pad(struct sk_buff * skb,int pad)1077 static inline int skb_pad(struct sk_buff *skb, int pad)
1078 {
1079 	return __skb_pad(skb, pad, true);
1080 }
1081 #define dev_kfree_skb(a)	consume_skb(a)
1082 
1083 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1084 			    int getfrag(void *from, char *to, int offset,
1085 					int len, int odd, struct sk_buff *skb),
1086 			    void *from, int length);
1087 
1088 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1089 			 int offset, size_t size);
1090 
1091 struct skb_seq_state {
1092 	__u32		lower_offset;
1093 	__u32		upper_offset;
1094 	__u32		frag_idx;
1095 	__u32		stepped_offset;
1096 	struct sk_buff	*root_skb;
1097 	struct sk_buff	*cur_skb;
1098 	__u8		*frag_data;
1099 };
1100 
1101 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1102 			  unsigned int to, struct skb_seq_state *st);
1103 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1104 			  struct skb_seq_state *st);
1105 void skb_abort_seq_read(struct skb_seq_state *st);
1106 
1107 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1108 			   unsigned int to, struct ts_config *config);
1109 
1110 /*
1111  * Packet hash types specify the type of hash in skb_set_hash.
1112  *
1113  * Hash types refer to the protocol layer addresses which are used to
1114  * construct a packet's hash. The hashes are used to differentiate or identify
1115  * flows of the protocol layer for the hash type. Hash types are either
1116  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1117  *
1118  * Properties of hashes:
1119  *
1120  * 1) Two packets in different flows have different hash values
1121  * 2) Two packets in the same flow should have the same hash value
1122  *
1123  * A hash at a higher layer is considered to be more specific. A driver should
1124  * set the most specific hash possible.
1125  *
1126  * A driver cannot indicate a more specific hash than the layer at which a hash
1127  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1128  *
1129  * A driver may indicate a hash level which is less specific than the
1130  * actual layer the hash was computed on. For instance, a hash computed
1131  * at L4 may be considered an L3 hash. This should only be done if the
1132  * driver can't unambiguously determine that the HW computed the hash at
1133  * the higher layer. Note that the "should" in the second property above
1134  * permits this.
1135  */
1136 enum pkt_hash_types {
1137 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1138 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1139 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1140 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1141 };
1142 
skb_clear_hash(struct sk_buff * skb)1143 static inline void skb_clear_hash(struct sk_buff *skb)
1144 {
1145 	skb->hash = 0;
1146 	skb->sw_hash = 0;
1147 	skb->l4_hash = 0;
1148 }
1149 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1150 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1151 {
1152 	if (!skb->l4_hash)
1153 		skb_clear_hash(skb);
1154 }
1155 
1156 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1157 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1158 {
1159 	skb->l4_hash = is_l4;
1160 	skb->sw_hash = is_sw;
1161 	skb->hash = hash;
1162 }
1163 
1164 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1165 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1166 {
1167 	/* Used by drivers to set hash from HW */
1168 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1169 }
1170 
1171 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1172 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1173 {
1174 	__skb_set_hash(skb, hash, true, is_l4);
1175 }
1176 
1177 void __skb_get_hash(struct sk_buff *skb);
1178 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1179 u32 skb_get_poff(const struct sk_buff *skb);
1180 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1181 		   const struct flow_keys_basic *keys, int hlen);
1182 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1183 			    void *data, int hlen_proto);
1184 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1185 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1186 					int thoff, u8 ip_proto)
1187 {
1188 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1189 }
1190 
1191 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1192 			     const struct flow_dissector_key *key,
1193 			     unsigned int key_count);
1194 
1195 bool __skb_flow_dissect(const struct sk_buff *skb,
1196 			struct flow_dissector *flow_dissector,
1197 			void *target_container,
1198 			void *data, __be16 proto, int nhoff, int hlen,
1199 			unsigned int flags);
1200 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1201 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1202 				    struct flow_dissector *flow_dissector,
1203 				    void *target_container, unsigned int flags)
1204 {
1205 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1206 				  NULL, 0, 0, 0, flags);
1207 }
1208 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1209 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1210 					      struct flow_keys *flow,
1211 					      unsigned int flags)
1212 {
1213 	memset(flow, 0, sizeof(*flow));
1214 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1215 				  NULL, 0, 0, 0, flags);
1216 }
1217 
1218 static inline bool
skb_flow_dissect_flow_keys_basic(const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1219 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1220 				 struct flow_keys_basic *flow, void *data,
1221 				 __be16 proto, int nhoff, int hlen,
1222 				 unsigned int flags)
1223 {
1224 	memset(flow, 0, sizeof(*flow));
1225 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1226 				  data, proto, nhoff, hlen, flags);
1227 }
1228 
1229 void
1230 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1231 			     struct flow_dissector *flow_dissector,
1232 			     void *target_container);
1233 
skb_get_hash(struct sk_buff * skb)1234 static inline __u32 skb_get_hash(struct sk_buff *skb)
1235 {
1236 	if (!skb->l4_hash && !skb->sw_hash)
1237 		__skb_get_hash(skb);
1238 
1239 	return skb->hash;
1240 }
1241 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1242 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1243 {
1244 	if (!skb->l4_hash && !skb->sw_hash) {
1245 		struct flow_keys keys;
1246 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1247 
1248 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1249 	}
1250 
1251 	return skb->hash;
1252 }
1253 
1254 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1255 			   const siphash_key_t *perturb);
1256 
skb_get_hash_raw(const struct sk_buff * skb)1257 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1258 {
1259 	return skb->hash;
1260 }
1261 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1262 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1263 {
1264 	to->hash = from->hash;
1265 	to->sw_hash = from->sw_hash;
1266 	to->l4_hash = from->l4_hash;
1267 };
1268 
1269 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1270 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1271 {
1272 	return skb->head + skb->end;
1273 }
1274 
skb_end_offset(const struct sk_buff * skb)1275 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1276 {
1277 	return skb->end;
1278 }
1279 #else
skb_end_pointer(const struct sk_buff * skb)1280 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1281 {
1282 	return skb->end;
1283 }
1284 
skb_end_offset(const struct sk_buff * skb)1285 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1286 {
1287 	return skb->end - skb->head;
1288 }
1289 #endif
1290 
1291 /* Internal */
1292 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1293 
skb_hwtstamps(struct sk_buff * skb)1294 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1295 {
1296 	return &skb_shinfo(skb)->hwtstamps;
1297 }
1298 
skb_zcopy(struct sk_buff * skb)1299 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1300 {
1301 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1302 
1303 	return is_zcopy ? skb_uarg(skb) : NULL;
1304 }
1305 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg)1306 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1307 {
1308 	if (skb && uarg && !skb_zcopy(skb)) {
1309 		sock_zerocopy_get(uarg);
1310 		skb_shinfo(skb)->destructor_arg = uarg;
1311 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1312 	}
1313 }
1314 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1315 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1316 {
1317 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1318 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1319 }
1320 
skb_zcopy_is_nouarg(struct sk_buff * skb)1321 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1322 {
1323 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1324 }
1325 
skb_zcopy_get_nouarg(struct sk_buff * skb)1326 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1327 {
1328 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1329 }
1330 
1331 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1332 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1333 {
1334 	struct ubuf_info *uarg = skb_zcopy(skb);
1335 
1336 	if (uarg) {
1337 		if (skb_zcopy_is_nouarg(skb)) {
1338 			/* no notification callback */
1339 		} else if (uarg->callback == sock_zerocopy_callback) {
1340 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1341 			sock_zerocopy_put(uarg);
1342 		} else {
1343 			uarg->callback(uarg, zerocopy);
1344 		}
1345 
1346 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1347 	}
1348 }
1349 
1350 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1351 static inline void skb_zcopy_abort(struct sk_buff *skb)
1352 {
1353 	struct ubuf_info *uarg = skb_zcopy(skb);
1354 
1355 	if (uarg) {
1356 		sock_zerocopy_put_abort(uarg);
1357 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1358 	}
1359 }
1360 
skb_mark_not_on_list(struct sk_buff * skb)1361 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1362 {
1363 	skb->next = NULL;
1364 }
1365 
1366 /* Iterate through singly-linked GSO fragments of an skb. */
1367 #define skb_list_walk_safe(first, skb, next_skb)                               \
1368 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1369 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1370 
skb_list_del_init(struct sk_buff * skb)1371 static inline void skb_list_del_init(struct sk_buff *skb)
1372 {
1373 	__list_del_entry(&skb->list);
1374 	skb_mark_not_on_list(skb);
1375 }
1376 
1377 /**
1378  *	skb_queue_empty - check if a queue is empty
1379  *	@list: queue head
1380  *
1381  *	Returns true if the queue is empty, false otherwise.
1382  */
skb_queue_empty(const struct sk_buff_head * list)1383 static inline int skb_queue_empty(const struct sk_buff_head *list)
1384 {
1385 	return list->next == (const struct sk_buff *) list;
1386 }
1387 
1388 /**
1389  *	skb_queue_empty_lockless - check if a queue is empty
1390  *	@list: queue head
1391  *
1392  *	Returns true if the queue is empty, false otherwise.
1393  *	This variant can be used in lockless contexts.
1394  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1395 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1396 {
1397 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1398 }
1399 
1400 
1401 /**
1402  *	skb_queue_is_last - check if skb is the last entry in the queue
1403  *	@list: queue head
1404  *	@skb: buffer
1405  *
1406  *	Returns true if @skb is the last buffer on the list.
1407  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1408 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1409 				     const struct sk_buff *skb)
1410 {
1411 	return skb->next == (const struct sk_buff *) list;
1412 }
1413 
1414 /**
1415  *	skb_queue_is_first - check if skb is the first entry in the queue
1416  *	@list: queue head
1417  *	@skb: buffer
1418  *
1419  *	Returns true if @skb is the first buffer on the list.
1420  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1421 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1422 				      const struct sk_buff *skb)
1423 {
1424 	return skb->prev == (const struct sk_buff *) list;
1425 }
1426 
1427 /**
1428  *	skb_queue_next - return the next packet in the queue
1429  *	@list: queue head
1430  *	@skb: current buffer
1431  *
1432  *	Return the next packet in @list after @skb.  It is only valid to
1433  *	call this if skb_queue_is_last() evaluates to false.
1434  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1435 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1436 					     const struct sk_buff *skb)
1437 {
1438 	/* This BUG_ON may seem severe, but if we just return then we
1439 	 * are going to dereference garbage.
1440 	 */
1441 	BUG_ON(skb_queue_is_last(list, skb));
1442 	return skb->next;
1443 }
1444 
1445 /**
1446  *	skb_queue_prev - return the prev packet in the queue
1447  *	@list: queue head
1448  *	@skb: current buffer
1449  *
1450  *	Return the prev packet in @list before @skb.  It is only valid to
1451  *	call this if skb_queue_is_first() evaluates to false.
1452  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1453 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1454 					     const struct sk_buff *skb)
1455 {
1456 	/* This BUG_ON may seem severe, but if we just return then we
1457 	 * are going to dereference garbage.
1458 	 */
1459 	BUG_ON(skb_queue_is_first(list, skb));
1460 	return skb->prev;
1461 }
1462 
1463 /**
1464  *	skb_get - reference buffer
1465  *	@skb: buffer to reference
1466  *
1467  *	Makes another reference to a socket buffer and returns a pointer
1468  *	to the buffer.
1469  */
skb_get(struct sk_buff * skb)1470 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1471 {
1472 	refcount_inc(&skb->users);
1473 	return skb;
1474 }
1475 
1476 /*
1477  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1478  */
1479 
1480 /**
1481  *	skb_cloned - is the buffer a clone
1482  *	@skb: buffer to check
1483  *
1484  *	Returns true if the buffer was generated with skb_clone() and is
1485  *	one of multiple shared copies of the buffer. Cloned buffers are
1486  *	shared data so must not be written to under normal circumstances.
1487  */
skb_cloned(const struct sk_buff * skb)1488 static inline int skb_cloned(const struct sk_buff *skb)
1489 {
1490 	return skb->cloned &&
1491 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1492 }
1493 
skb_unclone(struct sk_buff * skb,gfp_t pri)1494 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1495 {
1496 	might_sleep_if(gfpflags_allow_blocking(pri));
1497 
1498 	if (skb_cloned(skb))
1499 		return pskb_expand_head(skb, 0, 0, pri);
1500 
1501 	return 0;
1502 }
1503 
1504 /**
1505  *	skb_header_cloned - is the header a clone
1506  *	@skb: buffer to check
1507  *
1508  *	Returns true if modifying the header part of the buffer requires
1509  *	the data to be copied.
1510  */
skb_header_cloned(const struct sk_buff * skb)1511 static inline int skb_header_cloned(const struct sk_buff *skb)
1512 {
1513 	int dataref;
1514 
1515 	if (!skb->cloned)
1516 		return 0;
1517 
1518 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1519 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1520 	return dataref != 1;
1521 }
1522 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1523 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1524 {
1525 	might_sleep_if(gfpflags_allow_blocking(pri));
1526 
1527 	if (skb_header_cloned(skb))
1528 		return pskb_expand_head(skb, 0, 0, pri);
1529 
1530 	return 0;
1531 }
1532 
1533 /**
1534  *	__skb_header_release - release reference to header
1535  *	@skb: buffer to operate on
1536  */
__skb_header_release(struct sk_buff * skb)1537 static inline void __skb_header_release(struct sk_buff *skb)
1538 {
1539 	skb->nohdr = 1;
1540 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1541 }
1542 
1543 
1544 /**
1545  *	skb_shared - is the buffer shared
1546  *	@skb: buffer to check
1547  *
1548  *	Returns true if more than one person has a reference to this
1549  *	buffer.
1550  */
skb_shared(const struct sk_buff * skb)1551 static inline int skb_shared(const struct sk_buff *skb)
1552 {
1553 	return refcount_read(&skb->users) != 1;
1554 }
1555 
1556 /**
1557  *	skb_share_check - check if buffer is shared and if so clone it
1558  *	@skb: buffer to check
1559  *	@pri: priority for memory allocation
1560  *
1561  *	If the buffer is shared the buffer is cloned and the old copy
1562  *	drops a reference. A new clone with a single reference is returned.
1563  *	If the buffer is not shared the original buffer is returned. When
1564  *	being called from interrupt status or with spinlocks held pri must
1565  *	be GFP_ATOMIC.
1566  *
1567  *	NULL is returned on a memory allocation failure.
1568  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1569 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1570 {
1571 	might_sleep_if(gfpflags_allow_blocking(pri));
1572 	if (skb_shared(skb)) {
1573 		struct sk_buff *nskb = skb_clone(skb, pri);
1574 
1575 		if (likely(nskb))
1576 			consume_skb(skb);
1577 		else
1578 			kfree_skb(skb);
1579 		skb = nskb;
1580 	}
1581 	return skb;
1582 }
1583 
1584 /*
1585  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1586  *	packets to handle cases where we have a local reader and forward
1587  *	and a couple of other messy ones. The normal one is tcpdumping
1588  *	a packet thats being forwarded.
1589  */
1590 
1591 /**
1592  *	skb_unshare - make a copy of a shared buffer
1593  *	@skb: buffer to check
1594  *	@pri: priority for memory allocation
1595  *
1596  *	If the socket buffer is a clone then this function creates a new
1597  *	copy of the data, drops a reference count on the old copy and returns
1598  *	the new copy with the reference count at 1. If the buffer is not a clone
1599  *	the original buffer is returned. When called with a spinlock held or
1600  *	from interrupt state @pri must be %GFP_ATOMIC
1601  *
1602  *	%NULL is returned on a memory allocation failure.
1603  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1604 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1605 					  gfp_t pri)
1606 {
1607 	might_sleep_if(gfpflags_allow_blocking(pri));
1608 	if (skb_cloned(skb)) {
1609 		struct sk_buff *nskb = skb_copy(skb, pri);
1610 
1611 		/* Free our shared copy */
1612 		if (likely(nskb))
1613 			consume_skb(skb);
1614 		else
1615 			kfree_skb(skb);
1616 		skb = nskb;
1617 	}
1618 	return skb;
1619 }
1620 
1621 /**
1622  *	skb_peek - peek at the head of an &sk_buff_head
1623  *	@list_: list to peek at
1624  *
1625  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1626  *	be careful with this one. A peek leaves the buffer on the
1627  *	list and someone else may run off with it. You must hold
1628  *	the appropriate locks or have a private queue to do this.
1629  *
1630  *	Returns %NULL for an empty list or a pointer to the head element.
1631  *	The reference count is not incremented and the reference is therefore
1632  *	volatile. Use with caution.
1633  */
skb_peek(const struct sk_buff_head * list_)1634 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1635 {
1636 	struct sk_buff *skb = list_->next;
1637 
1638 	if (skb == (struct sk_buff *)list_)
1639 		skb = NULL;
1640 	return skb;
1641 }
1642 
1643 /**
1644  *	skb_peek_next - peek skb following the given one from a queue
1645  *	@skb: skb to start from
1646  *	@list_: list to peek at
1647  *
1648  *	Returns %NULL when the end of the list is met or a pointer to the
1649  *	next element. The reference count is not incremented and the
1650  *	reference is therefore volatile. Use with caution.
1651  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1652 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1653 		const struct sk_buff_head *list_)
1654 {
1655 	struct sk_buff *next = skb->next;
1656 
1657 	if (next == (struct sk_buff *)list_)
1658 		next = NULL;
1659 	return next;
1660 }
1661 
1662 /**
1663  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1664  *	@list_: list to peek at
1665  *
1666  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1667  *	be careful with this one. A peek leaves the buffer on the
1668  *	list and someone else may run off with it. You must hold
1669  *	the appropriate locks or have a private queue to do this.
1670  *
1671  *	Returns %NULL for an empty list or a pointer to the tail element.
1672  *	The reference count is not incremented and the reference is therefore
1673  *	volatile. Use with caution.
1674  */
skb_peek_tail(const struct sk_buff_head * list_)1675 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1676 {
1677 	struct sk_buff *skb = READ_ONCE(list_->prev);
1678 
1679 	if (skb == (struct sk_buff *)list_)
1680 		skb = NULL;
1681 	return skb;
1682 
1683 }
1684 
1685 /**
1686  *	skb_queue_len	- get queue length
1687  *	@list_: list to measure
1688  *
1689  *	Return the length of an &sk_buff queue.
1690  */
skb_queue_len(const struct sk_buff_head * list_)1691 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1692 {
1693 	return list_->qlen;
1694 }
1695 
1696 /**
1697  *	skb_queue_len_lockless	- get queue length
1698  *	@list_: list to measure
1699  *
1700  *	Return the length of an &sk_buff queue.
1701  *	This variant can be used in lockless contexts.
1702  */
skb_queue_len_lockless(const struct sk_buff_head * list_)1703 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1704 {
1705 	return READ_ONCE(list_->qlen);
1706 }
1707 
1708 /**
1709  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1710  *	@list: queue to initialize
1711  *
1712  *	This initializes only the list and queue length aspects of
1713  *	an sk_buff_head object.  This allows to initialize the list
1714  *	aspects of an sk_buff_head without reinitializing things like
1715  *	the spinlock.  It can also be used for on-stack sk_buff_head
1716  *	objects where the spinlock is known to not be used.
1717  */
__skb_queue_head_init(struct sk_buff_head * list)1718 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1719 {
1720 	list->prev = list->next = (struct sk_buff *)list;
1721 	list->qlen = 0;
1722 }
1723 
1724 /*
1725  * This function creates a split out lock class for each invocation;
1726  * this is needed for now since a whole lot of users of the skb-queue
1727  * infrastructure in drivers have different locking usage (in hardirq)
1728  * than the networking core (in softirq only). In the long run either the
1729  * network layer or drivers should need annotation to consolidate the
1730  * main types of usage into 3 classes.
1731  */
skb_queue_head_init(struct sk_buff_head * list)1732 static inline void skb_queue_head_init(struct sk_buff_head *list)
1733 {
1734 	spin_lock_init(&list->lock);
1735 	__skb_queue_head_init(list);
1736 }
1737 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1738 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1739 		struct lock_class_key *class)
1740 {
1741 	skb_queue_head_init(list);
1742 	lockdep_set_class(&list->lock, class);
1743 }
1744 
1745 /*
1746  *	Insert an sk_buff on a list.
1747  *
1748  *	The "__skb_xxxx()" functions are the non-atomic ones that
1749  *	can only be called with interrupts disabled.
1750  */
1751 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1752 		struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1753 static inline void __skb_insert(struct sk_buff *newsk,
1754 				struct sk_buff *prev, struct sk_buff *next,
1755 				struct sk_buff_head *list)
1756 {
1757 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1758 	 * for the opposite READ_ONCE()
1759 	 */
1760 	WRITE_ONCE(newsk->next, next);
1761 	WRITE_ONCE(newsk->prev, prev);
1762 	WRITE_ONCE(next->prev, newsk);
1763 	WRITE_ONCE(prev->next, newsk);
1764 	WRITE_ONCE(list->qlen, list->qlen + 1);
1765 }
1766 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1767 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1768 				      struct sk_buff *prev,
1769 				      struct sk_buff *next)
1770 {
1771 	struct sk_buff *first = list->next;
1772 	struct sk_buff *last = list->prev;
1773 
1774 	WRITE_ONCE(first->prev, prev);
1775 	WRITE_ONCE(prev->next, first);
1776 
1777 	WRITE_ONCE(last->next, next);
1778 	WRITE_ONCE(next->prev, last);
1779 }
1780 
1781 /**
1782  *	skb_queue_splice - join two skb lists, this is designed for stacks
1783  *	@list: the new list to add
1784  *	@head: the place to add it in the first list
1785  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1786 static inline void skb_queue_splice(const struct sk_buff_head *list,
1787 				    struct sk_buff_head *head)
1788 {
1789 	if (!skb_queue_empty(list)) {
1790 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1791 		head->qlen += list->qlen;
1792 	}
1793 }
1794 
1795 /**
1796  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1797  *	@list: the new list to add
1798  *	@head: the place to add it in the first list
1799  *
1800  *	The list at @list is reinitialised
1801  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1802 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1803 					 struct sk_buff_head *head)
1804 {
1805 	if (!skb_queue_empty(list)) {
1806 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1807 		head->qlen += list->qlen;
1808 		__skb_queue_head_init(list);
1809 	}
1810 }
1811 
1812 /**
1813  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1814  *	@list: the new list to add
1815  *	@head: the place to add it in the first list
1816  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1817 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1818 					 struct sk_buff_head *head)
1819 {
1820 	if (!skb_queue_empty(list)) {
1821 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1822 		head->qlen += list->qlen;
1823 	}
1824 }
1825 
1826 /**
1827  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1828  *	@list: the new list to add
1829  *	@head: the place to add it in the first list
1830  *
1831  *	Each of the lists is a queue.
1832  *	The list at @list is reinitialised
1833  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1834 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1835 					      struct sk_buff_head *head)
1836 {
1837 	if (!skb_queue_empty(list)) {
1838 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1839 		head->qlen += list->qlen;
1840 		__skb_queue_head_init(list);
1841 	}
1842 }
1843 
1844 /**
1845  *	__skb_queue_after - queue a buffer at the list head
1846  *	@list: list to use
1847  *	@prev: place after this buffer
1848  *	@newsk: buffer to queue
1849  *
1850  *	Queue a buffer int the middle of a list. This function takes no locks
1851  *	and you must therefore hold required locks before calling it.
1852  *
1853  *	A buffer cannot be placed on two lists at the same time.
1854  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1855 static inline void __skb_queue_after(struct sk_buff_head *list,
1856 				     struct sk_buff *prev,
1857 				     struct sk_buff *newsk)
1858 {
1859 	__skb_insert(newsk, prev, prev->next, list);
1860 }
1861 
1862 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1863 		struct sk_buff_head *list);
1864 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1865 static inline void __skb_queue_before(struct sk_buff_head *list,
1866 				      struct sk_buff *next,
1867 				      struct sk_buff *newsk)
1868 {
1869 	__skb_insert(newsk, next->prev, next, list);
1870 }
1871 
1872 /**
1873  *	__skb_queue_head - queue a buffer at the list head
1874  *	@list: list to use
1875  *	@newsk: buffer to queue
1876  *
1877  *	Queue a buffer at the start of a list. This function takes no locks
1878  *	and you must therefore hold required locks before calling it.
1879  *
1880  *	A buffer cannot be placed on two lists at the same time.
1881  */
1882 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1883 static inline void __skb_queue_head(struct sk_buff_head *list,
1884 				    struct sk_buff *newsk)
1885 {
1886 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1887 }
1888 
1889 /**
1890  *	__skb_queue_tail - queue a buffer at the list tail
1891  *	@list: list to use
1892  *	@newsk: buffer to queue
1893  *
1894  *	Queue a buffer at the end of a list. This function takes no locks
1895  *	and you must therefore hold required locks before calling it.
1896  *
1897  *	A buffer cannot be placed on two lists at the same time.
1898  */
1899 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1900 static inline void __skb_queue_tail(struct sk_buff_head *list,
1901 				   struct sk_buff *newsk)
1902 {
1903 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1904 }
1905 
1906 /*
1907  * remove sk_buff from list. _Must_ be called atomically, and with
1908  * the list known..
1909  */
1910 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1911 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1912 {
1913 	struct sk_buff *next, *prev;
1914 
1915 	WRITE_ONCE(list->qlen, list->qlen - 1);
1916 	next	   = skb->next;
1917 	prev	   = skb->prev;
1918 	skb->next  = skb->prev = NULL;
1919 	WRITE_ONCE(next->prev, prev);
1920 	WRITE_ONCE(prev->next, next);
1921 }
1922 
1923 /**
1924  *	__skb_dequeue - remove from the head of the queue
1925  *	@list: list to dequeue from
1926  *
1927  *	Remove the head of the list. This function does not take any locks
1928  *	so must be used with appropriate locks held only. The head item is
1929  *	returned or %NULL if the list is empty.
1930  */
1931 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1932 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1933 {
1934 	struct sk_buff *skb = skb_peek(list);
1935 	if (skb)
1936 		__skb_unlink(skb, list);
1937 	return skb;
1938 }
1939 
1940 /**
1941  *	__skb_dequeue_tail - remove from the tail of the queue
1942  *	@list: list to dequeue from
1943  *
1944  *	Remove the tail of the list. This function does not take any locks
1945  *	so must be used with appropriate locks held only. The tail item is
1946  *	returned or %NULL if the list is empty.
1947  */
1948 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1949 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1950 {
1951 	struct sk_buff *skb = skb_peek_tail(list);
1952 	if (skb)
1953 		__skb_unlink(skb, list);
1954 	return skb;
1955 }
1956 
1957 
skb_is_nonlinear(const struct sk_buff * skb)1958 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1959 {
1960 	return skb->data_len;
1961 }
1962 
skb_headlen(const struct sk_buff * skb)1963 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1964 {
1965 	return skb->len - skb->data_len;
1966 }
1967 
__skb_pagelen(const struct sk_buff * skb)1968 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1969 {
1970 	unsigned int i, len = 0;
1971 
1972 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1973 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1974 	return len;
1975 }
1976 
skb_pagelen(const struct sk_buff * skb)1977 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1978 {
1979 	return skb_headlen(skb) + __skb_pagelen(skb);
1980 }
1981 
1982 /**
1983  * __skb_fill_page_desc - initialise a paged fragment in an skb
1984  * @skb: buffer containing fragment to be initialised
1985  * @i: paged fragment index to initialise
1986  * @page: the page to use for this fragment
1987  * @off: the offset to the data with @page
1988  * @size: the length of the data
1989  *
1990  * Initialises the @i'th fragment of @skb to point to &size bytes at
1991  * offset @off within @page.
1992  *
1993  * Does not take any additional reference on the fragment.
1994  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1995 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1996 					struct page *page, int off, int size)
1997 {
1998 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1999 
2000 	/*
2001 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2002 	 * that not all callers have unique ownership of the page but rely
2003 	 * on page_is_pfmemalloc doing the right thing(tm).
2004 	 */
2005 	frag->page.p		  = page;
2006 	frag->page_offset	  = off;
2007 	skb_frag_size_set(frag, size);
2008 
2009 	page = compound_head(page);
2010 	if (page_is_pfmemalloc(page))
2011 		skb->pfmemalloc	= true;
2012 }
2013 
2014 /**
2015  * skb_fill_page_desc - initialise a paged fragment in an skb
2016  * @skb: buffer containing fragment to be initialised
2017  * @i: paged fragment index to initialise
2018  * @page: the page to use for this fragment
2019  * @off: the offset to the data with @page
2020  * @size: the length of the data
2021  *
2022  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2023  * @skb to point to @size bytes at offset @off within @page. In
2024  * addition updates @skb such that @i is the last fragment.
2025  *
2026  * Does not take any additional reference on the fragment.
2027  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2028 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2029 				      struct page *page, int off, int size)
2030 {
2031 	__skb_fill_page_desc(skb, i, page, off, size);
2032 	skb_shinfo(skb)->nr_frags = i + 1;
2033 }
2034 
2035 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2036 		     int size, unsigned int truesize);
2037 
2038 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2039 			  unsigned int truesize);
2040 
2041 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
2042 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
2043 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2044 
2045 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2046 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2047 {
2048 	return skb->head + skb->tail;
2049 }
2050 
skb_reset_tail_pointer(struct sk_buff * skb)2051 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2052 {
2053 	skb->tail = skb->data - skb->head;
2054 }
2055 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2056 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2057 {
2058 	skb_reset_tail_pointer(skb);
2059 	skb->tail += offset;
2060 }
2061 
2062 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2063 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2064 {
2065 	return skb->tail;
2066 }
2067 
skb_reset_tail_pointer(struct sk_buff * skb)2068 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2069 {
2070 	skb->tail = skb->data;
2071 }
2072 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2073 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2074 {
2075 	skb->tail = skb->data + offset;
2076 }
2077 
2078 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2079 
2080 /*
2081  *	Add data to an sk_buff
2082  */
2083 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2084 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2085 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2086 {
2087 	void *tmp = skb_tail_pointer(skb);
2088 	SKB_LINEAR_ASSERT(skb);
2089 	skb->tail += len;
2090 	skb->len  += len;
2091 	return tmp;
2092 }
2093 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2094 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2095 {
2096 	void *tmp = __skb_put(skb, len);
2097 
2098 	memset(tmp, 0, len);
2099 	return tmp;
2100 }
2101 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2102 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2103 				   unsigned int len)
2104 {
2105 	void *tmp = __skb_put(skb, len);
2106 
2107 	memcpy(tmp, data, len);
2108 	return tmp;
2109 }
2110 
__skb_put_u8(struct sk_buff * skb,u8 val)2111 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2112 {
2113 	*(u8 *)__skb_put(skb, 1) = val;
2114 }
2115 
skb_put_zero(struct sk_buff * skb,unsigned int len)2116 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2117 {
2118 	void *tmp = skb_put(skb, len);
2119 
2120 	memset(tmp, 0, len);
2121 
2122 	return tmp;
2123 }
2124 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2125 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2126 				 unsigned int len)
2127 {
2128 	void *tmp = skb_put(skb, len);
2129 
2130 	memcpy(tmp, data, len);
2131 
2132 	return tmp;
2133 }
2134 
skb_put_u8(struct sk_buff * skb,u8 val)2135 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2136 {
2137 	*(u8 *)skb_put(skb, 1) = val;
2138 }
2139 
2140 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2141 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2142 {
2143 	skb->data -= len;
2144 	skb->len  += len;
2145 	return skb->data;
2146 }
2147 
2148 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2149 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2150 {
2151 	skb->len -= len;
2152 	BUG_ON(skb->len < skb->data_len);
2153 	return skb->data += len;
2154 }
2155 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2156 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2157 {
2158 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2159 }
2160 
2161 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2162 
__pskb_pull(struct sk_buff * skb,unsigned int len)2163 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2164 {
2165 	if (len > skb_headlen(skb) &&
2166 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2167 		return NULL;
2168 	skb->len -= len;
2169 	return skb->data += len;
2170 }
2171 
pskb_pull(struct sk_buff * skb,unsigned int len)2172 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2173 {
2174 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2175 }
2176 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2177 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2178 {
2179 	if (likely(len <= skb_headlen(skb)))
2180 		return 1;
2181 	if (unlikely(len > skb->len))
2182 		return 0;
2183 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2184 }
2185 
2186 void skb_condense(struct sk_buff *skb);
2187 
2188 /**
2189  *	skb_headroom - bytes at buffer head
2190  *	@skb: buffer to check
2191  *
2192  *	Return the number of bytes of free space at the head of an &sk_buff.
2193  */
skb_headroom(const struct sk_buff * skb)2194 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2195 {
2196 	return skb->data - skb->head;
2197 }
2198 
2199 /**
2200  *	skb_tailroom - bytes at buffer end
2201  *	@skb: buffer to check
2202  *
2203  *	Return the number of bytes of free space at the tail of an sk_buff
2204  */
skb_tailroom(const struct sk_buff * skb)2205 static inline int skb_tailroom(const struct sk_buff *skb)
2206 {
2207 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2208 }
2209 
2210 /**
2211  *	skb_availroom - bytes at buffer end
2212  *	@skb: buffer to check
2213  *
2214  *	Return the number of bytes of free space at the tail of an sk_buff
2215  *	allocated by sk_stream_alloc()
2216  */
skb_availroom(const struct sk_buff * skb)2217 static inline int skb_availroom(const struct sk_buff *skb)
2218 {
2219 	if (skb_is_nonlinear(skb))
2220 		return 0;
2221 
2222 	return skb->end - skb->tail - skb->reserved_tailroom;
2223 }
2224 
2225 /**
2226  *	skb_reserve - adjust headroom
2227  *	@skb: buffer to alter
2228  *	@len: bytes to move
2229  *
2230  *	Increase the headroom of an empty &sk_buff by reducing the tail
2231  *	room. This is only allowed for an empty buffer.
2232  */
skb_reserve(struct sk_buff * skb,int len)2233 static inline void skb_reserve(struct sk_buff *skb, int len)
2234 {
2235 	skb->data += len;
2236 	skb->tail += len;
2237 }
2238 
2239 /**
2240  *	skb_tailroom_reserve - adjust reserved_tailroom
2241  *	@skb: buffer to alter
2242  *	@mtu: maximum amount of headlen permitted
2243  *	@needed_tailroom: minimum amount of reserved_tailroom
2244  *
2245  *	Set reserved_tailroom so that headlen can be as large as possible but
2246  *	not larger than mtu and tailroom cannot be smaller than
2247  *	needed_tailroom.
2248  *	The required headroom should already have been reserved before using
2249  *	this function.
2250  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2251 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2252 					unsigned int needed_tailroom)
2253 {
2254 	SKB_LINEAR_ASSERT(skb);
2255 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2256 		/* use at most mtu */
2257 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2258 	else
2259 		/* use up to all available space */
2260 		skb->reserved_tailroom = needed_tailroom;
2261 }
2262 
2263 #define ENCAP_TYPE_ETHER	0
2264 #define ENCAP_TYPE_IPPROTO	1
2265 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2266 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2267 					  __be16 protocol)
2268 {
2269 	skb->inner_protocol = protocol;
2270 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2271 }
2272 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2273 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2274 					 __u8 ipproto)
2275 {
2276 	skb->inner_ipproto = ipproto;
2277 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2278 }
2279 
skb_reset_inner_headers(struct sk_buff * skb)2280 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2281 {
2282 	skb->inner_mac_header = skb->mac_header;
2283 	skb->inner_network_header = skb->network_header;
2284 	skb->inner_transport_header = skb->transport_header;
2285 }
2286 
skb_reset_mac_len(struct sk_buff * skb)2287 static inline void skb_reset_mac_len(struct sk_buff *skb)
2288 {
2289 	skb->mac_len = skb->network_header - skb->mac_header;
2290 }
2291 
skb_inner_transport_header(const struct sk_buff * skb)2292 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2293 							*skb)
2294 {
2295 	return skb->head + skb->inner_transport_header;
2296 }
2297 
skb_inner_transport_offset(const struct sk_buff * skb)2298 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2299 {
2300 	return skb_inner_transport_header(skb) - skb->data;
2301 }
2302 
skb_reset_inner_transport_header(struct sk_buff * skb)2303 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2304 {
2305 	skb->inner_transport_header = skb->data - skb->head;
2306 }
2307 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2308 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2309 						   const int offset)
2310 {
2311 	skb_reset_inner_transport_header(skb);
2312 	skb->inner_transport_header += offset;
2313 }
2314 
skb_inner_network_header(const struct sk_buff * skb)2315 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2316 {
2317 	return skb->head + skb->inner_network_header;
2318 }
2319 
skb_reset_inner_network_header(struct sk_buff * skb)2320 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2321 {
2322 	skb->inner_network_header = skb->data - skb->head;
2323 }
2324 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2325 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2326 						const int offset)
2327 {
2328 	skb_reset_inner_network_header(skb);
2329 	skb->inner_network_header += offset;
2330 }
2331 
skb_inner_mac_header(const struct sk_buff * skb)2332 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2333 {
2334 	return skb->head + skb->inner_mac_header;
2335 }
2336 
skb_reset_inner_mac_header(struct sk_buff * skb)2337 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2338 {
2339 	skb->inner_mac_header = skb->data - skb->head;
2340 }
2341 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2342 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2343 					    const int offset)
2344 {
2345 	skb_reset_inner_mac_header(skb);
2346 	skb->inner_mac_header += offset;
2347 }
skb_transport_header_was_set(const struct sk_buff * skb)2348 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2349 {
2350 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2351 }
2352 
skb_transport_header(const struct sk_buff * skb)2353 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2354 {
2355 	return skb->head + skb->transport_header;
2356 }
2357 
skb_reset_transport_header(struct sk_buff * skb)2358 static inline void skb_reset_transport_header(struct sk_buff *skb)
2359 {
2360 	skb->transport_header = skb->data - skb->head;
2361 }
2362 
skb_set_transport_header(struct sk_buff * skb,const int offset)2363 static inline void skb_set_transport_header(struct sk_buff *skb,
2364 					    const int offset)
2365 {
2366 	skb_reset_transport_header(skb);
2367 	skb->transport_header += offset;
2368 }
2369 
skb_network_header(const struct sk_buff * skb)2370 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2371 {
2372 	return skb->head + skb->network_header;
2373 }
2374 
skb_reset_network_header(struct sk_buff * skb)2375 static inline void skb_reset_network_header(struct sk_buff *skb)
2376 {
2377 	skb->network_header = skb->data - skb->head;
2378 }
2379 
skb_set_network_header(struct sk_buff * skb,const int offset)2380 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2381 {
2382 	skb_reset_network_header(skb);
2383 	skb->network_header += offset;
2384 }
2385 
skb_mac_header(const struct sk_buff * skb)2386 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2387 {
2388 	return skb->head + skb->mac_header;
2389 }
2390 
skb_mac_offset(const struct sk_buff * skb)2391 static inline int skb_mac_offset(const struct sk_buff *skb)
2392 {
2393 	return skb_mac_header(skb) - skb->data;
2394 }
2395 
skb_mac_header_len(const struct sk_buff * skb)2396 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2397 {
2398 	return skb->network_header - skb->mac_header;
2399 }
2400 
skb_mac_header_was_set(const struct sk_buff * skb)2401 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2402 {
2403 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2404 }
2405 
skb_reset_mac_header(struct sk_buff * skb)2406 static inline void skb_reset_mac_header(struct sk_buff *skb)
2407 {
2408 	skb->mac_header = skb->data - skb->head;
2409 }
2410 
skb_set_mac_header(struct sk_buff * skb,const int offset)2411 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2412 {
2413 	skb_reset_mac_header(skb);
2414 	skb->mac_header += offset;
2415 }
2416 
skb_pop_mac_header(struct sk_buff * skb)2417 static inline void skb_pop_mac_header(struct sk_buff *skb)
2418 {
2419 	skb->mac_header = skb->network_header;
2420 }
2421 
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)2422 static inline void skb_probe_transport_header(struct sk_buff *skb,
2423 					      const int offset_hint)
2424 {
2425 	struct flow_keys_basic keys;
2426 
2427 	if (skb_transport_header_was_set(skb))
2428 		return;
2429 
2430 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2431 		skb_set_transport_header(skb, keys.control.thoff);
2432 	else if (offset_hint >= 0)
2433 		skb_set_transport_header(skb, offset_hint);
2434 }
2435 
skb_mac_header_rebuild(struct sk_buff * skb)2436 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2437 {
2438 	if (skb_mac_header_was_set(skb)) {
2439 		const unsigned char *old_mac = skb_mac_header(skb);
2440 
2441 		skb_set_mac_header(skb, -skb->mac_len);
2442 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2443 	}
2444 }
2445 
skb_checksum_start_offset(const struct sk_buff * skb)2446 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2447 {
2448 	return skb->csum_start - skb_headroom(skb);
2449 }
2450 
skb_checksum_start(const struct sk_buff * skb)2451 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2452 {
2453 	return skb->head + skb->csum_start;
2454 }
2455 
skb_transport_offset(const struct sk_buff * skb)2456 static inline int skb_transport_offset(const struct sk_buff *skb)
2457 {
2458 	return skb_transport_header(skb) - skb->data;
2459 }
2460 
skb_network_header_len(const struct sk_buff * skb)2461 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2462 {
2463 	return skb->transport_header - skb->network_header;
2464 }
2465 
skb_inner_network_header_len(const struct sk_buff * skb)2466 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2467 {
2468 	return skb->inner_transport_header - skb->inner_network_header;
2469 }
2470 
skb_network_offset(const struct sk_buff * skb)2471 static inline int skb_network_offset(const struct sk_buff *skb)
2472 {
2473 	return skb_network_header(skb) - skb->data;
2474 }
2475 
skb_inner_network_offset(const struct sk_buff * skb)2476 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2477 {
2478 	return skb_inner_network_header(skb) - skb->data;
2479 }
2480 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2481 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2482 {
2483 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2484 }
2485 
2486 /*
2487  * CPUs often take a performance hit when accessing unaligned memory
2488  * locations. The actual performance hit varies, it can be small if the
2489  * hardware handles it or large if we have to take an exception and fix it
2490  * in software.
2491  *
2492  * Since an ethernet header is 14 bytes network drivers often end up with
2493  * the IP header at an unaligned offset. The IP header can be aligned by
2494  * shifting the start of the packet by 2 bytes. Drivers should do this
2495  * with:
2496  *
2497  * skb_reserve(skb, NET_IP_ALIGN);
2498  *
2499  * The downside to this alignment of the IP header is that the DMA is now
2500  * unaligned. On some architectures the cost of an unaligned DMA is high
2501  * and this cost outweighs the gains made by aligning the IP header.
2502  *
2503  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2504  * to be overridden.
2505  */
2506 #ifndef NET_IP_ALIGN
2507 #define NET_IP_ALIGN	2
2508 #endif
2509 
2510 /*
2511  * The networking layer reserves some headroom in skb data (via
2512  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2513  * the header has to grow. In the default case, if the header has to grow
2514  * 32 bytes or less we avoid the reallocation.
2515  *
2516  * Unfortunately this headroom changes the DMA alignment of the resulting
2517  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2518  * on some architectures. An architecture can override this value,
2519  * perhaps setting it to a cacheline in size (since that will maintain
2520  * cacheline alignment of the DMA). It must be a power of 2.
2521  *
2522  * Various parts of the networking layer expect at least 32 bytes of
2523  * headroom, you should not reduce this.
2524  *
2525  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2526  * to reduce average number of cache lines per packet.
2527  * get_rps_cpus() for example only access one 64 bytes aligned block :
2528  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2529  */
2530 #ifndef NET_SKB_PAD
2531 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2532 #endif
2533 
2534 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2535 
__skb_set_length(struct sk_buff * skb,unsigned int len)2536 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2537 {
2538 	if (unlikely(skb_is_nonlinear(skb))) {
2539 		WARN_ON(1);
2540 		return;
2541 	}
2542 	skb->len = len;
2543 	skb_set_tail_pointer(skb, len);
2544 }
2545 
__skb_trim(struct sk_buff * skb,unsigned int len)2546 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2547 {
2548 	__skb_set_length(skb, len);
2549 }
2550 
2551 void skb_trim(struct sk_buff *skb, unsigned int len);
2552 
__pskb_trim(struct sk_buff * skb,unsigned int len)2553 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2554 {
2555 	if (skb->data_len)
2556 		return ___pskb_trim(skb, len);
2557 	__skb_trim(skb, len);
2558 	return 0;
2559 }
2560 
pskb_trim(struct sk_buff * skb,unsigned int len)2561 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2562 {
2563 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2564 }
2565 
2566 /**
2567  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2568  *	@skb: buffer to alter
2569  *	@len: new length
2570  *
2571  *	This is identical to pskb_trim except that the caller knows that
2572  *	the skb is not cloned so we should never get an error due to out-
2573  *	of-memory.
2574  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2575 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2576 {
2577 	int err = pskb_trim(skb, len);
2578 	BUG_ON(err);
2579 }
2580 
__skb_grow(struct sk_buff * skb,unsigned int len)2581 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2582 {
2583 	unsigned int diff = len - skb->len;
2584 
2585 	if (skb_tailroom(skb) < diff) {
2586 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2587 					   GFP_ATOMIC);
2588 		if (ret)
2589 			return ret;
2590 	}
2591 	__skb_set_length(skb, len);
2592 	return 0;
2593 }
2594 
2595 /**
2596  *	skb_orphan - orphan a buffer
2597  *	@skb: buffer to orphan
2598  *
2599  *	If a buffer currently has an owner then we call the owner's
2600  *	destructor function and make the @skb unowned. The buffer continues
2601  *	to exist but is no longer charged to its former owner.
2602  */
skb_orphan(struct sk_buff * skb)2603 static inline void skb_orphan(struct sk_buff *skb)
2604 {
2605 	if (skb->destructor) {
2606 		skb->destructor(skb);
2607 		skb->destructor = NULL;
2608 		skb->sk		= NULL;
2609 	} else {
2610 		BUG_ON(skb->sk);
2611 	}
2612 }
2613 
2614 /**
2615  *	skb_orphan_frags - orphan the frags contained in a buffer
2616  *	@skb: buffer to orphan frags from
2617  *	@gfp_mask: allocation mask for replacement pages
2618  *
2619  *	For each frag in the SKB which needs a destructor (i.e. has an
2620  *	owner) create a copy of that frag and release the original
2621  *	page by calling the destructor.
2622  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2623 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2624 {
2625 	if (likely(!skb_zcopy(skb)))
2626 		return 0;
2627 	if (!skb_zcopy_is_nouarg(skb) &&
2628 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2629 		return 0;
2630 	return skb_copy_ubufs(skb, gfp_mask);
2631 }
2632 
2633 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2634 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2635 {
2636 	if (likely(!skb_zcopy(skb)))
2637 		return 0;
2638 	return skb_copy_ubufs(skb, gfp_mask);
2639 }
2640 
2641 /**
2642  *	__skb_queue_purge - empty a list
2643  *	@list: list to empty
2644  *
2645  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2646  *	the list and one reference dropped. This function does not take the
2647  *	list lock and the caller must hold the relevant locks to use it.
2648  */
2649 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2650 static inline void __skb_queue_purge(struct sk_buff_head *list)
2651 {
2652 	struct sk_buff *skb;
2653 	while ((skb = __skb_dequeue(list)) != NULL)
2654 		kfree_skb(skb);
2655 }
2656 
2657 unsigned int skb_rbtree_purge(struct rb_root *root);
2658 
2659 void *netdev_alloc_frag(unsigned int fragsz);
2660 
2661 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2662 				   gfp_t gfp_mask);
2663 
2664 /**
2665  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2666  *	@dev: network device to receive on
2667  *	@length: length to allocate
2668  *
2669  *	Allocate a new &sk_buff and assign it a usage count of one. The
2670  *	buffer has unspecified headroom built in. Users should allocate
2671  *	the headroom they think they need without accounting for the
2672  *	built in space. The built in space is used for optimisations.
2673  *
2674  *	%NULL is returned if there is no free memory. Although this function
2675  *	allocates memory it can be called from an interrupt.
2676  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2677 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2678 					       unsigned int length)
2679 {
2680 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2681 }
2682 
2683 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2684 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2685 					      gfp_t gfp_mask)
2686 {
2687 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2688 }
2689 
2690 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2691 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2692 {
2693 	return netdev_alloc_skb(NULL, length);
2694 }
2695 
2696 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2697 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2698 		unsigned int length, gfp_t gfp)
2699 {
2700 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2701 
2702 	if (NET_IP_ALIGN && skb)
2703 		skb_reserve(skb, NET_IP_ALIGN);
2704 	return skb;
2705 }
2706 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2707 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2708 		unsigned int length)
2709 {
2710 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2711 }
2712 
skb_free_frag(void * addr)2713 static inline void skb_free_frag(void *addr)
2714 {
2715 	page_frag_free(addr);
2716 }
2717 
2718 void *napi_alloc_frag(unsigned int fragsz);
2719 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2720 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2721 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2722 					     unsigned int length)
2723 {
2724 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2725 }
2726 void napi_consume_skb(struct sk_buff *skb, int budget);
2727 
2728 void __kfree_skb_flush(void);
2729 void __kfree_skb_defer(struct sk_buff *skb);
2730 
2731 /**
2732  * __dev_alloc_pages - allocate page for network Rx
2733  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2734  * @order: size of the allocation
2735  *
2736  * Allocate a new page.
2737  *
2738  * %NULL is returned if there is no free memory.
2739 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2740 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2741 					     unsigned int order)
2742 {
2743 	/* This piece of code contains several assumptions.
2744 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2745 	 * 2.  The expectation is the user wants a compound page.
2746 	 * 3.  If requesting a order 0 page it will not be compound
2747 	 *     due to the check to see if order has a value in prep_new_page
2748 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2749 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2750 	 */
2751 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2752 
2753 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2754 }
2755 
dev_alloc_pages(unsigned int order)2756 static inline struct page *dev_alloc_pages(unsigned int order)
2757 {
2758 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2759 }
2760 
2761 /**
2762  * __dev_alloc_page - allocate a page for network Rx
2763  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2764  *
2765  * Allocate a new page.
2766  *
2767  * %NULL is returned if there is no free memory.
2768  */
__dev_alloc_page(gfp_t gfp_mask)2769 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2770 {
2771 	return __dev_alloc_pages(gfp_mask, 0);
2772 }
2773 
dev_alloc_page(void)2774 static inline struct page *dev_alloc_page(void)
2775 {
2776 	return dev_alloc_pages(0);
2777 }
2778 
2779 /**
2780  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2781  *	@page: The page that was allocated from skb_alloc_page
2782  *	@skb: The skb that may need pfmemalloc set
2783  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2784 static inline void skb_propagate_pfmemalloc(struct page *page,
2785 					     struct sk_buff *skb)
2786 {
2787 	if (page_is_pfmemalloc(page))
2788 		skb->pfmemalloc = true;
2789 }
2790 
2791 /**
2792  * skb_frag_off() - Returns the offset of a skb fragment
2793  * @frag: the paged fragment
2794  */
skb_frag_off(const skb_frag_t * frag)2795 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2796 {
2797 	return frag->page_offset;
2798 }
2799 
2800 /**
2801  * skb_frag_page - retrieve the page referred to by a paged fragment
2802  * @frag: the paged fragment
2803  *
2804  * Returns the &struct page associated with @frag.
2805  */
skb_frag_page(const skb_frag_t * frag)2806 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2807 {
2808 	return frag->page.p;
2809 }
2810 
2811 /**
2812  * __skb_frag_ref - take an addition reference on a paged fragment.
2813  * @frag: the paged fragment
2814  *
2815  * Takes an additional reference on the paged fragment @frag.
2816  */
__skb_frag_ref(skb_frag_t * frag)2817 static inline void __skb_frag_ref(skb_frag_t *frag)
2818 {
2819 	get_page(skb_frag_page(frag));
2820 }
2821 
2822 /**
2823  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2824  * @skb: the buffer
2825  * @f: the fragment offset.
2826  *
2827  * Takes an additional reference on the @f'th paged fragment of @skb.
2828  */
skb_frag_ref(struct sk_buff * skb,int f)2829 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2830 {
2831 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2832 }
2833 
2834 /**
2835  * __skb_frag_unref - release a reference on a paged fragment.
2836  * @frag: the paged fragment
2837  *
2838  * Releases a reference on the paged fragment @frag.
2839  */
__skb_frag_unref(skb_frag_t * frag)2840 static inline void __skb_frag_unref(skb_frag_t *frag)
2841 {
2842 	put_page(skb_frag_page(frag));
2843 }
2844 
2845 /**
2846  * skb_frag_unref - release a reference on a paged fragment of an skb.
2847  * @skb: the buffer
2848  * @f: the fragment offset
2849  *
2850  * Releases a reference on the @f'th paged fragment of @skb.
2851  */
skb_frag_unref(struct sk_buff * skb,int f)2852 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2853 {
2854 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2855 }
2856 
2857 /**
2858  * skb_frag_address - gets the address of the data contained in a paged fragment
2859  * @frag: the paged fragment buffer
2860  *
2861  * Returns the address of the data within @frag. The page must already
2862  * be mapped.
2863  */
skb_frag_address(const skb_frag_t * frag)2864 static inline void *skb_frag_address(const skb_frag_t *frag)
2865 {
2866 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2867 }
2868 
2869 /**
2870  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2871  * @frag: the paged fragment buffer
2872  *
2873  * Returns the address of the data within @frag. Checks that the page
2874  * is mapped and returns %NULL otherwise.
2875  */
skb_frag_address_safe(const skb_frag_t * frag)2876 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2877 {
2878 	void *ptr = page_address(skb_frag_page(frag));
2879 	if (unlikely(!ptr))
2880 		return NULL;
2881 
2882 	return ptr + frag->page_offset;
2883 }
2884 
2885 /**
2886  * __skb_frag_set_page - sets the page contained in a paged fragment
2887  * @frag: the paged fragment
2888  * @page: the page to set
2889  *
2890  * Sets the fragment @frag to contain @page.
2891  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2892 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2893 {
2894 	frag->page.p = page;
2895 }
2896 
2897 /**
2898  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2899  * @skb: the buffer
2900  * @f: the fragment offset
2901  * @page: the page to set
2902  *
2903  * Sets the @f'th fragment of @skb to contain @page.
2904  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2905 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2906 				     struct page *page)
2907 {
2908 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2909 }
2910 
2911 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2912 
2913 /**
2914  * skb_frag_dma_map - maps a paged fragment via the DMA API
2915  * @dev: the device to map the fragment to
2916  * @frag: the paged fragment to map
2917  * @offset: the offset within the fragment (starting at the
2918  *          fragment's own offset)
2919  * @size: the number of bytes to map
2920  * @dir: the direction of the mapping (``PCI_DMA_*``)
2921  *
2922  * Maps the page associated with @frag to @device.
2923  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2924 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2925 					  const skb_frag_t *frag,
2926 					  size_t offset, size_t size,
2927 					  enum dma_data_direction dir)
2928 {
2929 	return dma_map_page(dev, skb_frag_page(frag),
2930 			    frag->page_offset + offset, size, dir);
2931 }
2932 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2933 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2934 					gfp_t gfp_mask)
2935 {
2936 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2937 }
2938 
2939 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2940 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2941 						  gfp_t gfp_mask)
2942 {
2943 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2944 }
2945 
2946 
2947 /**
2948  *	skb_clone_writable - is the header of a clone writable
2949  *	@skb: buffer to check
2950  *	@len: length up to which to write
2951  *
2952  *	Returns true if modifying the header part of the cloned buffer
2953  *	does not requires the data to be copied.
2954  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2955 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2956 {
2957 	return !skb_header_cloned(skb) &&
2958 	       skb_headroom(skb) + len <= skb->hdr_len;
2959 }
2960 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)2961 static inline int skb_try_make_writable(struct sk_buff *skb,
2962 					unsigned int write_len)
2963 {
2964 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2965 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2966 }
2967 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2968 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2969 			    int cloned)
2970 {
2971 	int delta = 0;
2972 
2973 	if (headroom > skb_headroom(skb))
2974 		delta = headroom - skb_headroom(skb);
2975 
2976 	if (delta || cloned)
2977 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2978 					GFP_ATOMIC);
2979 	return 0;
2980 }
2981 
2982 /**
2983  *	skb_cow - copy header of skb when it is required
2984  *	@skb: buffer to cow
2985  *	@headroom: needed headroom
2986  *
2987  *	If the skb passed lacks sufficient headroom or its data part
2988  *	is shared, data is reallocated. If reallocation fails, an error
2989  *	is returned and original skb is not changed.
2990  *
2991  *	The result is skb with writable area skb->head...skb->tail
2992  *	and at least @headroom of space at head.
2993  */
skb_cow(struct sk_buff * skb,unsigned int headroom)2994 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2995 {
2996 	return __skb_cow(skb, headroom, skb_cloned(skb));
2997 }
2998 
2999 /**
3000  *	skb_cow_head - skb_cow but only making the head writable
3001  *	@skb: buffer to cow
3002  *	@headroom: needed headroom
3003  *
3004  *	This function is identical to skb_cow except that we replace the
3005  *	skb_cloned check by skb_header_cloned.  It should be used when
3006  *	you only need to push on some header and do not need to modify
3007  *	the data.
3008  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3009 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3010 {
3011 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3012 }
3013 
3014 /**
3015  *	skb_padto	- pad an skbuff up to a minimal size
3016  *	@skb: buffer to pad
3017  *	@len: minimal length
3018  *
3019  *	Pads up a buffer to ensure the trailing bytes exist and are
3020  *	blanked. If the buffer already contains sufficient data it
3021  *	is untouched. Otherwise it is extended. Returns zero on
3022  *	success. The skb is freed on error.
3023  */
skb_padto(struct sk_buff * skb,unsigned int len)3024 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3025 {
3026 	unsigned int size = skb->len;
3027 	if (likely(size >= len))
3028 		return 0;
3029 	return skb_pad(skb, len - size);
3030 }
3031 
3032 /**
3033  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3034  *	@skb: buffer to pad
3035  *	@len: minimal length
3036  *	@free_on_error: free buffer on error
3037  *
3038  *	Pads up a buffer to ensure the trailing bytes exist and are
3039  *	blanked. If the buffer already contains sufficient data it
3040  *	is untouched. Otherwise it is extended. Returns zero on
3041  *	success. The skb is freed on error if @free_on_error is true.
3042  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3043 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3044 					       unsigned int len,
3045 					       bool free_on_error)
3046 {
3047 	unsigned int size = skb->len;
3048 
3049 	if (unlikely(size < len)) {
3050 		len -= size;
3051 		if (__skb_pad(skb, len, free_on_error))
3052 			return -ENOMEM;
3053 		__skb_put(skb, len);
3054 	}
3055 	return 0;
3056 }
3057 
3058 /**
3059  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3060  *	@skb: buffer to pad
3061  *	@len: minimal length
3062  *
3063  *	Pads up a buffer to ensure the trailing bytes exist and are
3064  *	blanked. If the buffer already contains sufficient data it
3065  *	is untouched. Otherwise it is extended. Returns zero on
3066  *	success. The skb is freed on error.
3067  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3068 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3069 {
3070 	return __skb_put_padto(skb, len, true);
3071 }
3072 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3073 static inline int skb_add_data(struct sk_buff *skb,
3074 			       struct iov_iter *from, int copy)
3075 {
3076 	const int off = skb->len;
3077 
3078 	if (skb->ip_summed == CHECKSUM_NONE) {
3079 		__wsum csum = 0;
3080 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3081 					         &csum, from)) {
3082 			skb->csum = csum_block_add(skb->csum, csum, off);
3083 			return 0;
3084 		}
3085 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3086 		return 0;
3087 
3088 	__skb_trim(skb, off);
3089 	return -EFAULT;
3090 }
3091 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3092 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3093 				    const struct page *page, int off)
3094 {
3095 	if (skb_zcopy(skb))
3096 		return false;
3097 	if (i) {
3098 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3099 
3100 		return page == skb_frag_page(frag) &&
3101 		       off == frag->page_offset + skb_frag_size(frag);
3102 	}
3103 	return false;
3104 }
3105 
__skb_linearize(struct sk_buff * skb)3106 static inline int __skb_linearize(struct sk_buff *skb)
3107 {
3108 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3109 }
3110 
3111 /**
3112  *	skb_linearize - convert paged skb to linear one
3113  *	@skb: buffer to linarize
3114  *
3115  *	If there is no free memory -ENOMEM is returned, otherwise zero
3116  *	is returned and the old skb data released.
3117  */
skb_linearize(struct sk_buff * skb)3118 static inline int skb_linearize(struct sk_buff *skb)
3119 {
3120 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3121 }
3122 
3123 /**
3124  * skb_has_shared_frag - can any frag be overwritten
3125  * @skb: buffer to test
3126  *
3127  * Return true if the skb has at least one frag that might be modified
3128  * by an external entity (as in vmsplice()/sendfile())
3129  */
skb_has_shared_frag(const struct sk_buff * skb)3130 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3131 {
3132 	return skb_is_nonlinear(skb) &&
3133 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3134 }
3135 
3136 /**
3137  *	skb_linearize_cow - make sure skb is linear and writable
3138  *	@skb: buffer to process
3139  *
3140  *	If there is no free memory -ENOMEM is returned, otherwise zero
3141  *	is returned and the old skb data released.
3142  */
skb_linearize_cow(struct sk_buff * skb)3143 static inline int skb_linearize_cow(struct sk_buff *skb)
3144 {
3145 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3146 	       __skb_linearize(skb) : 0;
3147 }
3148 
3149 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3150 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3151 		     unsigned int off)
3152 {
3153 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3154 		skb->csum = csum_block_sub(skb->csum,
3155 					   csum_partial(start, len, 0), off);
3156 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3157 		 skb_checksum_start_offset(skb) < 0)
3158 		skb->ip_summed = CHECKSUM_NONE;
3159 }
3160 
3161 /**
3162  *	skb_postpull_rcsum - update checksum for received skb after pull
3163  *	@skb: buffer to update
3164  *	@start: start of data before pull
3165  *	@len: length of data pulled
3166  *
3167  *	After doing a pull on a received packet, you need to call this to
3168  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3169  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3170  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3171 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3172 				      const void *start, unsigned int len)
3173 {
3174 	__skb_postpull_rcsum(skb, start, len, 0);
3175 }
3176 
3177 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3178 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3179 		     unsigned int off)
3180 {
3181 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3182 		skb->csum = csum_block_add(skb->csum,
3183 					   csum_partial(start, len, 0), off);
3184 }
3185 
3186 /**
3187  *	skb_postpush_rcsum - update checksum for received skb after push
3188  *	@skb: buffer to update
3189  *	@start: start of data after push
3190  *	@len: length of data pushed
3191  *
3192  *	After doing a push on a received packet, you need to call this to
3193  *	update the CHECKSUM_COMPLETE checksum.
3194  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3195 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3196 				      const void *start, unsigned int len)
3197 {
3198 	__skb_postpush_rcsum(skb, start, len, 0);
3199 }
3200 
3201 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3202 
3203 /**
3204  *	skb_push_rcsum - push skb and update receive checksum
3205  *	@skb: buffer to update
3206  *	@len: length of data pulled
3207  *
3208  *	This function performs an skb_push on the packet and updates
3209  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3210  *	receive path processing instead of skb_push unless you know
3211  *	that the checksum difference is zero (e.g., a valid IP header)
3212  *	or you are setting ip_summed to CHECKSUM_NONE.
3213  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3214 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3215 {
3216 	skb_push(skb, len);
3217 	skb_postpush_rcsum(skb, skb->data, len);
3218 	return skb->data;
3219 }
3220 
3221 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3222 /**
3223  *	pskb_trim_rcsum - trim received skb and update checksum
3224  *	@skb: buffer to trim
3225  *	@len: new length
3226  *
3227  *	This is exactly the same as pskb_trim except that it ensures the
3228  *	checksum of received packets are still valid after the operation.
3229  *	It can change skb pointers.
3230  */
3231 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3232 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3233 {
3234 	if (likely(len >= skb->len))
3235 		return 0;
3236 	return pskb_trim_rcsum_slow(skb, len);
3237 }
3238 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3239 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3240 {
3241 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3242 		skb->ip_summed = CHECKSUM_NONE;
3243 	__skb_trim(skb, len);
3244 	return 0;
3245 }
3246 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3247 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3248 {
3249 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3250 		skb->ip_summed = CHECKSUM_NONE;
3251 	return __skb_grow(skb, len);
3252 }
3253 
3254 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3255 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3256 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3257 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3258 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3259 
3260 #define skb_queue_walk(queue, skb) \
3261 		for (skb = (queue)->next;					\
3262 		     skb != (struct sk_buff *)(queue);				\
3263 		     skb = skb->next)
3264 
3265 #define skb_queue_walk_safe(queue, skb, tmp)					\
3266 		for (skb = (queue)->next, tmp = skb->next;			\
3267 		     skb != (struct sk_buff *)(queue);				\
3268 		     skb = tmp, tmp = skb->next)
3269 
3270 #define skb_queue_walk_from(queue, skb)						\
3271 		for (; skb != (struct sk_buff *)(queue);			\
3272 		     skb = skb->next)
3273 
3274 #define skb_rbtree_walk(skb, root)						\
3275 		for (skb = skb_rb_first(root); skb != NULL;			\
3276 		     skb = skb_rb_next(skb))
3277 
3278 #define skb_rbtree_walk_from(skb)						\
3279 		for (; skb != NULL;						\
3280 		     skb = skb_rb_next(skb))
3281 
3282 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3283 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3284 		     skb = tmp)
3285 
3286 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3287 		for (tmp = skb->next;						\
3288 		     skb != (struct sk_buff *)(queue);				\
3289 		     skb = tmp, tmp = skb->next)
3290 
3291 #define skb_queue_reverse_walk(queue, skb) \
3292 		for (skb = (queue)->prev;					\
3293 		     skb != (struct sk_buff *)(queue);				\
3294 		     skb = skb->prev)
3295 
3296 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3297 		for (skb = (queue)->prev, tmp = skb->prev;			\
3298 		     skb != (struct sk_buff *)(queue);				\
3299 		     skb = tmp, tmp = skb->prev)
3300 
3301 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3302 		for (tmp = skb->prev;						\
3303 		     skb != (struct sk_buff *)(queue);				\
3304 		     skb = tmp, tmp = skb->prev)
3305 
skb_has_frag_list(const struct sk_buff * skb)3306 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3307 {
3308 	return skb_shinfo(skb)->frag_list != NULL;
3309 }
3310 
skb_frag_list_init(struct sk_buff * skb)3311 static inline void skb_frag_list_init(struct sk_buff *skb)
3312 {
3313 	skb_shinfo(skb)->frag_list = NULL;
3314 }
3315 
3316 #define skb_walk_frags(skb, iter)	\
3317 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3318 
3319 
3320 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3321 				const struct sk_buff *skb);
3322 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3323 					  struct sk_buff_head *queue,
3324 					  unsigned int flags,
3325 					  void (*destructor)(struct sock *sk,
3326 							   struct sk_buff *skb),
3327 					  int *peeked, int *off, int *err,
3328 					  struct sk_buff **last);
3329 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3330 					void (*destructor)(struct sock *sk,
3331 							   struct sk_buff *skb),
3332 					int *peeked, int *off, int *err,
3333 					struct sk_buff **last);
3334 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3335 				    void (*destructor)(struct sock *sk,
3336 						       struct sk_buff *skb),
3337 				    int *peeked, int *off, int *err);
3338 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3339 				  int *err);
3340 __poll_t datagram_poll(struct file *file, struct socket *sock,
3341 			   struct poll_table_struct *wait);
3342 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3343 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3344 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3345 					struct msghdr *msg, int size)
3346 {
3347 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3348 }
3349 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3350 				   struct msghdr *msg);
3351 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3352 				 struct iov_iter *from, int len);
3353 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3354 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3355 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3356 static inline void skb_free_datagram_locked(struct sock *sk,
3357 					    struct sk_buff *skb)
3358 {
3359 	__skb_free_datagram_locked(sk, skb, 0);
3360 }
3361 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3362 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3363 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3364 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3365 			      int len, __wsum csum);
3366 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3367 		    struct pipe_inode_info *pipe, unsigned int len,
3368 		    unsigned int flags);
3369 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3370 			 int len);
3371 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3372 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3373 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3374 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3375 		 int len, int hlen);
3376 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3377 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3378 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3379 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3380 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3381 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3382 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3383 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3384 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3385 int skb_vlan_pop(struct sk_buff *skb);
3386 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3387 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3388 			     gfp_t gfp);
3389 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3390 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3391 {
3392 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3393 }
3394 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3395 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3396 {
3397 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3398 }
3399 
3400 struct skb_checksum_ops {
3401 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3402 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3403 };
3404 
3405 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3406 
3407 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3408 		      __wsum csum, const struct skb_checksum_ops *ops);
3409 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3410 		    __wsum csum);
3411 
3412 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3413 __skb_header_pointer(const struct sk_buff *skb, int offset,
3414 		     int len, void *data, int hlen, void *buffer)
3415 {
3416 	if (hlen - offset >= len)
3417 		return data + offset;
3418 
3419 	if (!skb ||
3420 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3421 		return NULL;
3422 
3423 	return buffer;
3424 }
3425 
3426 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3427 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3428 {
3429 	return __skb_header_pointer(skb, offset, len, skb->data,
3430 				    skb_headlen(skb), buffer);
3431 }
3432 
3433 /**
3434  *	skb_needs_linearize - check if we need to linearize a given skb
3435  *			      depending on the given device features.
3436  *	@skb: socket buffer to check
3437  *	@features: net device features
3438  *
3439  *	Returns true if either:
3440  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3441  *	2. skb is fragmented and the device does not support SG.
3442  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3443 static inline bool skb_needs_linearize(struct sk_buff *skb,
3444 				       netdev_features_t features)
3445 {
3446 	return skb_is_nonlinear(skb) &&
3447 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3448 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3449 }
3450 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3451 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3452 					     void *to,
3453 					     const unsigned int len)
3454 {
3455 	memcpy(to, skb->data, len);
3456 }
3457 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3458 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3459 						    const int offset, void *to,
3460 						    const unsigned int len)
3461 {
3462 	memcpy(to, skb->data + offset, len);
3463 }
3464 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3465 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3466 					   const void *from,
3467 					   const unsigned int len)
3468 {
3469 	memcpy(skb->data, from, len);
3470 }
3471 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3472 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3473 						  const int offset,
3474 						  const void *from,
3475 						  const unsigned int len)
3476 {
3477 	memcpy(skb->data + offset, from, len);
3478 }
3479 
3480 void skb_init(void);
3481 
skb_get_ktime(const struct sk_buff * skb)3482 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3483 {
3484 	return skb->tstamp;
3485 }
3486 
3487 /**
3488  *	skb_get_timestamp - get timestamp from a skb
3489  *	@skb: skb to get stamp from
3490  *	@stamp: pointer to struct timeval to store stamp in
3491  *
3492  *	Timestamps are stored in the skb as offsets to a base timestamp.
3493  *	This function converts the offset back to a struct timeval and stores
3494  *	it in stamp.
3495  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)3496 static inline void skb_get_timestamp(const struct sk_buff *skb,
3497 				     struct timeval *stamp)
3498 {
3499 	*stamp = ktime_to_timeval(skb->tstamp);
3500 }
3501 
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)3502 static inline void skb_get_timestampns(const struct sk_buff *skb,
3503 				       struct timespec *stamp)
3504 {
3505 	*stamp = ktime_to_timespec(skb->tstamp);
3506 }
3507 
__net_timestamp(struct sk_buff * skb)3508 static inline void __net_timestamp(struct sk_buff *skb)
3509 {
3510 	skb->tstamp = ktime_get_real();
3511 }
3512 
net_timedelta(ktime_t t)3513 static inline ktime_t net_timedelta(ktime_t t)
3514 {
3515 	return ktime_sub(ktime_get_real(), t);
3516 }
3517 
net_invalid_timestamp(void)3518 static inline ktime_t net_invalid_timestamp(void)
3519 {
3520 	return 0;
3521 }
3522 
skb_metadata_len(const struct sk_buff * skb)3523 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3524 {
3525 	return skb_shinfo(skb)->meta_len;
3526 }
3527 
skb_metadata_end(const struct sk_buff * skb)3528 static inline void *skb_metadata_end(const struct sk_buff *skb)
3529 {
3530 	return skb_mac_header(skb);
3531 }
3532 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3533 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3534 					  const struct sk_buff *skb_b,
3535 					  u8 meta_len)
3536 {
3537 	const void *a = skb_metadata_end(skb_a);
3538 	const void *b = skb_metadata_end(skb_b);
3539 	/* Using more efficient varaiant than plain call to memcmp(). */
3540 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3541 	u64 diffs = 0;
3542 
3543 	switch (meta_len) {
3544 #define __it(x, op) (x -= sizeof(u##op))
3545 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3546 	case 32: diffs |= __it_diff(a, b, 64);
3547 	case 24: diffs |= __it_diff(a, b, 64);
3548 	case 16: diffs |= __it_diff(a, b, 64);
3549 	case  8: diffs |= __it_diff(a, b, 64);
3550 		break;
3551 	case 28: diffs |= __it_diff(a, b, 64);
3552 	case 20: diffs |= __it_diff(a, b, 64);
3553 	case 12: diffs |= __it_diff(a, b, 64);
3554 	case  4: diffs |= __it_diff(a, b, 32);
3555 		break;
3556 	}
3557 	return diffs;
3558 #else
3559 	return memcmp(a - meta_len, b - meta_len, meta_len);
3560 #endif
3561 }
3562 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3563 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3564 					const struct sk_buff *skb_b)
3565 {
3566 	u8 len_a = skb_metadata_len(skb_a);
3567 	u8 len_b = skb_metadata_len(skb_b);
3568 
3569 	if (!(len_a | len_b))
3570 		return false;
3571 
3572 	return len_a != len_b ?
3573 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3574 }
3575 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3576 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3577 {
3578 	skb_shinfo(skb)->meta_len = meta_len;
3579 }
3580 
skb_metadata_clear(struct sk_buff * skb)3581 static inline void skb_metadata_clear(struct sk_buff *skb)
3582 {
3583 	skb_metadata_set(skb, 0);
3584 }
3585 
3586 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3587 
3588 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3589 
3590 void skb_clone_tx_timestamp(struct sk_buff *skb);
3591 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3592 
3593 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3594 
skb_clone_tx_timestamp(struct sk_buff * skb)3595 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3596 {
3597 }
3598 
skb_defer_rx_timestamp(struct sk_buff * skb)3599 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3600 {
3601 	return false;
3602 }
3603 
3604 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3605 
3606 /**
3607  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3608  *
3609  * PHY drivers may accept clones of transmitted packets for
3610  * timestamping via their phy_driver.txtstamp method. These drivers
3611  * must call this function to return the skb back to the stack with a
3612  * timestamp.
3613  *
3614  * @skb: clone of the the original outgoing packet
3615  * @hwtstamps: hardware time stamps
3616  *
3617  */
3618 void skb_complete_tx_timestamp(struct sk_buff *skb,
3619 			       struct skb_shared_hwtstamps *hwtstamps);
3620 
3621 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3622 		     struct skb_shared_hwtstamps *hwtstamps,
3623 		     struct sock *sk, int tstype);
3624 
3625 /**
3626  * skb_tstamp_tx - queue clone of skb with send time stamps
3627  * @orig_skb:	the original outgoing packet
3628  * @hwtstamps:	hardware time stamps, may be NULL if not available
3629  *
3630  * If the skb has a socket associated, then this function clones the
3631  * skb (thus sharing the actual data and optional structures), stores
3632  * the optional hardware time stamping information (if non NULL) or
3633  * generates a software time stamp (otherwise), then queues the clone
3634  * to the error queue of the socket.  Errors are silently ignored.
3635  */
3636 void skb_tstamp_tx(struct sk_buff *orig_skb,
3637 		   struct skb_shared_hwtstamps *hwtstamps);
3638 
3639 /**
3640  * skb_tx_timestamp() - Driver hook for transmit timestamping
3641  *
3642  * Ethernet MAC Drivers should call this function in their hard_xmit()
3643  * function immediately before giving the sk_buff to the MAC hardware.
3644  *
3645  * Specifically, one should make absolutely sure that this function is
3646  * called before TX completion of this packet can trigger.  Otherwise
3647  * the packet could potentially already be freed.
3648  *
3649  * @skb: A socket buffer.
3650  */
skb_tx_timestamp(struct sk_buff * skb)3651 static inline void skb_tx_timestamp(struct sk_buff *skb)
3652 {
3653 	skb_clone_tx_timestamp(skb);
3654 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3655 		skb_tstamp_tx(skb, NULL);
3656 }
3657 
3658 /**
3659  * skb_complete_wifi_ack - deliver skb with wifi status
3660  *
3661  * @skb: the original outgoing packet
3662  * @acked: ack status
3663  *
3664  */
3665 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3666 
3667 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3668 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3669 
skb_csum_unnecessary(const struct sk_buff * skb)3670 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3671 {
3672 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3673 		skb->csum_valid ||
3674 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3675 		 skb_checksum_start_offset(skb) >= 0));
3676 }
3677 
3678 /**
3679  *	skb_checksum_complete - Calculate checksum of an entire packet
3680  *	@skb: packet to process
3681  *
3682  *	This function calculates the checksum over the entire packet plus
3683  *	the value of skb->csum.  The latter can be used to supply the
3684  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3685  *	checksum.
3686  *
3687  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3688  *	this function can be used to verify that checksum on received
3689  *	packets.  In that case the function should return zero if the
3690  *	checksum is correct.  In particular, this function will return zero
3691  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3692  *	hardware has already verified the correctness of the checksum.
3693  */
skb_checksum_complete(struct sk_buff * skb)3694 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3695 {
3696 	return skb_csum_unnecessary(skb) ?
3697 	       0 : __skb_checksum_complete(skb);
3698 }
3699 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3700 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3701 {
3702 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3703 		if (skb->csum_level == 0)
3704 			skb->ip_summed = CHECKSUM_NONE;
3705 		else
3706 			skb->csum_level--;
3707 	}
3708 }
3709 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3710 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3711 {
3712 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3713 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3714 			skb->csum_level++;
3715 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3716 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3717 		skb->csum_level = 0;
3718 	}
3719 }
3720 
3721 /* Check if we need to perform checksum complete validation.
3722  *
3723  * Returns true if checksum complete is needed, false otherwise
3724  * (either checksum is unnecessary or zero checksum is allowed).
3725  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3726 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3727 						  bool zero_okay,
3728 						  __sum16 check)
3729 {
3730 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3731 		skb->csum_valid = 1;
3732 		__skb_decr_checksum_unnecessary(skb);
3733 		return false;
3734 	}
3735 
3736 	return true;
3737 }
3738 
3739 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3740  * in checksum_init.
3741  */
3742 #define CHECKSUM_BREAK 76
3743 
3744 /* Unset checksum-complete
3745  *
3746  * Unset checksum complete can be done when packet is being modified
3747  * (uncompressed for instance) and checksum-complete value is
3748  * invalidated.
3749  */
skb_checksum_complete_unset(struct sk_buff * skb)3750 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3751 {
3752 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3753 		skb->ip_summed = CHECKSUM_NONE;
3754 }
3755 
3756 /* Validate (init) checksum based on checksum complete.
3757  *
3758  * Return values:
3759  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3760  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3761  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3762  *   non-zero: value of invalid checksum
3763  *
3764  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3765 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3766 						       bool complete,
3767 						       __wsum psum)
3768 {
3769 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3770 		if (!csum_fold(csum_add(psum, skb->csum))) {
3771 			skb->csum_valid = 1;
3772 			return 0;
3773 		}
3774 	}
3775 
3776 	skb->csum = psum;
3777 
3778 	if (complete || skb->len <= CHECKSUM_BREAK) {
3779 		__sum16 csum;
3780 
3781 		csum = __skb_checksum_complete(skb);
3782 		skb->csum_valid = !csum;
3783 		return csum;
3784 	}
3785 
3786 	return 0;
3787 }
3788 
null_compute_pseudo(struct sk_buff * skb,int proto)3789 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3790 {
3791 	return 0;
3792 }
3793 
3794 /* Perform checksum validate (init). Note that this is a macro since we only
3795  * want to calculate the pseudo header which is an input function if necessary.
3796  * First we try to validate without any computation (checksum unnecessary) and
3797  * then calculate based on checksum complete calling the function to compute
3798  * pseudo header.
3799  *
3800  * Return values:
3801  *   0: checksum is validated or try to in skb_checksum_complete
3802  *   non-zero: value of invalid checksum
3803  */
3804 #define __skb_checksum_validate(skb, proto, complete,			\
3805 				zero_okay, check, compute_pseudo)	\
3806 ({									\
3807 	__sum16 __ret = 0;						\
3808 	skb->csum_valid = 0;						\
3809 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3810 		__ret = __skb_checksum_validate_complete(skb,		\
3811 				complete, compute_pseudo(skb, proto));	\
3812 	__ret;								\
3813 })
3814 
3815 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3816 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3817 
3818 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3819 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3820 
3821 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3822 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3823 
3824 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3825 					 compute_pseudo)		\
3826 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3827 
3828 #define skb_checksum_simple_validate(skb)				\
3829 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3830 
__skb_checksum_convert_check(struct sk_buff * skb)3831 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3832 {
3833 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3834 }
3835 
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3836 static inline void __skb_checksum_convert(struct sk_buff *skb,
3837 					  __sum16 check, __wsum pseudo)
3838 {
3839 	skb->csum = ~pseudo;
3840 	skb->ip_summed = CHECKSUM_COMPLETE;
3841 }
3842 
3843 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3844 do {									\
3845 	if (__skb_checksum_convert_check(skb))				\
3846 		__skb_checksum_convert(skb, check,			\
3847 				       compute_pseudo(skb, proto));	\
3848 } while (0)
3849 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)3850 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3851 					      u16 start, u16 offset)
3852 {
3853 	skb->ip_summed = CHECKSUM_PARTIAL;
3854 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3855 	skb->csum_offset = offset - start;
3856 }
3857 
3858 /* Update skbuf and packet to reflect the remote checksum offload operation.
3859  * When called, ptr indicates the starting point for skb->csum when
3860  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3861  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3862  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)3863 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3864 				       int start, int offset, bool nopartial)
3865 {
3866 	__wsum delta;
3867 
3868 	if (!nopartial) {
3869 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3870 		return;
3871 	}
3872 
3873 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3874 		__skb_checksum_complete(skb);
3875 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3876 	}
3877 
3878 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3879 
3880 	/* Adjust skb->csum since we changed the packet */
3881 	skb->csum = csum_add(skb->csum, delta);
3882 }
3883 
skb_nfct(const struct sk_buff * skb)3884 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3885 {
3886 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3887 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3888 #else
3889 	return NULL;
3890 #endif
3891 }
3892 
3893 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3894 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3895 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3896 {
3897 	if (nfct && atomic_dec_and_test(&nfct->use))
3898 		nf_conntrack_destroy(nfct);
3899 }
nf_conntrack_get(struct nf_conntrack * nfct)3900 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3901 {
3902 	if (nfct)
3903 		atomic_inc(&nfct->use);
3904 }
3905 #endif
3906 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3907 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3908 {
3909 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3910 		kfree(nf_bridge);
3911 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3912 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3913 {
3914 	if (nf_bridge)
3915 		refcount_inc(&nf_bridge->use);
3916 }
3917 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3918 static inline void nf_reset(struct sk_buff *skb)
3919 {
3920 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3921 	nf_conntrack_put(skb_nfct(skb));
3922 	skb->_nfct = 0;
3923 #endif
3924 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3925 	nf_bridge_put(skb->nf_bridge);
3926 	skb->nf_bridge = NULL;
3927 #endif
3928 }
3929 
nf_reset_trace(struct sk_buff * skb)3930 static inline void nf_reset_trace(struct sk_buff *skb)
3931 {
3932 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3933 	skb->nf_trace = 0;
3934 #endif
3935 }
3936 
ipvs_reset(struct sk_buff * skb)3937 static inline void ipvs_reset(struct sk_buff *skb)
3938 {
3939 #if IS_ENABLED(CONFIG_IP_VS)
3940 	skb->ipvs_property = 0;
3941 #endif
3942 }
3943 
3944 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3945 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3946 			     bool copy)
3947 {
3948 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3949 	dst->_nfct = src->_nfct;
3950 	nf_conntrack_get(skb_nfct(src));
3951 #endif
3952 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3953 	dst->nf_bridge  = src->nf_bridge;
3954 	nf_bridge_get(src->nf_bridge);
3955 #endif
3956 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3957 	if (copy)
3958 		dst->nf_trace = src->nf_trace;
3959 #endif
3960 }
3961 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3962 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3963 {
3964 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3965 	nf_conntrack_put(skb_nfct(dst));
3966 #endif
3967 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3968 	nf_bridge_put(dst->nf_bridge);
3969 #endif
3970 	__nf_copy(dst, src, true);
3971 }
3972 
3973 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3974 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3975 {
3976 	to->secmark = from->secmark;
3977 }
3978 
skb_init_secmark(struct sk_buff * skb)3979 static inline void skb_init_secmark(struct sk_buff *skb)
3980 {
3981 	skb->secmark = 0;
3982 }
3983 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3984 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3985 { }
3986 
skb_init_secmark(struct sk_buff * skb)3987 static inline void skb_init_secmark(struct sk_buff *skb)
3988 { }
3989 #endif
3990 
skb_irq_freeable(const struct sk_buff * skb)3991 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3992 {
3993 	return !skb->destructor &&
3994 #if IS_ENABLED(CONFIG_XFRM)
3995 		!skb->sp &&
3996 #endif
3997 		!skb_nfct(skb) &&
3998 		!skb->_skb_refdst &&
3999 		!skb_has_frag_list(skb);
4000 }
4001 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4002 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4003 {
4004 	skb->queue_mapping = queue_mapping;
4005 }
4006 
skb_get_queue_mapping(const struct sk_buff * skb)4007 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4008 {
4009 	return skb->queue_mapping;
4010 }
4011 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4012 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4013 {
4014 	to->queue_mapping = from->queue_mapping;
4015 }
4016 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4017 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4018 {
4019 	skb->queue_mapping = rx_queue + 1;
4020 }
4021 
skb_get_rx_queue(const struct sk_buff * skb)4022 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4023 {
4024 	return skb->queue_mapping - 1;
4025 }
4026 
skb_rx_queue_recorded(const struct sk_buff * skb)4027 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4028 {
4029 	return skb->queue_mapping != 0;
4030 }
4031 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4032 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4033 {
4034 	skb->dst_pending_confirm = val;
4035 }
4036 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4037 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4038 {
4039 	return skb->dst_pending_confirm != 0;
4040 }
4041 
skb_sec_path(struct sk_buff * skb)4042 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
4043 {
4044 #ifdef CONFIG_XFRM
4045 	return skb->sp;
4046 #else
4047 	return NULL;
4048 #endif
4049 }
4050 
4051 /* Keeps track of mac header offset relative to skb->head.
4052  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4053  * For non-tunnel skb it points to skb_mac_header() and for
4054  * tunnel skb it points to outer mac header.
4055  * Keeps track of level of encapsulation of network headers.
4056  */
4057 struct skb_gso_cb {
4058 	union {
4059 		int	mac_offset;
4060 		int	data_offset;
4061 	};
4062 	int	encap_level;
4063 	__wsum	csum;
4064 	__u16	csum_start;
4065 };
4066 #define SKB_SGO_CB_OFFSET	32
4067 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4068 
skb_tnl_header_len(const struct sk_buff * inner_skb)4069 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4070 {
4071 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4072 		SKB_GSO_CB(inner_skb)->mac_offset;
4073 }
4074 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4075 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4076 {
4077 	int new_headroom, headroom;
4078 	int ret;
4079 
4080 	headroom = skb_headroom(skb);
4081 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4082 	if (ret)
4083 		return ret;
4084 
4085 	new_headroom = skb_headroom(skb);
4086 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4087 	return 0;
4088 }
4089 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4090 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4091 {
4092 	/* Do not update partial checksums if remote checksum is enabled. */
4093 	if (skb->remcsum_offload)
4094 		return;
4095 
4096 	SKB_GSO_CB(skb)->csum = res;
4097 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4098 }
4099 
4100 /* Compute the checksum for a gso segment. First compute the checksum value
4101  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4102  * then add in skb->csum (checksum from csum_start to end of packet).
4103  * skb->csum and csum_start are then updated to reflect the checksum of the
4104  * resultant packet starting from the transport header-- the resultant checksum
4105  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4106  * header.
4107  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4108 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4109 {
4110 	unsigned char *csum_start = skb_transport_header(skb);
4111 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4112 	__wsum partial = SKB_GSO_CB(skb)->csum;
4113 
4114 	SKB_GSO_CB(skb)->csum = res;
4115 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4116 
4117 	return csum_fold(csum_partial(csum_start, plen, partial));
4118 }
4119 
skb_is_gso(const struct sk_buff * skb)4120 static inline bool skb_is_gso(const struct sk_buff *skb)
4121 {
4122 	return skb_shinfo(skb)->gso_size;
4123 }
4124 
4125 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4126 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4127 {
4128 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4129 }
4130 
4131 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4132 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4133 {
4134 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4135 }
4136 
4137 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4138 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4139 {
4140 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4141 }
4142 
skb_gso_reset(struct sk_buff * skb)4143 static inline void skb_gso_reset(struct sk_buff *skb)
4144 {
4145 	skb_shinfo(skb)->gso_size = 0;
4146 	skb_shinfo(skb)->gso_segs = 0;
4147 	skb_shinfo(skb)->gso_type = 0;
4148 }
4149 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4150 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4151 					 u16 increment)
4152 {
4153 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4154 		return;
4155 	shinfo->gso_size += increment;
4156 }
4157 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4158 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4159 					 u16 decrement)
4160 {
4161 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4162 		return;
4163 	shinfo->gso_size -= decrement;
4164 }
4165 
4166 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4167 
skb_warn_if_lro(const struct sk_buff * skb)4168 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4169 {
4170 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4171 	 * wanted then gso_type will be set. */
4172 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4173 
4174 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4175 	    unlikely(shinfo->gso_type == 0)) {
4176 		__skb_warn_lro_forwarding(skb);
4177 		return true;
4178 	}
4179 	return false;
4180 }
4181 
skb_forward_csum(struct sk_buff * skb)4182 static inline void skb_forward_csum(struct sk_buff *skb)
4183 {
4184 	/* Unfortunately we don't support this one.  Any brave souls? */
4185 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4186 		skb->ip_summed = CHECKSUM_NONE;
4187 }
4188 
4189 /**
4190  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4191  * @skb: skb to check
4192  *
4193  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4194  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4195  * use this helper, to document places where we make this assertion.
4196  */
skb_checksum_none_assert(const struct sk_buff * skb)4197 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4198 {
4199 #ifdef DEBUG
4200 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4201 #endif
4202 }
4203 
4204 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4205 
4206 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4207 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4208 				     unsigned int transport_len,
4209 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4210 
4211 /**
4212  * skb_head_is_locked - Determine if the skb->head is locked down
4213  * @skb: skb to check
4214  *
4215  * The head on skbs build around a head frag can be removed if they are
4216  * not cloned.  This function returns true if the skb head is locked down
4217  * due to either being allocated via kmalloc, or by being a clone with
4218  * multiple references to the head.
4219  */
skb_head_is_locked(const struct sk_buff * skb)4220 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4221 {
4222 	return !skb->head_frag || skb_cloned(skb);
4223 }
4224 
4225 /* Local Checksum Offload.
4226  * Compute outer checksum based on the assumption that the
4227  * inner checksum will be offloaded later.
4228  * See Documentation/networking/checksum-offloads.txt for
4229  * explanation of how this works.
4230  * Fill in outer checksum adjustment (e.g. with sum of outer
4231  * pseudo-header) before calling.
4232  * Also ensure that inner checksum is in linear data area.
4233  */
lco_csum(struct sk_buff * skb)4234 static inline __wsum lco_csum(struct sk_buff *skb)
4235 {
4236 	unsigned char *csum_start = skb_checksum_start(skb);
4237 	unsigned char *l4_hdr = skb_transport_header(skb);
4238 	__wsum partial;
4239 
4240 	/* Start with complement of inner checksum adjustment */
4241 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4242 						    skb->csum_offset));
4243 
4244 	/* Add in checksum of our headers (incl. outer checksum
4245 	 * adjustment filled in by caller) and return result.
4246 	 */
4247 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4248 }
4249 
4250 #endif	/* __KERNEL__ */
4251 #endif	/* _LINUX_SKBUFF_H */
4252