1 /*
2  * Host communication command constants for ChromeOS EC
3  *
4  * Copyright (C) 2012 Google, Inc
5  *
6  * This software is licensed under the terms of the GNU General Public
7  * License version 2, as published by the Free Software Foundation, and
8  * may be copied, distributed, and modified under those terms.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * The ChromeOS EC multi function device is used to mux all the requests
16  * to the EC device for its multiple features: keyboard controller,
17  * battery charging and regulator control, firmware update.
18  *
19  * NOTE: This file is copied verbatim from the ChromeOS EC Open Source
20  * project in an attempt to make future updates easy to make.
21  */
22 
23 #ifndef __CROS_EC_COMMANDS_H
24 #define __CROS_EC_COMMANDS_H
25 
26 /*
27  * Current version of this protocol
28  *
29  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
30  * determined in other ways.  Remove this once the kernel code no longer
31  * depends on it.
32  */
33 #define EC_PROTO_VERSION          0x00000002
34 
35 /* Command version mask */
36 #define EC_VER_MASK(version) (1UL << (version))
37 
38 /* I/O addresses for ACPI commands */
39 #define EC_LPC_ADDR_ACPI_DATA  0x62
40 #define EC_LPC_ADDR_ACPI_CMD   0x66
41 
42 /* I/O addresses for host command */
43 #define EC_LPC_ADDR_HOST_DATA  0x200
44 #define EC_LPC_ADDR_HOST_CMD   0x204
45 
46 /* I/O addresses for host command args and params */
47 /* Protocol version 2 */
48 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
49 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
50 					 * EC_PROTO2_MAX_PARAM_SIZE */
51 /* Protocol version 3 */
52 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
53 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
54 
55 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
56  * and they tell the kernel that so we have to think of it as two parts. */
57 #define EC_HOST_CMD_REGION0    0x800
58 #define EC_HOST_CMD_REGION1    0x880
59 #define EC_HOST_CMD_REGION_SIZE 0x80
60 
61 /* EC command register bit functions */
62 #define EC_LPC_CMDR_DATA	(1 << 0)  /* Data ready for host to read */
63 #define EC_LPC_CMDR_PENDING	(1 << 1)  /* Write pending to EC */
64 #define EC_LPC_CMDR_BUSY	(1 << 2)  /* EC is busy processing a command */
65 #define EC_LPC_CMDR_CMD		(1 << 3)  /* Last host write was a command */
66 #define EC_LPC_CMDR_ACPI_BRST	(1 << 4)  /* Burst mode (not used) */
67 #define EC_LPC_CMDR_SCI		(1 << 5)  /* SCI event is pending */
68 #define EC_LPC_CMDR_SMI		(1 << 6)  /* SMI event is pending */
69 
70 #define EC_LPC_ADDR_MEMMAP       0x900
71 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
72 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
73 
74 /* The offset address of each type of data in mapped memory. */
75 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
76 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
77 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
78 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
79 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
80 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
81 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
82 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
83 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
84 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
85 /* Unused 0x28 - 0x2f */
86 #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
87 /* Unused 0x31 - 0x33 */
88 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 32 bits */
89 /* Reserve 0x38 - 0x3f for additional host event-related stuff */
90 /* Battery values are all 32 bits */
91 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
92 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
93 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
94 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, defined below */
95 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
96 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
97 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
98 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
100 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
101 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
102 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
103 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
104 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
105 /* Unused 0x84 - 0x8f */
106 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
107 /* Unused 0x91 */
108 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometer data 0x92 - 0x9f */
109 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
110 /* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */
111 
112 
113 /* Define the format of the accelerometer mapped memory status byte. */
114 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
115 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        (1 << 4)
116 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    (1 << 7)
117 
118 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
119 #define EC_TEMP_SENSOR_ENTRIES     16
120 /*
121  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
122  *
123  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
124  */
125 #define EC_TEMP_SENSOR_B_ENTRIES      8
126 
127 /* Special values for mapped temperature sensors */
128 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
129 #define EC_TEMP_SENSOR_ERROR          0xfe
130 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
131 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
132 /*
133  * The offset of temperature value stored in mapped memory.  This allows
134  * reporting a temperature range of 200K to 454K = -73C to 181C.
135  */
136 #define EC_TEMP_SENSOR_OFFSET      200
137 
138 /*
139  * Number of ALS readings at EC_MEMMAP_ALS
140  */
141 #define EC_ALS_ENTRIES             2
142 
143 /*
144  * The default value a temperature sensor will return when it is present but
145  * has not been read this boot.  This is a reasonable number to avoid
146  * triggering alarms on the host.
147  */
148 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
149 
150 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
151 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
152 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
153 
154 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
155 #define EC_BATT_FLAG_AC_PRESENT   0x01
156 #define EC_BATT_FLAG_BATT_PRESENT 0x02
157 #define EC_BATT_FLAG_DISCHARGING  0x04
158 #define EC_BATT_FLAG_CHARGING     0x08
159 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
160 
161 /* Switch flags at EC_MEMMAP_SWITCHES */
162 #define EC_SWITCH_LID_OPEN               0x01
163 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
164 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
165 /* Was recovery requested via keyboard; now unused. */
166 #define EC_SWITCH_IGNORE1		 0x08
167 /* Recovery requested via dedicated signal (from servo board) */
168 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
169 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
170 #define EC_SWITCH_IGNORE0                0x20
171 
172 /* Host command interface flags */
173 /* Host command interface supports LPC args (LPC interface only) */
174 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
175 /* Host command interface supports version 3 protocol */
176 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
177 
178 /* Wireless switch flags */
179 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
180 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
181 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
182 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
183 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
184 
185 /*
186  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
187  * is pre-processed to handle constants but the ASL compiler is unable to
188  * handle actual C code so keep it separate.
189  */
190 #ifndef __ACPI__
191 
192 /*
193  * Define __packed if someone hasn't beat us to it.  Linux kernel style
194  * checking prefers __packed over __attribute__((packed)).
195  */
196 #ifndef __packed
197 #define __packed __attribute__((packed))
198 #endif
199 
200 /* LPC command status byte masks */
201 /* EC has written a byte in the data register and host hasn't read it yet */
202 #define EC_LPC_STATUS_TO_HOST     0x01
203 /* Host has written a command/data byte and the EC hasn't read it yet */
204 #define EC_LPC_STATUS_FROM_HOST   0x02
205 /* EC is processing a command */
206 #define EC_LPC_STATUS_PROCESSING  0x04
207 /* Last write to EC was a command, not data */
208 #define EC_LPC_STATUS_LAST_CMD    0x08
209 /* EC is in burst mode.  Unsupported by Chrome EC, so this bit is never set */
210 #define EC_LPC_STATUS_BURST_MODE  0x10
211 /* SCI event is pending (requesting SCI query) */
212 #define EC_LPC_STATUS_SCI_PENDING 0x20
213 /* SMI event is pending (requesting SMI query) */
214 #define EC_LPC_STATUS_SMI_PENDING 0x40
215 /* (reserved) */
216 #define EC_LPC_STATUS_RESERVED    0x80
217 
218 /*
219  * EC is busy.  This covers both the EC processing a command, and the host has
220  * written a new command but the EC hasn't picked it up yet.
221  */
222 #define EC_LPC_STATUS_BUSY_MASK \
223 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
224 
225 /* Host command response codes */
226 enum ec_status {
227 	EC_RES_SUCCESS = 0,
228 	EC_RES_INVALID_COMMAND = 1,
229 	EC_RES_ERROR = 2,
230 	EC_RES_INVALID_PARAM = 3,
231 	EC_RES_ACCESS_DENIED = 4,
232 	EC_RES_INVALID_RESPONSE = 5,
233 	EC_RES_INVALID_VERSION = 6,
234 	EC_RES_INVALID_CHECKSUM = 7,
235 	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
236 	EC_RES_UNAVAILABLE = 9,		/* No response available */
237 	EC_RES_TIMEOUT = 10,		/* We got a timeout */
238 	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
239 	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
240 	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
241 	EC_RES_RESPONSE_TOO_BIG = 14    /* Response was too big to handle */
242 };
243 
244 /*
245  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
246  * EC command uses code 0 to mean "no event pending".  We explicitly specify
247  * each value in the enum listing so they won't change if we delete/insert an
248  * item or rearrange the list (it needs to be stable across platforms, not
249  * just within a single compiled instance).
250  */
251 enum host_event_code {
252 	EC_HOST_EVENT_LID_CLOSED = 1,
253 	EC_HOST_EVENT_LID_OPEN = 2,
254 	EC_HOST_EVENT_POWER_BUTTON = 3,
255 	EC_HOST_EVENT_AC_CONNECTED = 4,
256 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
257 	EC_HOST_EVENT_BATTERY_LOW = 6,
258 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
259 	EC_HOST_EVENT_BATTERY = 8,
260 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
261 	EC_HOST_EVENT_THERMAL_OVERLOAD = 10,
262 	EC_HOST_EVENT_THERMAL = 11,
263 	EC_HOST_EVENT_USB_CHARGER = 12,
264 	EC_HOST_EVENT_KEY_PRESSED = 13,
265 	/*
266 	 * EC has finished initializing the host interface.  The host can check
267 	 * for this event following sending a EC_CMD_REBOOT_EC command to
268 	 * determine when the EC is ready to accept subsequent commands.
269 	 */
270 	EC_HOST_EVENT_INTERFACE_READY = 14,
271 	/* Keyboard recovery combo has been pressed */
272 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
273 
274 	/* Shutdown due to thermal overload */
275 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
276 	/* Shutdown due to battery level too low */
277 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
278 
279 	/* Suggest that the AP throttle itself */
280 	EC_HOST_EVENT_THROTTLE_START = 18,
281 	/* Suggest that the AP resume normal speed */
282 	EC_HOST_EVENT_THROTTLE_STOP = 19,
283 
284 	/* Hang detect logic detected a hang and host event timeout expired */
285 	EC_HOST_EVENT_HANG_DETECT = 20,
286 	/* Hang detect logic detected a hang and warm rebooted the AP */
287 	EC_HOST_EVENT_HANG_REBOOT = 21,
288 	/* PD MCU triggering host event */
289 	EC_HOST_EVENT_PD_MCU = 22,
290 
291 	/* EC desires to change state of host-controlled USB mux */
292 	EC_HOST_EVENT_USB_MUX = 28,
293 
294 	/* EC RTC event occurred */
295 	EC_HOST_EVENT_RTC = 26,
296 
297 	/*
298 	 * The high bit of the event mask is not used as a host event code.  If
299 	 * it reads back as set, then the entire event mask should be
300 	 * considered invalid by the host.  This can happen when reading the
301 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
302 	 * not initialized on the EC, or improperly configured on the host.
303 	 */
304 	EC_HOST_EVENT_INVALID = 32
305 };
306 /* Host event mask */
307 #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1))
308 
309 /* Arguments at EC_LPC_ADDR_HOST_ARGS */
310 struct ec_lpc_host_args {
311 	uint8_t flags;
312 	uint8_t command_version;
313 	uint8_t data_size;
314 	/*
315 	 * Checksum; sum of command + flags + command_version + data_size +
316 	 * all params/response data bytes.
317 	 */
318 	uint8_t checksum;
319 } __packed;
320 
321 /* Flags for ec_lpc_host_args.flags */
322 /*
323  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
324  * params.
325  *
326  * If EC gets a command and this flag is not set, this is an old-style command.
327  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
328  * unknown length.  EC must respond with an old-style response (that is,
329  * withouth setting EC_HOST_ARGS_FLAG_TO_HOST).
330  */
331 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
332 /*
333  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
334  *
335  * If EC responds to a command and this flag is not set, this is an old-style
336  * response.  Command version is 0 and response data from EC is at
337  * EC_LPC_ADDR_OLD_PARAM with unknown length.
338  */
339 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
340 
341 /*****************************************************************************/
342 /*
343  * Byte codes returned by EC over SPI interface.
344  *
345  * These can be used by the AP to debug the EC interface, and to determine
346  * when the EC is not in a state where it will ever get around to responding
347  * to the AP.
348  *
349  * Example of sequence of bytes read from EC for a current good transfer:
350  *   1. -                  - AP asserts chip select (CS#)
351  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
352  *   3. -                  - EC starts handling CS# interrupt
353  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
354  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
355  *                           bytes looking for EC_SPI_FRAME_START
356  *   6. -                  - EC finishes processing and sets up response
357  *   7. EC_SPI_FRAME_START - AP reads frame byte
358  *   8. (response packet)  - AP reads response packet
359  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
360  *   10 -                  - AP deasserts chip select
361  *   11 -                  - EC processes CS# interrupt and sets up DMA for
362  *                           next request
363  *
364  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
365  * the following byte values:
366  *   EC_SPI_OLD_READY
367  *   EC_SPI_RX_READY
368  *   EC_SPI_RECEIVING
369  *   EC_SPI_PROCESSING
370  *
371  * Then the EC found an error in the request, or was not ready for the request
372  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
373  * because the EC is unable to tell when the AP is done sending its request.
374  */
375 
376 /*
377  * Framing byte which precedes a response packet from the EC.  After sending a
378  * request, the AP will clock in bytes until it sees the framing byte, then
379  * clock in the response packet.
380  */
381 #define EC_SPI_FRAME_START    0xec
382 
383 /*
384  * Padding bytes which are clocked out after the end of a response packet.
385  */
386 #define EC_SPI_PAST_END       0xed
387 
388 /*
389  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
390  * that the AP will send a valid packet header (starting with
391  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
392  */
393 #define EC_SPI_RX_READY       0xf8
394 
395 /*
396  * EC has started receiving the request from the AP, but hasn't started
397  * processing it yet.
398  */
399 #define EC_SPI_RECEIVING      0xf9
400 
401 /* EC has received the entire request from the AP and is processing it. */
402 #define EC_SPI_PROCESSING     0xfa
403 
404 /*
405  * EC received bad data from the AP, such as a packet header with an invalid
406  * length.  EC will ignore all data until chip select deasserts.
407  */
408 #define EC_SPI_RX_BAD_DATA    0xfb
409 
410 /*
411  * EC received data from the AP before it was ready.  That is, the AP asserted
412  * chip select and started clocking data before the EC was ready to receive it.
413  * EC will ignore all data until chip select deasserts.
414  */
415 #define EC_SPI_NOT_READY      0xfc
416 
417 /*
418  * EC was ready to receive a request from the AP.  EC has treated the byte sent
419  * by the AP as part of a request packet, or (for old-style ECs) is processing
420  * a fully received packet but is not ready to respond yet.
421  */
422 #define EC_SPI_OLD_READY      0xfd
423 
424 /*****************************************************************************/
425 
426 /*
427  * Protocol version 2 for I2C and SPI send a request this way:
428  *
429  *	0	EC_CMD_VERSION0 + (command version)
430  *	1	Command number
431  *	2	Length of params = N
432  *	3..N+2	Params, if any
433  *	N+3	8-bit checksum of bytes 0..N+2
434  *
435  * The corresponding response is:
436  *
437  *	0	Result code (EC_RES_*)
438  *	1	Length of params = M
439  *	2..M+1	Params, if any
440  *	M+2	8-bit checksum of bytes 0..M+1
441  */
442 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
443 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
444 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
445 				    EC_PROTO2_REQUEST_TRAILER_BYTES)
446 
447 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
448 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
449 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
450 				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
451 
452 /* Parameter length was limited by the LPC interface */
453 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
454 
455 /* Maximum request and response packet sizes for protocol version 2 */
456 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
457 				    EC_PROTO2_MAX_PARAM_SIZE)
458 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
459 				     EC_PROTO2_MAX_PARAM_SIZE)
460 
461 /*****************************************************************************/
462 
463 /*
464  * Value written to legacy command port / prefix byte to indicate protocol
465  * 3+ structs are being used.  Usage is bus-dependent.
466  */
467 #define EC_COMMAND_PROTOCOL_3 0xda
468 
469 #define EC_HOST_REQUEST_VERSION 3
470 
471 /* Version 3 request from host */
472 struct ec_host_request {
473 	/* Struct version (=3)
474 	 *
475 	 * EC will return EC_RES_INVALID_HEADER if it receives a header with a
476 	 * version it doesn't know how to parse.
477 	 */
478 	uint8_t struct_version;
479 
480 	/*
481 	 * Checksum of request and data; sum of all bytes including checksum
482 	 * should total to 0.
483 	 */
484 	uint8_t checksum;
485 
486 	/* Command code */
487 	uint16_t command;
488 
489 	/* Command version */
490 	uint8_t command_version;
491 
492 	/* Unused byte in current protocol version; set to 0 */
493 	uint8_t reserved;
494 
495 	/* Length of data which follows this header */
496 	uint16_t data_len;
497 } __packed;
498 
499 #define EC_HOST_RESPONSE_VERSION 3
500 
501 /* Version 3 response from EC */
502 struct ec_host_response {
503 	/* Struct version (=3) */
504 	uint8_t struct_version;
505 
506 	/*
507 	 * Checksum of response and data; sum of all bytes including checksum
508 	 * should total to 0.
509 	 */
510 	uint8_t checksum;
511 
512 	/* Result code (EC_RES_*) */
513 	uint16_t result;
514 
515 	/* Length of data which follows this header */
516 	uint16_t data_len;
517 
518 	/* Unused bytes in current protocol version; set to 0 */
519 	uint16_t reserved;
520 } __packed;
521 
522 /*****************************************************************************/
523 /*
524  * Notes on commands:
525  *
526  * Each command is an 16-bit command value.  Commands which take params or
527  * return response data specify structs for that data.  If no struct is
528  * specified, the command does not input or output data, respectively.
529  * Parameter/response length is implicit in the structs.  Some underlying
530  * communication protocols (I2C, SPI) may add length or checksum headers, but
531  * those are implementation-dependent and not defined here.
532  */
533 
534 /*****************************************************************************/
535 /* General / test commands */
536 
537 /*
538  * Get protocol version, used to deal with non-backward compatible protocol
539  * changes.
540  */
541 #define EC_CMD_PROTO_VERSION 0x00
542 
543 struct ec_response_proto_version {
544 	uint32_t version;
545 } __packed;
546 
547 /*
548  * Hello.  This is a simple command to test the EC is responsive to
549  * commands.
550  */
551 #define EC_CMD_HELLO 0x01
552 
553 struct ec_params_hello {
554 	uint32_t in_data;  /* Pass anything here */
555 } __packed;
556 
557 struct ec_response_hello {
558 	uint32_t out_data;  /* Output will be in_data + 0x01020304 */
559 } __packed;
560 
561 /* Get version number */
562 #define EC_CMD_GET_VERSION 0x02
563 
564 enum ec_current_image {
565 	EC_IMAGE_UNKNOWN = 0,
566 	EC_IMAGE_RO,
567 	EC_IMAGE_RW
568 };
569 
570 struct ec_response_get_version {
571 	/* Null-terminated version strings for RO, RW */
572 	char version_string_ro[32];
573 	char version_string_rw[32];
574 	char reserved[32];       /* Was previously RW-B string */
575 	uint32_t current_image;  /* One of ec_current_image */
576 } __packed;
577 
578 /* Read test */
579 #define EC_CMD_READ_TEST 0x03
580 
581 struct ec_params_read_test {
582 	uint32_t offset;   /* Starting value for read buffer */
583 	uint32_t size;     /* Size to read in bytes */
584 } __packed;
585 
586 struct ec_response_read_test {
587 	uint32_t data[32];
588 } __packed;
589 
590 /*
591  * Get build information
592  *
593  * Response is null-terminated string.
594  */
595 #define EC_CMD_GET_BUILD_INFO 0x04
596 
597 /* Get chip info */
598 #define EC_CMD_GET_CHIP_INFO 0x05
599 
600 struct ec_response_get_chip_info {
601 	/* Null-terminated strings */
602 	char vendor[32];
603 	char name[32];
604 	char revision[32];  /* Mask version */
605 } __packed;
606 
607 /* Get board HW version */
608 #define EC_CMD_GET_BOARD_VERSION 0x06
609 
610 struct ec_response_board_version {
611 	uint16_t board_version;  /* A monotonously incrementing number. */
612 } __packed;
613 
614 /*
615  * Read memory-mapped data.
616  *
617  * This is an alternate interface to memory-mapped data for bus protocols
618  * which don't support direct-mapped memory - I2C, SPI, etc.
619  *
620  * Response is params.size bytes of data.
621  */
622 #define EC_CMD_READ_MEMMAP 0x07
623 
624 struct ec_params_read_memmap {
625 	uint8_t offset;   /* Offset in memmap (EC_MEMMAP_*) */
626 	uint8_t size;     /* Size to read in bytes */
627 } __packed;
628 
629 /* Read versions supported for a command */
630 #define EC_CMD_GET_CMD_VERSIONS 0x08
631 
632 struct ec_params_get_cmd_versions {
633 	uint8_t cmd;      /* Command to check */
634 } __packed;
635 
636 struct ec_params_get_cmd_versions_v1 {
637 	uint16_t cmd;     /* Command to check */
638 } __packed;
639 
640 struct ec_response_get_cmd_versions {
641 	/*
642 	 * Mask of supported versions; use EC_VER_MASK() to compare with a
643 	 * desired version.
644 	 */
645 	uint32_t version_mask;
646 } __packed;
647 
648 /*
649  * Check EC communcations status (busy). This is needed on i2c/spi but not
650  * on lpc since it has its own out-of-band busy indicator.
651  *
652  * lpc must read the status from the command register. Attempting this on
653  * lpc will overwrite the args/parameter space and corrupt its data.
654  */
655 #define EC_CMD_GET_COMMS_STATUS		0x09
656 
657 /* Avoid using ec_status which is for return values */
658 enum ec_comms_status {
659 	EC_COMMS_STATUS_PROCESSING	= 1 << 0,	/* Processing cmd */
660 };
661 
662 struct ec_response_get_comms_status {
663 	uint32_t flags;		/* Mask of enum ec_comms_status */
664 } __packed;
665 
666 /* Fake a variety of responses, purely for testing purposes. */
667 #define EC_CMD_TEST_PROTOCOL		0x0a
668 
669 /* Tell the EC what to send back to us. */
670 struct ec_params_test_protocol {
671 	uint32_t ec_result;
672 	uint32_t ret_len;
673 	uint8_t buf[32];
674 } __packed;
675 
676 /* Here it comes... */
677 struct ec_response_test_protocol {
678 	uint8_t buf[32];
679 } __packed;
680 
681 /* Get prococol information */
682 #define EC_CMD_GET_PROTOCOL_INFO	0x0b
683 
684 /* Flags for ec_response_get_protocol_info.flags */
685 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
686 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
687 
688 struct ec_response_get_protocol_info {
689 	/* Fields which exist if at least protocol version 3 supported */
690 
691 	/* Bitmask of protocol versions supported (1 << n means version n)*/
692 	uint32_t protocol_versions;
693 
694 	/* Maximum request packet size, in bytes */
695 	uint16_t max_request_packet_size;
696 
697 	/* Maximum response packet size, in bytes */
698 	uint16_t max_response_packet_size;
699 
700 	/* Flags; see EC_PROTOCOL_INFO_* */
701 	uint32_t flags;
702 } __packed;
703 
704 
705 /*****************************************************************************/
706 /* Get/Set miscellaneous values */
707 
708 /* The upper byte of .flags tells what to do (nothing means "get") */
709 #define EC_GSV_SET        0x80000000
710 
711 /* The lower three bytes of .flags identifies the parameter, if that has
712    meaning for an individual command. */
713 #define EC_GSV_PARAM_MASK 0x00ffffff
714 
715 struct ec_params_get_set_value {
716 	uint32_t flags;
717 	uint32_t value;
718 } __packed;
719 
720 struct ec_response_get_set_value {
721 	uint32_t flags;
722 	uint32_t value;
723 } __packed;
724 
725 /* More than one command can use these structs to get/set paramters. */
726 #define EC_CMD_GSV_PAUSE_IN_S5	0x0c
727 
728 /*****************************************************************************/
729 /* List the features supported by the firmware */
730 #define EC_CMD_GET_FEATURES  0x0d
731 
732 /* Supported features */
733 enum ec_feature_code {
734 	/*
735 	 * This image contains a limited set of features. Another image
736 	 * in RW partition may support more features.
737 	 */
738 	EC_FEATURE_LIMITED = 0,
739 	/*
740 	 * Commands for probing/reading/writing/erasing the flash in the
741 	 * EC are present.
742 	 */
743 	EC_FEATURE_FLASH = 1,
744 	/*
745 	 * Can control the fan speed directly.
746 	 */
747 	EC_FEATURE_PWM_FAN = 2,
748 	/*
749 	 * Can control the intensity of the keyboard backlight.
750 	 */
751 	EC_FEATURE_PWM_KEYB = 3,
752 	/*
753 	 * Support Google lightbar, introduced on Pixel.
754 	 */
755 	EC_FEATURE_LIGHTBAR = 4,
756 	/* Control of LEDs  */
757 	EC_FEATURE_LED = 5,
758 	/* Exposes an interface to control gyro and sensors.
759 	 * The host goes through the EC to access these sensors.
760 	 * In addition, the EC may provide composite sensors, like lid angle.
761 	 */
762 	EC_FEATURE_MOTION_SENSE = 6,
763 	/* The keyboard is controlled by the EC */
764 	EC_FEATURE_KEYB = 7,
765 	/* The AP can use part of the EC flash as persistent storage. */
766 	EC_FEATURE_PSTORE = 8,
767 	/* The EC monitors BIOS port 80h, and can return POST codes. */
768 	EC_FEATURE_PORT80 = 9,
769 	/*
770 	 * Thermal management: include TMP specific commands.
771 	 * Higher level than direct fan control.
772 	 */
773 	EC_FEATURE_THERMAL = 10,
774 	/* Can switch the screen backlight on/off */
775 	EC_FEATURE_BKLIGHT_SWITCH = 11,
776 	/* Can switch the wifi module on/off */
777 	EC_FEATURE_WIFI_SWITCH = 12,
778 	/* Monitor host events, through for example SMI or SCI */
779 	EC_FEATURE_HOST_EVENTS = 13,
780 	/* The EC exposes GPIO commands to control/monitor connected devices. */
781 	EC_FEATURE_GPIO = 14,
782 	/* The EC can send i2c messages to downstream devices. */
783 	EC_FEATURE_I2C = 15,
784 	/* Command to control charger are included */
785 	EC_FEATURE_CHARGER = 16,
786 	/* Simple battery support. */
787 	EC_FEATURE_BATTERY = 17,
788 	/*
789 	 * Support Smart battery protocol
790 	 * (Common Smart Battery System Interface Specification)
791 	 */
792 	EC_FEATURE_SMART_BATTERY = 18,
793 	/* EC can dectect when the host hangs. */
794 	EC_FEATURE_HANG_DETECT = 19,
795 	/* Report power information, for pit only */
796 	EC_FEATURE_PMU = 20,
797 	/* Another Cros EC device is present downstream of this one */
798 	EC_FEATURE_SUB_MCU = 21,
799 	/* Support USB Power delivery (PD) commands */
800 	EC_FEATURE_USB_PD = 22,
801 	/* Control USB multiplexer, for audio through USB port for instance. */
802 	EC_FEATURE_USB_MUX = 23,
803 	/* Motion Sensor code has an internal software FIFO */
804 	EC_FEATURE_MOTION_SENSE_FIFO = 24,
805 	/* EC has RTC feature that can be controlled by host commands */
806 	EC_FEATURE_RTC = 27,
807 	/* EC supports CEC commands */
808 	EC_FEATURE_CEC = 35,
809 };
810 
811 #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32))
812 #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32))
813 struct ec_response_get_features {
814 	uint32_t flags[2];
815 } __packed;
816 
817 /*****************************************************************************/
818 /* Flash commands */
819 
820 /* Get flash info */
821 #define EC_CMD_FLASH_INFO 0x10
822 
823 /* Version 0 returns these fields */
824 struct ec_response_flash_info {
825 	/* Usable flash size, in bytes */
826 	uint32_t flash_size;
827 	/*
828 	 * Write block size.  Write offset and size must be a multiple
829 	 * of this.
830 	 */
831 	uint32_t write_block_size;
832 	/*
833 	 * Erase block size.  Erase offset and size must be a multiple
834 	 * of this.
835 	 */
836 	uint32_t erase_block_size;
837 	/*
838 	 * Protection block size.  Protection offset and size must be a
839 	 * multiple of this.
840 	 */
841 	uint32_t protect_block_size;
842 } __packed;
843 
844 /* Flags for version 1+ flash info command */
845 /* EC flash erases bits to 0 instead of 1 */
846 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
847 
848 /*
849  * Version 1 returns the same initial fields as version 0, with additional
850  * fields following.
851  *
852  * gcc anonymous structs don't seem to get along with the __packed directive;
853  * if they did we'd define the version 0 struct as a sub-struct of this one.
854  */
855 struct ec_response_flash_info_1 {
856 	/* Version 0 fields; see above for description */
857 	uint32_t flash_size;
858 	uint32_t write_block_size;
859 	uint32_t erase_block_size;
860 	uint32_t protect_block_size;
861 
862 	/* Version 1 adds these fields: */
863 	/*
864 	 * Ideal write size in bytes.  Writes will be fastest if size is
865 	 * exactly this and offset is a multiple of this.  For example, an EC
866 	 * may have a write buffer which can do half-page operations if data is
867 	 * aligned, and a slower word-at-a-time write mode.
868 	 */
869 	uint32_t write_ideal_size;
870 
871 	/* Flags; see EC_FLASH_INFO_* */
872 	uint32_t flags;
873 } __packed;
874 
875 /*
876  * Read flash
877  *
878  * Response is params.size bytes of data.
879  */
880 #define EC_CMD_FLASH_READ 0x11
881 
882 struct ec_params_flash_read {
883 	uint32_t offset;   /* Byte offset to read */
884 	uint32_t size;     /* Size to read in bytes */
885 } __packed;
886 
887 /* Write flash */
888 #define EC_CMD_FLASH_WRITE 0x12
889 #define EC_VER_FLASH_WRITE 1
890 
891 /* Version 0 of the flash command supported only 64 bytes of data */
892 #define EC_FLASH_WRITE_VER0_SIZE 64
893 
894 struct ec_params_flash_write {
895 	uint32_t offset;   /* Byte offset to write */
896 	uint32_t size;     /* Size to write in bytes */
897 	/* Followed by data to write */
898 } __packed;
899 
900 /* Erase flash */
901 #define EC_CMD_FLASH_ERASE 0x13
902 
903 struct ec_params_flash_erase {
904 	uint32_t offset;   /* Byte offset to erase */
905 	uint32_t size;     /* Size to erase in bytes */
906 } __packed;
907 
908 /*
909  * Get/set flash protection.
910  *
911  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
912  * firmware write protect GPIO, not all flags will take effect immediately;
913  * some flags require a subsequent hard reset to take effect.  Check the
914  * returned flags bits to see what actually happened.
915  *
916  * If mask=0, simply returns the current flags state.
917  */
918 #define EC_CMD_FLASH_PROTECT 0x15
919 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
920 
921 /* Flags for flash protection */
922 /* RO flash code protected when the EC boots */
923 #define EC_FLASH_PROTECT_RO_AT_BOOT         (1 << 0)
924 /*
925  * RO flash code protected now.  If this bit is set, at-boot status cannot
926  * be changed.
927  */
928 #define EC_FLASH_PROTECT_RO_NOW             (1 << 1)
929 /* Entire flash code protected now, until reboot. */
930 #define EC_FLASH_PROTECT_ALL_NOW            (1 << 2)
931 /* Flash write protect GPIO is asserted now */
932 #define EC_FLASH_PROTECT_GPIO_ASSERTED      (1 << 3)
933 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
934 #define EC_FLASH_PROTECT_ERROR_STUCK        (1 << 4)
935 /*
936  * Error - flash protection is in inconsistent state.  At least one bank of
937  * flash which should be protected is not protected.  Usually fixed by
938  * re-requesting the desired flags, or by a hard reset if that fails.
939  */
940 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
941 /* Entile flash code protected when the EC boots */
942 #define EC_FLASH_PROTECT_ALL_AT_BOOT        (1 << 6)
943 
944 struct ec_params_flash_protect {
945 	uint32_t mask;   /* Bits in flags to apply */
946 	uint32_t flags;  /* New flags to apply */
947 } __packed;
948 
949 struct ec_response_flash_protect {
950 	/* Current value of flash protect flags */
951 	uint32_t flags;
952 	/*
953 	 * Flags which are valid on this platform.  This allows the caller
954 	 * to distinguish between flags which aren't set vs. flags which can't
955 	 * be set on this platform.
956 	 */
957 	uint32_t valid_flags;
958 	/* Flags which can be changed given the current protection state */
959 	uint32_t writable_flags;
960 } __packed;
961 
962 /*
963  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
964  * write protect.  These commands may be reused with version > 0.
965  */
966 
967 /* Get the region offset/size */
968 #define EC_CMD_FLASH_REGION_INFO 0x16
969 #define EC_VER_FLASH_REGION_INFO 1
970 
971 enum ec_flash_region {
972 	/* Region which holds read-only EC image */
973 	EC_FLASH_REGION_RO = 0,
974 	/* Region which holds rewritable EC image */
975 	EC_FLASH_REGION_RW,
976 	/*
977 	 * Region which should be write-protected in the factory (a superset of
978 	 * EC_FLASH_REGION_RO)
979 	 */
980 	EC_FLASH_REGION_WP_RO,
981 	/* Number of regions */
982 	EC_FLASH_REGION_COUNT,
983 };
984 
985 struct ec_params_flash_region_info {
986 	uint32_t region;  /* enum ec_flash_region */
987 } __packed;
988 
989 struct ec_response_flash_region_info {
990 	uint32_t offset;
991 	uint32_t size;
992 } __packed;
993 
994 /* Read/write VbNvContext */
995 #define EC_CMD_VBNV_CONTEXT 0x17
996 #define EC_VER_VBNV_CONTEXT 1
997 #define EC_VBNV_BLOCK_SIZE 16
998 
999 enum ec_vbnvcontext_op {
1000 	EC_VBNV_CONTEXT_OP_READ,
1001 	EC_VBNV_CONTEXT_OP_WRITE,
1002 };
1003 
1004 struct ec_params_vbnvcontext {
1005 	uint32_t op;
1006 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1007 } __packed;
1008 
1009 struct ec_response_vbnvcontext {
1010 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1011 } __packed;
1012 
1013 /*****************************************************************************/
1014 /* PWM commands */
1015 
1016 /* Get fan target RPM */
1017 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20
1018 
1019 struct ec_response_pwm_get_fan_rpm {
1020 	uint32_t rpm;
1021 } __packed;
1022 
1023 /* Set target fan RPM */
1024 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21
1025 
1026 struct ec_params_pwm_set_fan_target_rpm {
1027 	uint32_t rpm;
1028 } __packed;
1029 
1030 /* Get keyboard backlight */
1031 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22
1032 
1033 struct ec_response_pwm_get_keyboard_backlight {
1034 	uint8_t percent;
1035 	uint8_t enabled;
1036 } __packed;
1037 
1038 /* Set keyboard backlight */
1039 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23
1040 
1041 struct ec_params_pwm_set_keyboard_backlight {
1042 	uint8_t percent;
1043 } __packed;
1044 
1045 /* Set target fan PWM duty cycle */
1046 #define EC_CMD_PWM_SET_FAN_DUTY 0x24
1047 
1048 struct ec_params_pwm_set_fan_duty {
1049 	uint32_t percent;
1050 } __packed;
1051 
1052 #define EC_CMD_PWM_SET_DUTY 0x25
1053 /* 16 bit duty cycle, 0xffff = 100% */
1054 #define EC_PWM_MAX_DUTY 0xffff
1055 
1056 enum ec_pwm_type {
1057 	/* All types, indexed by board-specific enum pwm_channel */
1058 	EC_PWM_TYPE_GENERIC = 0,
1059 	/* Keyboard backlight */
1060 	EC_PWM_TYPE_KB_LIGHT,
1061 	/* Display backlight */
1062 	EC_PWM_TYPE_DISPLAY_LIGHT,
1063 	EC_PWM_TYPE_COUNT,
1064 };
1065 
1066 struct ec_params_pwm_set_duty {
1067 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1068 	uint8_t pwm_type;  /* ec_pwm_type */
1069 	uint8_t index;     /* Type-specific index, or 0 if unique */
1070 } __packed;
1071 
1072 #define EC_CMD_PWM_GET_DUTY 0x26
1073 
1074 struct ec_params_pwm_get_duty {
1075 	uint8_t pwm_type;  /* ec_pwm_type */
1076 	uint8_t index;     /* Type-specific index, or 0 if unique */
1077 } __packed;
1078 
1079 struct ec_response_pwm_get_duty {
1080 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1081 } __packed;
1082 
1083 /*****************************************************************************/
1084 /*
1085  * Lightbar commands. This looks worse than it is. Since we only use one HOST
1086  * command to say "talk to the lightbar", we put the "and tell it to do X" part
1087  * into a subcommand. We'll make separate structs for subcommands with
1088  * different input args, so that we know how much to expect.
1089  */
1090 #define EC_CMD_LIGHTBAR_CMD 0x28
1091 
1092 struct rgb_s {
1093 	uint8_t r, g, b;
1094 };
1095 
1096 #define LB_BATTERY_LEVELS 4
1097 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1098  * host command, but the alignment is the same regardless. Keep it that way.
1099  */
1100 struct lightbar_params_v0 {
1101 	/* Timing */
1102 	int32_t google_ramp_up;
1103 	int32_t google_ramp_down;
1104 	int32_t s3s0_ramp_up;
1105 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1106 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1107 	int32_t s0s3_ramp_down;
1108 	int32_t s3_sleep_for;
1109 	int32_t s3_ramp_up;
1110 	int32_t s3_ramp_down;
1111 
1112 	/* Oscillation */
1113 	uint8_t new_s0;
1114 	uint8_t osc_min[2];			/* AC=0/1 */
1115 	uint8_t osc_max[2];			/* AC=0/1 */
1116 	uint8_t w_ofs[2];			/* AC=0/1 */
1117 
1118 	/* Brightness limits based on the backlight and AC. */
1119 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1120 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1121 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1122 
1123 	/* Battery level thresholds */
1124 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1125 
1126 	/* Map [AC][battery_level] to color index */
1127 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1128 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1129 
1130 	/* Color palette */
1131 	struct rgb_s color[8];			/* 0-3 are Google colors */
1132 } __packed;
1133 
1134 struct lightbar_params_v1 {
1135 	/* Timing */
1136 	int32_t google_ramp_up;
1137 	int32_t google_ramp_down;
1138 	int32_t s3s0_ramp_up;
1139 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1140 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1141 	int32_t s0s3_ramp_down;
1142 	int32_t s3_sleep_for;
1143 	int32_t s3_ramp_up;
1144 	int32_t s3_ramp_down;
1145 	int32_t tap_tick_delay;
1146 	int32_t tap_display_time;
1147 
1148 	/* Tap-for-battery params */
1149 	uint8_t tap_pct_red;
1150 	uint8_t tap_pct_green;
1151 	uint8_t tap_seg_min_on;
1152 	uint8_t tap_seg_max_on;
1153 	uint8_t tap_seg_osc;
1154 	uint8_t tap_idx[3];
1155 
1156 	/* Oscillation */
1157 	uint8_t osc_min[2];			/* AC=0/1 */
1158 	uint8_t osc_max[2];			/* AC=0/1 */
1159 	uint8_t w_ofs[2];			/* AC=0/1 */
1160 
1161 	/* Brightness limits based on the backlight and AC. */
1162 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1163 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1164 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1165 
1166 	/* Battery level thresholds */
1167 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1168 
1169 	/* Map [AC][battery_level] to color index */
1170 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1171 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1172 
1173 	/* Color palette */
1174 	struct rgb_s color[8];			/* 0-3 are Google colors */
1175 } __packed;
1176 
1177 /* Lightbar program */
1178 #define EC_LB_PROG_LEN 192
1179 struct lightbar_program {
1180 	uint8_t size;
1181 	uint8_t data[EC_LB_PROG_LEN];
1182 };
1183 
1184 struct ec_params_lightbar {
1185 	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1186 	union {
1187 		struct {
1188 			/* no args */
1189 		} dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1190 			version, get_brightness, get_demo, suspend, resume;
1191 
1192 		struct {
1193 			uint8_t num;
1194 		} set_brightness, seq, demo;
1195 
1196 		struct {
1197 			uint8_t ctrl, reg, value;
1198 		} reg;
1199 
1200 		struct {
1201 			uint8_t led, red, green, blue;
1202 		} set_rgb;
1203 
1204 		struct {
1205 			uint8_t led;
1206 		} get_rgb;
1207 
1208 		struct {
1209 			uint8_t enable;
1210 		} manual_suspend_ctrl;
1211 
1212 		struct lightbar_params_v0 set_params_v0;
1213 		struct lightbar_params_v1 set_params_v1;
1214 		struct lightbar_program set_program;
1215 	};
1216 } __packed;
1217 
1218 struct ec_response_lightbar {
1219 	union {
1220 		struct {
1221 			struct {
1222 				uint8_t reg;
1223 				uint8_t ic0;
1224 				uint8_t ic1;
1225 			} vals[23];
1226 		} dump;
1227 
1228 		struct  {
1229 			uint8_t num;
1230 		} get_seq, get_brightness, get_demo;
1231 
1232 		struct lightbar_params_v0 get_params_v0;
1233 		struct lightbar_params_v1 get_params_v1;
1234 
1235 		struct {
1236 			uint32_t num;
1237 			uint32_t flags;
1238 		} version;
1239 
1240 		struct {
1241 			uint8_t red, green, blue;
1242 		} get_rgb;
1243 
1244 		struct {
1245 			/* no return params */
1246 		} off, on, init, set_brightness, seq, reg, set_rgb,
1247 			demo, set_params_v0, set_params_v1,
1248 			set_program, manual_suspend_ctrl, suspend, resume;
1249 	};
1250 } __packed;
1251 
1252 /* Lightbar commands */
1253 enum lightbar_command {
1254 	LIGHTBAR_CMD_DUMP = 0,
1255 	LIGHTBAR_CMD_OFF = 1,
1256 	LIGHTBAR_CMD_ON = 2,
1257 	LIGHTBAR_CMD_INIT = 3,
1258 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1259 	LIGHTBAR_CMD_SEQ = 5,
1260 	LIGHTBAR_CMD_REG = 6,
1261 	LIGHTBAR_CMD_SET_RGB = 7,
1262 	LIGHTBAR_CMD_GET_SEQ = 8,
1263 	LIGHTBAR_CMD_DEMO = 9,
1264 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1265 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1266 	LIGHTBAR_CMD_VERSION = 12,
1267 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1268 	LIGHTBAR_CMD_GET_RGB = 14,
1269 	LIGHTBAR_CMD_GET_DEMO = 15,
1270 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1271 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1272 	LIGHTBAR_CMD_SET_PROGRAM = 18,
1273 	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
1274 	LIGHTBAR_CMD_SUSPEND = 20,
1275 	LIGHTBAR_CMD_RESUME = 21,
1276 	LIGHTBAR_NUM_CMDS
1277 };
1278 
1279 /*****************************************************************************/
1280 /* LED control commands */
1281 
1282 #define EC_CMD_LED_CONTROL 0x29
1283 
1284 enum ec_led_id {
1285 	/* LED to indicate battery state of charge */
1286 	EC_LED_ID_BATTERY_LED = 0,
1287 	/*
1288 	 * LED to indicate system power state (on or in suspend).
1289 	 * May be on power button or on C-panel.
1290 	 */
1291 	EC_LED_ID_POWER_LED,
1292 	/* LED on power adapter or its plug */
1293 	EC_LED_ID_ADAPTER_LED,
1294 
1295 	EC_LED_ID_COUNT
1296 };
1297 
1298 /* LED control flags */
1299 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1300 #define EC_LED_FLAGS_AUTO  (1 << 1) /* Switch LED back to automatic control */
1301 
1302 enum ec_led_colors {
1303 	EC_LED_COLOR_RED = 0,
1304 	EC_LED_COLOR_GREEN,
1305 	EC_LED_COLOR_BLUE,
1306 	EC_LED_COLOR_YELLOW,
1307 	EC_LED_COLOR_WHITE,
1308 
1309 	EC_LED_COLOR_COUNT
1310 };
1311 
1312 struct ec_params_led_control {
1313 	uint8_t led_id;     /* Which LED to control */
1314 	uint8_t flags;      /* Control flags */
1315 
1316 	uint8_t brightness[EC_LED_COLOR_COUNT];
1317 } __packed;
1318 
1319 struct ec_response_led_control {
1320 	/*
1321 	 * Available brightness value range.
1322 	 *
1323 	 * Range 0 means color channel not present.
1324 	 * Range 1 means on/off control.
1325 	 * Other values means the LED is control by PWM.
1326 	 */
1327 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
1328 } __packed;
1329 
1330 /*****************************************************************************/
1331 /* Verified boot commands */
1332 
1333 /*
1334  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1335  * reused for other purposes with version > 0.
1336  */
1337 
1338 /* Verified boot hash command */
1339 #define EC_CMD_VBOOT_HASH 0x2A
1340 
1341 struct ec_params_vboot_hash {
1342 	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
1343 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1344 	uint8_t nonce_size;      /* Nonce size; may be 0 */
1345 	uint8_t reserved0;       /* Reserved; set 0 */
1346 	uint32_t offset;         /* Offset in flash to hash */
1347 	uint32_t size;           /* Number of bytes to hash */
1348 	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
1349 } __packed;
1350 
1351 struct ec_response_vboot_hash {
1352 	uint8_t status;          /* enum ec_vboot_hash_status */
1353 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1354 	uint8_t digest_size;     /* Size of hash digest in bytes */
1355 	uint8_t reserved0;       /* Ignore; will be 0 */
1356 	uint32_t offset;         /* Offset in flash which was hashed */
1357 	uint32_t size;           /* Number of bytes hashed */
1358 	uint8_t hash_digest[64]; /* Hash digest data */
1359 } __packed;
1360 
1361 enum ec_vboot_hash_cmd {
1362 	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
1363 	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
1364 	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
1365 	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
1366 };
1367 
1368 enum ec_vboot_hash_type {
1369 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1370 };
1371 
1372 enum ec_vboot_hash_status {
1373 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1374 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1375 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1376 };
1377 
1378 /*
1379  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1380  * If one of these is specified, the EC will automatically update offset and
1381  * size to the correct values for the specified image (RO or RW).
1382  */
1383 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
1384 #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd
1385 
1386 /*****************************************************************************/
1387 /*
1388  * Motion sense commands. We'll make separate structs for sub-commands with
1389  * different input args, so that we know how much to expect.
1390  */
1391 #define EC_CMD_MOTION_SENSE_CMD 0x2B
1392 
1393 /* Motion sense commands */
1394 enum motionsense_command {
1395 	/*
1396 	 * Dump command returns all motion sensor data including motion sense
1397 	 * module flags and individual sensor flags.
1398 	 */
1399 	MOTIONSENSE_CMD_DUMP = 0,
1400 
1401 	/*
1402 	 * Info command returns data describing the details of a given sensor,
1403 	 * including enum motionsensor_type, enum motionsensor_location, and
1404 	 * enum motionsensor_chip.
1405 	 */
1406 	MOTIONSENSE_CMD_INFO = 1,
1407 
1408 	/*
1409 	 * EC Rate command is a setter/getter command for the EC sampling rate
1410 	 * of all motion sensors in milliseconds.
1411 	 */
1412 	MOTIONSENSE_CMD_EC_RATE = 2,
1413 
1414 	/*
1415 	 * Sensor ODR command is a setter/getter command for the output data
1416 	 * rate of a specific motion sensor in millihertz.
1417 	 */
1418 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
1419 
1420 	/*
1421 	 * Sensor range command is a setter/getter command for the range of
1422 	 * a specified motion sensor in +/-G's or +/- deg/s.
1423 	 */
1424 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1425 
1426 	/*
1427 	 * Setter/getter command for the keyboard wake angle. When the lid
1428 	 * angle is greater than this value, keyboard wake is disabled in S3,
1429 	 * and when the lid angle goes less than this value, keyboard wake is
1430 	 * enabled. Note, the lid angle measurement is an approximate,
1431 	 * un-calibrated value, hence the wake angle isn't exact.
1432 	 */
1433 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
1434 
1435 	/*
1436 	 * Returns a single sensor data.
1437 	 */
1438 	MOTIONSENSE_CMD_DATA = 6,
1439 
1440 	/*
1441 	 * Perform low level calibration.. On sensors that support it, ask to
1442 	 * do offset calibration.
1443 	 */
1444 	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
1445 
1446 	/*
1447 	 * Sensor Offset command is a setter/getter command for the offset used
1448 	 * for calibration. The offsets can be calculated by the host, or via
1449 	 * PERFORM_CALIB command.
1450 	 */
1451 	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
1452 
1453 	/* Number of motionsense sub-commands. */
1454 	MOTIONSENSE_NUM_CMDS
1455 };
1456 
1457 enum motionsensor_id {
1458 	EC_MOTION_SENSOR_ACCEL_BASE = 0,
1459 	EC_MOTION_SENSOR_ACCEL_LID = 1,
1460 	EC_MOTION_SENSOR_GYRO = 2,
1461 
1462 	/*
1463 	 * Note, if more sensors are added and this count changes, the padding
1464 	 * in ec_response_motion_sense dump command must be modified.
1465 	 */
1466 	EC_MOTION_SENSOR_COUNT = 3
1467 };
1468 
1469 /* List of motion sensor types. */
1470 enum motionsensor_type {
1471 	MOTIONSENSE_TYPE_ACCEL = 0,
1472 	MOTIONSENSE_TYPE_GYRO = 1,
1473 	MOTIONSENSE_TYPE_MAG = 2,
1474 	MOTIONSENSE_TYPE_PROX = 3,
1475 	MOTIONSENSE_TYPE_LIGHT = 4,
1476 	MOTIONSENSE_TYPE_ACTIVITY = 5,
1477 	MOTIONSENSE_TYPE_BARO = 6,
1478 	MOTIONSENSE_TYPE_MAX,
1479 };
1480 
1481 /* List of motion sensor locations. */
1482 enum motionsensor_location {
1483 	MOTIONSENSE_LOC_BASE = 0,
1484 	MOTIONSENSE_LOC_LID = 1,
1485 	MOTIONSENSE_LOC_MAX,
1486 };
1487 
1488 /* List of motion sensor chips. */
1489 enum motionsensor_chip {
1490 	MOTIONSENSE_CHIP_KXCJ9 = 0,
1491 };
1492 
1493 /* Module flag masks used for the dump sub-command. */
1494 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
1495 
1496 /* Sensor flag masks used for the dump sub-command. */
1497 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
1498 
1499 /*
1500  * Send this value for the data element to only perform a read. If you
1501  * send any other value, the EC will interpret it as data to set and will
1502  * return the actual value set.
1503  */
1504 #define EC_MOTION_SENSE_NO_VALUE -1
1505 
1506 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
1507 
1508 /* Set Calibration information */
1509 #define MOTION_SENSE_SET_OFFSET	1
1510 
1511 struct ec_response_motion_sensor_data {
1512 	/* Flags for each sensor. */
1513 	uint8_t flags;
1514 	/* Sensor number the data comes from */
1515 	uint8_t sensor_num;
1516 	/* Each sensor is up to 3-axis. */
1517 	union {
1518 		int16_t             data[3];
1519 		struct {
1520 			uint16_t    rsvd;
1521 			uint32_t    timestamp;
1522 		} __packed;
1523 		struct {
1524 			uint8_t     activity; /* motionsensor_activity */
1525 			uint8_t     state;
1526 			int16_t     add_info[2];
1527 		};
1528 	};
1529 } __packed;
1530 
1531 struct ec_params_motion_sense {
1532 	uint8_t cmd;
1533 	union {
1534 		/* Used for MOTIONSENSE_CMD_DUMP. */
1535 		struct {
1536 			/* no args */
1537 		} dump;
1538 
1539 		/*
1540 		 * Used for MOTIONSENSE_CMD_EC_RATE and
1541 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1542 		 */
1543 		struct {
1544 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1545 			int16_t data;
1546 		} ec_rate, kb_wake_angle;
1547 
1548 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
1549 		struct {
1550 			uint8_t sensor_num;
1551 
1552 			/*
1553 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
1554 			 * the calibration information in the EC.
1555 			 * If unset, just retrieve calibration information.
1556 			 */
1557 			uint16_t flags;
1558 
1559 			/*
1560 			 * Temperature at calibration, in units of 0.01 C
1561 			 * 0x8000: invalid / unknown.
1562 			 * 0x0: 0C
1563 			 * 0x7fff: +327.67C
1564 			 */
1565 			int16_t temp;
1566 
1567 			/*
1568 			 * Offset for calibration.
1569 			 * Unit:
1570 			 * Accelerometer: 1/1024 g
1571 			 * Gyro:          1/1024 deg/s
1572 			 * Compass:       1/16 uT
1573 			 */
1574 			int16_t offset[3];
1575 		} __packed sensor_offset;
1576 
1577 		/* Used for MOTIONSENSE_CMD_INFO. */
1578 		struct {
1579 			uint8_t sensor_num;
1580 		} info;
1581 
1582 		/*
1583 		 * Used for MOTIONSENSE_CMD_SENSOR_ODR and
1584 		 * MOTIONSENSE_CMD_SENSOR_RANGE.
1585 		 */
1586 		struct {
1587 			/* Should be element of enum motionsensor_id. */
1588 			uint8_t sensor_num;
1589 
1590 			/* Rounding flag, true for round-up, false for down. */
1591 			uint8_t roundup;
1592 
1593 			uint16_t reserved;
1594 
1595 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1596 			int32_t data;
1597 		} sensor_odr, sensor_range;
1598 	};
1599 } __packed;
1600 
1601 struct ec_response_motion_sense {
1602 	union {
1603 		/* Used for MOTIONSENSE_CMD_DUMP. */
1604 		struct {
1605 			/* Flags representing the motion sensor module. */
1606 			uint8_t module_flags;
1607 
1608 			/* Number of sensors managed directly by the EC. */
1609 			uint8_t sensor_count;
1610 
1611 			/*
1612 			 * Sensor data is truncated if response_max is too small
1613 			 * for holding all the data.
1614 			 */
1615 			struct ec_response_motion_sensor_data sensor[0];
1616 		} dump;
1617 
1618 		/* Used for MOTIONSENSE_CMD_INFO. */
1619 		struct {
1620 			/* Should be element of enum motionsensor_type. */
1621 			uint8_t type;
1622 
1623 			/* Should be element of enum motionsensor_location. */
1624 			uint8_t location;
1625 
1626 			/* Should be element of enum motionsensor_chip. */
1627 			uint8_t chip;
1628 		} info;
1629 
1630 		/* Used for MOTIONSENSE_CMD_DATA */
1631 		struct ec_response_motion_sensor_data data;
1632 
1633 		/*
1634 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
1635 		 * MOTIONSENSE_CMD_SENSOR_RANGE, and
1636 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1637 		 */
1638 		struct {
1639 			/* Current value of the parameter queried. */
1640 			int32_t ret;
1641 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle;
1642 
1643 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
1644 		struct {
1645 			int16_t temp;
1646 			int16_t offset[3];
1647 		} sensor_offset, perform_calib;
1648 	};
1649 } __packed;
1650 
1651 /*****************************************************************************/
1652 /* USB charging control commands */
1653 
1654 /* Set USB port charging mode */
1655 #define EC_CMD_USB_CHARGE_SET_MODE 0x30
1656 
1657 struct ec_params_usb_charge_set_mode {
1658 	uint8_t usb_port_id;
1659 	uint8_t mode;
1660 } __packed;
1661 
1662 /*****************************************************************************/
1663 /* Persistent storage for host */
1664 
1665 /* Maximum bytes that can be read/written in a single command */
1666 #define EC_PSTORE_SIZE_MAX 64
1667 
1668 /* Get persistent storage info */
1669 #define EC_CMD_PSTORE_INFO 0x40
1670 
1671 struct ec_response_pstore_info {
1672 	/* Persistent storage size, in bytes */
1673 	uint32_t pstore_size;
1674 	/* Access size; read/write offset and size must be a multiple of this */
1675 	uint32_t access_size;
1676 } __packed;
1677 
1678 /*
1679  * Read persistent storage
1680  *
1681  * Response is params.size bytes of data.
1682  */
1683 #define EC_CMD_PSTORE_READ 0x41
1684 
1685 struct ec_params_pstore_read {
1686 	uint32_t offset;   /* Byte offset to read */
1687 	uint32_t size;     /* Size to read in bytes */
1688 } __packed;
1689 
1690 /* Write persistent storage */
1691 #define EC_CMD_PSTORE_WRITE 0x42
1692 
1693 struct ec_params_pstore_write {
1694 	uint32_t offset;   /* Byte offset to write */
1695 	uint32_t size;     /* Size to write in bytes */
1696 	uint8_t data[EC_PSTORE_SIZE_MAX];
1697 } __packed;
1698 
1699 /*****************************************************************************/
1700 /* Real-time clock */
1701 
1702 /* RTC params and response structures */
1703 struct ec_params_rtc {
1704 	uint32_t time;
1705 } __packed;
1706 
1707 struct ec_response_rtc {
1708 	uint32_t time;
1709 } __packed;
1710 
1711 /* These use ec_response_rtc */
1712 #define EC_CMD_RTC_GET_VALUE 0x44
1713 #define EC_CMD_RTC_GET_ALARM 0x45
1714 
1715 /* These all use ec_params_rtc */
1716 #define EC_CMD_RTC_SET_VALUE 0x46
1717 #define EC_CMD_RTC_SET_ALARM 0x47
1718 
1719 /* Pass as param to SET_ALARM to clear the current alarm */
1720 #define EC_RTC_ALARM_CLEAR 0
1721 
1722 /*****************************************************************************/
1723 /* Port80 log access */
1724 
1725 /* Maximum entries that can be read/written in a single command */
1726 #define EC_PORT80_SIZE_MAX 32
1727 
1728 /* Get last port80 code from previous boot */
1729 #define EC_CMD_PORT80_LAST_BOOT 0x48
1730 #define EC_CMD_PORT80_READ 0x48
1731 
1732 enum ec_port80_subcmd {
1733 	EC_PORT80_GET_INFO = 0,
1734 	EC_PORT80_READ_BUFFER,
1735 };
1736 
1737 struct ec_params_port80_read {
1738 	uint16_t subcmd;
1739 	union {
1740 		struct {
1741 			uint32_t offset;
1742 			uint32_t num_entries;
1743 		} read_buffer;
1744 	};
1745 } __packed;
1746 
1747 struct ec_response_port80_read {
1748 	union {
1749 		struct {
1750 			uint32_t writes;
1751 			uint32_t history_size;
1752 			uint32_t last_boot;
1753 		} get_info;
1754 		struct {
1755 			uint16_t codes[EC_PORT80_SIZE_MAX];
1756 		} data;
1757 	};
1758 } __packed;
1759 
1760 struct ec_response_port80_last_boot {
1761 	uint16_t code;
1762 } __packed;
1763 
1764 /*****************************************************************************/
1765 /* Thermal engine commands. Note that there are two implementations. We'll
1766  * reuse the command number, but the data and behavior is incompatible.
1767  * Version 0 is what originally shipped on Link.
1768  * Version 1 separates the CPU thermal limits from the fan control.
1769  */
1770 
1771 #define EC_CMD_THERMAL_SET_THRESHOLD 0x50
1772 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51
1773 
1774 /* The version 0 structs are opaque. You have to know what they are for
1775  * the get/set commands to make any sense.
1776  */
1777 
1778 /* Version 0 - set */
1779 struct ec_params_thermal_set_threshold {
1780 	uint8_t sensor_type;
1781 	uint8_t threshold_id;
1782 	uint16_t value;
1783 } __packed;
1784 
1785 /* Version 0 - get */
1786 struct ec_params_thermal_get_threshold {
1787 	uint8_t sensor_type;
1788 	uint8_t threshold_id;
1789 } __packed;
1790 
1791 struct ec_response_thermal_get_threshold {
1792 	uint16_t value;
1793 } __packed;
1794 
1795 
1796 /* The version 1 structs are visible. */
1797 enum ec_temp_thresholds {
1798 	EC_TEMP_THRESH_WARN = 0,
1799 	EC_TEMP_THRESH_HIGH,
1800 	EC_TEMP_THRESH_HALT,
1801 
1802 	EC_TEMP_THRESH_COUNT
1803 };
1804 
1805 /* Thermal configuration for one temperature sensor. Temps are in degrees K.
1806  * Zero values will be silently ignored by the thermal task.
1807  */
1808 struct ec_thermal_config {
1809 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
1810 	uint32_t temp_fan_off;		/* no active cooling needed */
1811 	uint32_t temp_fan_max;		/* max active cooling needed */
1812 } __packed;
1813 
1814 /* Version 1 - get config for one sensor. */
1815 struct ec_params_thermal_get_threshold_v1 {
1816 	uint32_t sensor_num;
1817 } __packed;
1818 /* This returns a struct ec_thermal_config */
1819 
1820 /* Version 1 - set config for one sensor.
1821  * Use read-modify-write for best results! */
1822 struct ec_params_thermal_set_threshold_v1 {
1823 	uint32_t sensor_num;
1824 	struct ec_thermal_config cfg;
1825 } __packed;
1826 /* This returns no data */
1827 
1828 /****************************************************************************/
1829 
1830 /* Toggle automatic fan control */
1831 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52
1832 
1833 /* Get TMP006 calibration data */
1834 #define EC_CMD_TMP006_GET_CALIBRATION 0x53
1835 
1836 struct ec_params_tmp006_get_calibration {
1837 	uint8_t index;
1838 } __packed;
1839 
1840 struct ec_response_tmp006_get_calibration {
1841 	float s0;
1842 	float b0;
1843 	float b1;
1844 	float b2;
1845 } __packed;
1846 
1847 /* Set TMP006 calibration data */
1848 #define EC_CMD_TMP006_SET_CALIBRATION 0x54
1849 
1850 struct ec_params_tmp006_set_calibration {
1851 	uint8_t index;
1852 	uint8_t reserved[3];  /* Reserved; set 0 */
1853 	float s0;
1854 	float b0;
1855 	float b1;
1856 	float b2;
1857 } __packed;
1858 
1859 /* Read raw TMP006 data */
1860 #define EC_CMD_TMP006_GET_RAW 0x55
1861 
1862 struct ec_params_tmp006_get_raw {
1863 	uint8_t index;
1864 } __packed;
1865 
1866 struct ec_response_tmp006_get_raw {
1867 	int32_t t;  /* In 1/100 K */
1868 	int32_t v;  /* In nV */
1869 };
1870 
1871 /*****************************************************************************/
1872 /* MKBP - Matrix KeyBoard Protocol */
1873 
1874 /*
1875  * Read key state
1876  *
1877  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
1878  * expected response size.
1879  *
1880  * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
1881  * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
1882  * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
1883  */
1884 #define EC_CMD_MKBP_STATE 0x60
1885 
1886 /*
1887  * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
1888  */
1889 #define EC_CMD_MKBP_INFO 0x61
1890 
1891 struct ec_response_mkbp_info {
1892 	uint32_t rows;
1893 	uint32_t cols;
1894 	/* Formerly "switches", which was 0. */
1895 	uint8_t reserved;
1896 } __packed;
1897 
1898 struct ec_params_mkbp_info {
1899 	uint8_t info_type;
1900 	uint8_t event_type;
1901 } __packed;
1902 
1903 enum ec_mkbp_info_type {
1904 	/*
1905 	 * Info about the keyboard matrix: number of rows and columns.
1906 	 *
1907 	 * Returns struct ec_response_mkbp_info.
1908 	 */
1909 	EC_MKBP_INFO_KBD = 0,
1910 
1911 	/*
1912 	 * For buttons and switches, info about which specifically are
1913 	 * supported.  event_type must be set to one of the values in enum
1914 	 * ec_mkbp_event.
1915 	 *
1916 	 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
1917 	 * bitmask indicating which buttons or switches are present.  See the
1918 	 * bit inidices below.
1919 	 */
1920 	EC_MKBP_INFO_SUPPORTED = 1,
1921 
1922 	/*
1923 	 * Instantaneous state of buttons and switches.
1924 	 *
1925 	 * event_type must be set to one of the values in enum ec_mkbp_event.
1926 	 *
1927 	 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
1928 	 * indicating the current state of the keyboard matrix.
1929 	 *
1930 	 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
1931 	 * event state.
1932 	 *
1933 	 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
1934 	 * state of supported buttons.
1935 	 *
1936 	 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
1937 	 * state of supported switches.
1938 	 */
1939 	EC_MKBP_INFO_CURRENT = 2,
1940 };
1941 
1942 /* Simulate key press */
1943 #define EC_CMD_MKBP_SIMULATE_KEY 0x62
1944 
1945 struct ec_params_mkbp_simulate_key {
1946 	uint8_t col;
1947 	uint8_t row;
1948 	uint8_t pressed;
1949 } __packed;
1950 
1951 /* Configure keyboard scanning */
1952 #define EC_CMD_MKBP_SET_CONFIG 0x64
1953 #define EC_CMD_MKBP_GET_CONFIG 0x65
1954 
1955 /* flags */
1956 enum mkbp_config_flags {
1957 	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
1958 };
1959 
1960 enum mkbp_config_valid {
1961 	EC_MKBP_VALID_SCAN_PERIOD		= 1 << 0,
1962 	EC_MKBP_VALID_POLL_TIMEOUT		= 1 << 1,
1963 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= 1 << 3,
1964 	EC_MKBP_VALID_OUTPUT_SETTLE		= 1 << 4,
1965 	EC_MKBP_VALID_DEBOUNCE_DOWN		= 1 << 5,
1966 	EC_MKBP_VALID_DEBOUNCE_UP		= 1 << 6,
1967 	EC_MKBP_VALID_FIFO_MAX_DEPTH		= 1 << 7,
1968 };
1969 
1970 /* Configuration for our key scanning algorithm */
1971 struct ec_mkbp_config {
1972 	uint32_t valid_mask;		/* valid fields */
1973 	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
1974 	uint8_t valid_flags;		/* which flags are valid */
1975 	uint16_t scan_period_us;	/* period between start of scans */
1976 	/* revert to interrupt mode after no activity for this long */
1977 	uint32_t poll_timeout_us;
1978 	/*
1979 	 * minimum post-scan relax time. Once we finish a scan we check
1980 	 * the time until we are due to start the next one. If this time is
1981 	 * shorter this field, we use this instead.
1982 	 */
1983 	uint16_t min_post_scan_delay_us;
1984 	/* delay between setting up output and waiting for it to settle */
1985 	uint16_t output_settle_us;
1986 	uint16_t debounce_down_us;	/* time for debounce on key down */
1987 	uint16_t debounce_up_us;	/* time for debounce on key up */
1988 	/* maximum depth to allow for fifo (0 = no keyscan output) */
1989 	uint8_t fifo_max_depth;
1990 } __packed;
1991 
1992 struct ec_params_mkbp_set_config {
1993 	struct ec_mkbp_config config;
1994 } __packed;
1995 
1996 struct ec_response_mkbp_get_config {
1997 	struct ec_mkbp_config config;
1998 } __packed;
1999 
2000 /* Run the key scan emulation */
2001 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66
2002 
2003 enum ec_keyscan_seq_cmd {
2004 	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
2005 	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
2006 	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
2007 	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
2008 	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
2009 };
2010 
2011 enum ec_collect_flags {
2012 	/*
2013 	 * Indicates this scan was processed by the EC. Due to timing, some
2014 	 * scans may be skipped.
2015 	 */
2016 	EC_KEYSCAN_SEQ_FLAG_DONE	= 1 << 0,
2017 };
2018 
2019 struct ec_collect_item {
2020 	uint8_t flags;		/* some flags (enum ec_collect_flags) */
2021 };
2022 
2023 struct ec_params_keyscan_seq_ctrl {
2024 	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
2025 	union {
2026 		struct {
2027 			uint8_t active;		/* still active */
2028 			uint8_t num_items;	/* number of items */
2029 			/* Current item being presented */
2030 			uint8_t cur_item;
2031 		} status;
2032 		struct {
2033 			/*
2034 			 * Absolute time for this scan, measured from the
2035 			 * start of the sequence.
2036 			 */
2037 			uint32_t time_us;
2038 			uint8_t scan[0];	/* keyscan data */
2039 		} add;
2040 		struct {
2041 			uint8_t start_item;	/* First item to return */
2042 			uint8_t num_items;	/* Number of items to return */
2043 		} collect;
2044 	};
2045 } __packed;
2046 
2047 struct ec_result_keyscan_seq_ctrl {
2048 	union {
2049 		struct {
2050 			uint8_t num_items;	/* Number of items */
2051 			/* Data for each item */
2052 			struct ec_collect_item item[0];
2053 		} collect;
2054 	};
2055 } __packed;
2056 
2057 /*
2058  * Command for retrieving the next pending MKBP event from the EC device
2059  *
2060  * The device replies with UNAVAILABLE if there aren't any pending events.
2061  */
2062 #define EC_CMD_GET_NEXT_EVENT 0x67
2063 
2064 enum ec_mkbp_event {
2065 	/* Keyboard matrix changed. The event data is the new matrix state. */
2066 	EC_MKBP_EVENT_KEY_MATRIX = 0,
2067 
2068 	/* New host event. The event data is 4 bytes of host event flags. */
2069 	EC_MKBP_EVENT_HOST_EVENT = 1,
2070 
2071 	/* New Sensor FIFO data. The event data is fifo_info structure. */
2072 	EC_MKBP_EVENT_SENSOR_FIFO = 2,
2073 
2074 	/* The state of the non-matrixed buttons have changed. */
2075 	EC_MKBP_EVENT_BUTTON = 3,
2076 
2077 	/* The state of the switches have changed. */
2078 	EC_MKBP_EVENT_SWITCH = 4,
2079 
2080 	/* EC sent a sysrq command */
2081 	EC_MKBP_EVENT_SYSRQ = 6,
2082 
2083 	/* Notify the AP that something happened on CEC */
2084 	EC_MKBP_EVENT_CEC_EVENT = 8,
2085 
2086 	/* Send an incoming CEC message to the AP */
2087 	EC_MKBP_EVENT_CEC_MESSAGE = 9,
2088 
2089 	/* Number of MKBP events */
2090 	EC_MKBP_EVENT_COUNT,
2091 };
2092 
2093 union ec_response_get_next_data {
2094 	uint8_t   key_matrix[13];
2095 
2096 	/* Unaligned */
2097 	uint32_t  host_event;
2098 
2099 	uint32_t   buttons;
2100 	uint32_t   switches;
2101 	uint32_t   sysrq;
2102 } __packed;
2103 
2104 union ec_response_get_next_data_v1 {
2105 	uint8_t key_matrix[16];
2106 	uint32_t host_event;
2107 	uint32_t buttons;
2108 	uint32_t switches;
2109 	uint32_t sysrq;
2110 	uint32_t cec_events;
2111 	uint8_t cec_message[16];
2112 } __packed;
2113 
2114 struct ec_response_get_next_event {
2115 	uint8_t event_type;
2116 	/* Followed by event data if any */
2117 	union ec_response_get_next_data data;
2118 } __packed;
2119 
2120 struct ec_response_get_next_event_v1 {
2121 	uint8_t event_type;
2122 	/* Followed by event data if any */
2123 	union ec_response_get_next_data_v1 data;
2124 } __packed;
2125 
2126 /* Bit indices for buttons and switches.*/
2127 /* Buttons */
2128 #define EC_MKBP_POWER_BUTTON	0
2129 #define EC_MKBP_VOL_UP		1
2130 #define EC_MKBP_VOL_DOWN	2
2131 
2132 /* Switches */
2133 #define EC_MKBP_LID_OPEN	0
2134 #define EC_MKBP_TABLET_MODE	1
2135 
2136 /*****************************************************************************/
2137 /* Temperature sensor commands */
2138 
2139 /* Read temperature sensor info */
2140 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70
2141 
2142 struct ec_params_temp_sensor_get_info {
2143 	uint8_t id;
2144 } __packed;
2145 
2146 struct ec_response_temp_sensor_get_info {
2147 	char sensor_name[32];
2148 	uint8_t sensor_type;
2149 } __packed;
2150 
2151 /*****************************************************************************/
2152 
2153 /*
2154  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
2155  * commands accidentally sent to the wrong interface.  See the ACPI section
2156  * below.
2157  */
2158 
2159 /*****************************************************************************/
2160 /* Host event commands */
2161 
2162 /*
2163  * Host event mask params and response structures, shared by all of the host
2164  * event commands below.
2165  */
2166 struct ec_params_host_event_mask {
2167 	uint32_t mask;
2168 } __packed;
2169 
2170 struct ec_response_host_event_mask {
2171 	uint32_t mask;
2172 } __packed;
2173 
2174 /* These all use ec_response_host_event_mask */
2175 #define EC_CMD_HOST_EVENT_GET_B         0x87
2176 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x88
2177 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x89
2178 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d
2179 
2180 /* These all use ec_params_host_event_mask */
2181 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x8a
2182 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x8b
2183 #define EC_CMD_HOST_EVENT_CLEAR         0x8c
2184 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e
2185 #define EC_CMD_HOST_EVENT_CLEAR_B       0x8f
2186 
2187 /*****************************************************************************/
2188 /* Switch commands */
2189 
2190 /* Enable/disable LCD backlight */
2191 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90
2192 
2193 struct ec_params_switch_enable_backlight {
2194 	uint8_t enabled;
2195 } __packed;
2196 
2197 /* Enable/disable WLAN/Bluetooth */
2198 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91
2199 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
2200 
2201 /* Version 0 params; no response */
2202 struct ec_params_switch_enable_wireless_v0 {
2203 	uint8_t enabled;
2204 } __packed;
2205 
2206 /* Version 1 params */
2207 struct ec_params_switch_enable_wireless_v1 {
2208 	/* Flags to enable now */
2209 	uint8_t now_flags;
2210 
2211 	/* Which flags to copy from now_flags */
2212 	uint8_t now_mask;
2213 
2214 	/*
2215 	 * Flags to leave enabled in S3, if they're on at the S0->S3
2216 	 * transition.  (Other flags will be disabled by the S0->S3
2217 	 * transition.)
2218 	 */
2219 	uint8_t suspend_flags;
2220 
2221 	/* Which flags to copy from suspend_flags */
2222 	uint8_t suspend_mask;
2223 } __packed;
2224 
2225 /* Version 1 response */
2226 struct ec_response_switch_enable_wireless_v1 {
2227 	/* Flags to enable now */
2228 	uint8_t now_flags;
2229 
2230 	/* Flags to leave enabled in S3 */
2231 	uint8_t suspend_flags;
2232 } __packed;
2233 
2234 /*****************************************************************************/
2235 /* GPIO commands. Only available on EC if write protect has been disabled. */
2236 
2237 /* Set GPIO output value */
2238 #define EC_CMD_GPIO_SET 0x92
2239 
2240 struct ec_params_gpio_set {
2241 	char name[32];
2242 	uint8_t val;
2243 } __packed;
2244 
2245 /* Get GPIO value */
2246 #define EC_CMD_GPIO_GET 0x93
2247 
2248 /* Version 0 of input params and response */
2249 struct ec_params_gpio_get {
2250 	char name[32];
2251 } __packed;
2252 struct ec_response_gpio_get {
2253 	uint8_t val;
2254 } __packed;
2255 
2256 /* Version 1 of input params and response */
2257 struct ec_params_gpio_get_v1 {
2258 	uint8_t subcmd;
2259 	union {
2260 		struct {
2261 			char name[32];
2262 		} get_value_by_name;
2263 		struct {
2264 			uint8_t index;
2265 		} get_info;
2266 	};
2267 } __packed;
2268 
2269 struct ec_response_gpio_get_v1 {
2270 	union {
2271 		struct {
2272 			uint8_t val;
2273 		} get_value_by_name, get_count;
2274 		struct {
2275 			uint8_t val;
2276 			char name[32];
2277 			uint32_t flags;
2278 		} get_info;
2279 	};
2280 } __packed;
2281 
2282 enum gpio_get_subcmd {
2283 	EC_GPIO_GET_BY_NAME = 0,
2284 	EC_GPIO_GET_COUNT = 1,
2285 	EC_GPIO_GET_INFO = 2,
2286 };
2287 
2288 /*****************************************************************************/
2289 /* I2C commands. Only available when flash write protect is unlocked. */
2290 
2291 /*
2292  * TODO(crosbug.com/p/23570): These commands are deprecated, and will be
2293  * removed soon.  Use EC_CMD_I2C_XFER instead.
2294  */
2295 
2296 /* Read I2C bus */
2297 #define EC_CMD_I2C_READ 0x94
2298 
2299 struct ec_params_i2c_read {
2300 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
2301 	uint8_t read_size; /* Either 8 or 16. */
2302 	uint8_t port;
2303 	uint8_t offset;
2304 } __packed;
2305 struct ec_response_i2c_read {
2306 	uint16_t data;
2307 } __packed;
2308 
2309 /* Write I2C bus */
2310 #define EC_CMD_I2C_WRITE 0x95
2311 
2312 struct ec_params_i2c_write {
2313 	uint16_t data;
2314 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
2315 	uint8_t write_size; /* Either 8 or 16. */
2316 	uint8_t port;
2317 	uint8_t offset;
2318 } __packed;
2319 
2320 /*****************************************************************************/
2321 /* Charge state commands. Only available when flash write protect unlocked. */
2322 
2323 /* Force charge state machine to stop charging the battery or force it to
2324  * discharge the battery.
2325  */
2326 #define EC_CMD_CHARGE_CONTROL 0x96
2327 #define EC_VER_CHARGE_CONTROL 1
2328 
2329 enum ec_charge_control_mode {
2330 	CHARGE_CONTROL_NORMAL = 0,
2331 	CHARGE_CONTROL_IDLE,
2332 	CHARGE_CONTROL_DISCHARGE,
2333 };
2334 
2335 struct ec_params_charge_control {
2336 	uint32_t mode;  /* enum charge_control_mode */
2337 } __packed;
2338 
2339 /*****************************************************************************/
2340 /* Console commands. Only available when flash write protect is unlocked. */
2341 
2342 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
2343 #define EC_CMD_CONSOLE_SNAPSHOT 0x97
2344 
2345 /*
2346  * Read data from the saved snapshot. If the subcmd parameter is
2347  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
2348  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
2349  * end of the previous snapshot.
2350  *
2351  * The params are only looked at in version >= 1 of this command. Prior
2352  * versions will just default to CONSOLE_READ_NEXT behavior.
2353  *
2354  * Response is null-terminated string.  Empty string, if there is no more
2355  * remaining output.
2356  */
2357 #define EC_CMD_CONSOLE_READ 0x98
2358 
2359 enum ec_console_read_subcmd {
2360 	CONSOLE_READ_NEXT = 0,
2361 	CONSOLE_READ_RECENT
2362 };
2363 
2364 struct ec_params_console_read_v1 {
2365 	uint8_t subcmd; /* enum ec_console_read_subcmd */
2366 } __packed;
2367 
2368 /*****************************************************************************/
2369 
2370 /*
2371  * Cut off battery power immediately or after the host has shut down.
2372  *
2373  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
2374  *	  EC_RES_SUCCESS if the command was successful.
2375  *	  EC_RES_ERROR if the cut off command failed.
2376  */
2377 
2378 #define EC_CMD_BATTERY_CUT_OFF 0x99
2379 
2380 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	(1 << 0)
2381 
2382 struct ec_params_battery_cutoff {
2383 	uint8_t flags;
2384 } __packed;
2385 
2386 /*****************************************************************************/
2387 /* USB port mux control. */
2388 
2389 /*
2390  * Switch USB mux or return to automatic switching.
2391  */
2392 #define EC_CMD_USB_MUX 0x9a
2393 
2394 struct ec_params_usb_mux {
2395 	uint8_t mux;
2396 } __packed;
2397 
2398 /*****************************************************************************/
2399 /* LDOs / FETs control. */
2400 
2401 enum ec_ldo_state {
2402 	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
2403 	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
2404 };
2405 
2406 /*
2407  * Switch on/off a LDO.
2408  */
2409 #define EC_CMD_LDO_SET 0x9b
2410 
2411 struct ec_params_ldo_set {
2412 	uint8_t index;
2413 	uint8_t state;
2414 } __packed;
2415 
2416 /*
2417  * Get LDO state.
2418  */
2419 #define EC_CMD_LDO_GET 0x9c
2420 
2421 struct ec_params_ldo_get {
2422 	uint8_t index;
2423 } __packed;
2424 
2425 struct ec_response_ldo_get {
2426 	uint8_t state;
2427 } __packed;
2428 
2429 /*****************************************************************************/
2430 /* Power info. */
2431 
2432 /*
2433  * Get power info.
2434  */
2435 #define EC_CMD_POWER_INFO 0x9d
2436 
2437 struct ec_response_power_info {
2438 	uint32_t usb_dev_type;
2439 	uint16_t voltage_ac;
2440 	uint16_t voltage_system;
2441 	uint16_t current_system;
2442 	uint16_t usb_current_limit;
2443 } __packed;
2444 
2445 /*****************************************************************************/
2446 /* I2C passthru command */
2447 
2448 #define EC_CMD_I2C_PASSTHRU 0x9e
2449 
2450 /* Read data; if not present, message is a write */
2451 #define EC_I2C_FLAG_READ	(1 << 15)
2452 
2453 /* Mask for address */
2454 #define EC_I2C_ADDR_MASK	0x3ff
2455 
2456 #define EC_I2C_STATUS_NAK	(1 << 0) /* Transfer was not acknowledged */
2457 #define EC_I2C_STATUS_TIMEOUT	(1 << 1) /* Timeout during transfer */
2458 
2459 /* Any error */
2460 #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
2461 
2462 struct ec_params_i2c_passthru_msg {
2463 	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
2464 	uint16_t len;		/* Number of bytes to read or write */
2465 } __packed;
2466 
2467 struct ec_params_i2c_passthru {
2468 	uint8_t port;		/* I2C port number */
2469 	uint8_t num_msgs;	/* Number of messages */
2470 	struct ec_params_i2c_passthru_msg msg[];
2471 	/* Data to write for all messages is concatenated here */
2472 } __packed;
2473 
2474 struct ec_response_i2c_passthru {
2475 	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
2476 	uint8_t num_msgs;	/* Number of messages processed */
2477 	uint8_t data[];		/* Data read by messages concatenated here */
2478 } __packed;
2479 
2480 /*****************************************************************************/
2481 /* Power button hang detect */
2482 
2483 #define EC_CMD_HANG_DETECT 0x9f
2484 
2485 /* Reasons to start hang detection timer */
2486 /* Power button pressed */
2487 #define EC_HANG_START_ON_POWER_PRESS  (1 << 0)
2488 
2489 /* Lid closed */
2490 #define EC_HANG_START_ON_LID_CLOSE    (1 << 1)
2491 
2492  /* Lid opened */
2493 #define EC_HANG_START_ON_LID_OPEN     (1 << 2)
2494 
2495 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
2496 #define EC_HANG_START_ON_RESUME       (1 << 3)
2497 
2498 /* Reasons to cancel hang detection */
2499 
2500 /* Power button released */
2501 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
2502 
2503 /* Any host command from AP received */
2504 #define EC_HANG_STOP_ON_HOST_COMMAND  (1 << 9)
2505 
2506 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
2507 #define EC_HANG_STOP_ON_SUSPEND       (1 << 10)
2508 
2509 /*
2510  * If this flag is set, all the other fields are ignored, and the hang detect
2511  * timer is started.  This provides the AP a way to start the hang timer
2512  * without reconfiguring any of the other hang detect settings.  Note that
2513  * you must previously have configured the timeouts.
2514  */
2515 #define EC_HANG_START_NOW             (1 << 30)
2516 
2517 /*
2518  * If this flag is set, all the other fields are ignored (including
2519  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
2520  * without reconfiguring any of the other hang detect settings.
2521  */
2522 #define EC_HANG_STOP_NOW              (1 << 31)
2523 
2524 struct ec_params_hang_detect {
2525 	/* Flags; see EC_HANG_* */
2526 	uint32_t flags;
2527 
2528 	/* Timeout in msec before generating host event, if enabled */
2529 	uint16_t host_event_timeout_msec;
2530 
2531 	/* Timeout in msec before generating warm reboot, if enabled */
2532 	uint16_t warm_reboot_timeout_msec;
2533 } __packed;
2534 
2535 /*****************************************************************************/
2536 /* Commands for battery charging */
2537 
2538 /*
2539  * This is the single catch-all host command to exchange data regarding the
2540  * charge state machine (v2 and up).
2541  */
2542 #define EC_CMD_CHARGE_STATE 0xa0
2543 
2544 /* Subcommands for this host command */
2545 enum charge_state_command {
2546 	CHARGE_STATE_CMD_GET_STATE,
2547 	CHARGE_STATE_CMD_GET_PARAM,
2548 	CHARGE_STATE_CMD_SET_PARAM,
2549 	CHARGE_STATE_NUM_CMDS
2550 };
2551 
2552 /*
2553  * Known param numbers are defined here. Ranges are reserved for board-specific
2554  * params, which are handled by the particular implementations.
2555  */
2556 enum charge_state_params {
2557 	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
2558 	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
2559 	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
2560 	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
2561 	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
2562 	/* How many so far? */
2563 	CS_NUM_BASE_PARAMS,
2564 
2565 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
2566 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
2567 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
2568 
2569 	/* Other custom param ranges go here... */
2570 };
2571 
2572 struct ec_params_charge_state {
2573 	uint8_t cmd;				/* enum charge_state_command */
2574 	union {
2575 		struct {
2576 			/* no args */
2577 		} get_state;
2578 
2579 		struct {
2580 			uint32_t param;		/* enum charge_state_param */
2581 		} get_param;
2582 
2583 		struct {
2584 			uint32_t param;		/* param to set */
2585 			uint32_t value;		/* value to set */
2586 		} set_param;
2587 	};
2588 } __packed;
2589 
2590 struct ec_response_charge_state {
2591 	union {
2592 		struct {
2593 			int ac;
2594 			int chg_voltage;
2595 			int chg_current;
2596 			int chg_input_current;
2597 			int batt_state_of_charge;
2598 		} get_state;
2599 
2600 		struct {
2601 			uint32_t value;
2602 		} get_param;
2603 		struct {
2604 			/* no return values */
2605 		} set_param;
2606 	};
2607 } __packed;
2608 
2609 
2610 /*
2611  * Set maximum battery charging current.
2612  */
2613 #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1
2614 
2615 struct ec_params_current_limit {
2616 	uint32_t limit; /* in mA */
2617 } __packed;
2618 
2619 /*
2620  * Set maximum external voltage / current.
2621  */
2622 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
2623 
2624 /* Command v0 is used only on Spring and is obsolete + unsupported */
2625 struct ec_params_external_power_limit_v1 {
2626 	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
2627 	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
2628 } __packed;
2629 
2630 #define EC_POWER_LIMIT_NONE 0xffff
2631 
2632 /* Inform the EC when entering a sleep state */
2633 #define EC_CMD_HOST_SLEEP_EVENT 0xa9
2634 
2635 enum host_sleep_event {
2636 	HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
2637 	HOST_SLEEP_EVENT_S3_RESUME    = 2,
2638 	HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
2639 	HOST_SLEEP_EVENT_S0IX_RESUME  = 4
2640 };
2641 
2642 struct ec_params_host_sleep_event {
2643 	uint8_t sleep_event;
2644 } __packed;
2645 
2646 /*****************************************************************************/
2647 /* Smart battery pass-through */
2648 
2649 /* Get / Set 16-bit smart battery registers */
2650 #define EC_CMD_SB_READ_WORD   0xb0
2651 #define EC_CMD_SB_WRITE_WORD  0xb1
2652 
2653 /* Get / Set string smart battery parameters
2654  * formatted as SMBUS "block".
2655  */
2656 #define EC_CMD_SB_READ_BLOCK  0xb2
2657 #define EC_CMD_SB_WRITE_BLOCK 0xb3
2658 
2659 struct ec_params_sb_rd {
2660 	uint8_t reg;
2661 } __packed;
2662 
2663 struct ec_response_sb_rd_word {
2664 	uint16_t value;
2665 } __packed;
2666 
2667 struct ec_params_sb_wr_word {
2668 	uint8_t reg;
2669 	uint16_t value;
2670 } __packed;
2671 
2672 struct ec_response_sb_rd_block {
2673 	uint8_t data[32];
2674 } __packed;
2675 
2676 struct ec_params_sb_wr_block {
2677 	uint8_t reg;
2678 	uint16_t data[32];
2679 } __packed;
2680 
2681 /*****************************************************************************/
2682 /* Battery vendor parameters
2683  *
2684  * Get or set vendor-specific parameters in the battery. Implementations may
2685  * differ between boards or batteries. On a set operation, the response
2686  * contains the actual value set, which may be rounded or clipped from the
2687  * requested value.
2688  */
2689 
2690 #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4
2691 
2692 enum ec_battery_vendor_param_mode {
2693 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
2694 	BATTERY_VENDOR_PARAM_MODE_SET,
2695 };
2696 
2697 struct ec_params_battery_vendor_param {
2698 	uint32_t param;
2699 	uint32_t value;
2700 	uint8_t mode;
2701 } __packed;
2702 
2703 struct ec_response_battery_vendor_param {
2704 	uint32_t value;
2705 } __packed;
2706 
2707 /*****************************************************************************/
2708 /* System commands */
2709 
2710 /*
2711  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
2712  * necessarily reboot the EC.  Rename to "image" or something similar?
2713  */
2714 #define EC_CMD_REBOOT_EC 0xd2
2715 
2716 /* Command */
2717 enum ec_reboot_cmd {
2718 	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
2719 	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
2720 	EC_REBOOT_JUMP_RW = 2,       /* Jump to RW without rebooting */
2721 	/* (command 3 was jump to RW-B) */
2722 	EC_REBOOT_COLD = 4,          /* Cold-reboot */
2723 	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
2724 	EC_REBOOT_HIBERNATE = 6      /* Hibernate EC */
2725 };
2726 
2727 /* Flags for ec_params_reboot_ec.reboot_flags */
2728 #define EC_REBOOT_FLAG_RESERVED0      (1 << 0)  /* Was recovery request */
2729 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1)  /* Reboot after AP shutdown */
2730 
2731 struct ec_params_reboot_ec {
2732 	uint8_t cmd;           /* enum ec_reboot_cmd */
2733 	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
2734 } __packed;
2735 
2736 /*
2737  * Get information on last EC panic.
2738  *
2739  * Returns variable-length platform-dependent panic information.  See panic.h
2740  * for details.
2741  */
2742 #define EC_CMD_GET_PANIC_INFO 0xd3
2743 
2744 /*****************************************************************************/
2745 /*
2746  * ACPI commands
2747  *
2748  * These are valid ONLY on the ACPI command/data port.
2749  */
2750 
2751 /*
2752  * ACPI Read Embedded Controller
2753  *
2754  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2755  *
2756  * Use the following sequence:
2757  *
2758  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
2759  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2760  *    - Write address to EC_LPC_ADDR_ACPI_DATA
2761  *    - Wait for EC_LPC_CMDR_DATA bit to set
2762  *    - Read value from EC_LPC_ADDR_ACPI_DATA
2763  */
2764 #define EC_CMD_ACPI_READ 0x80
2765 
2766 /*
2767  * ACPI Write Embedded Controller
2768  *
2769  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2770  *
2771  * Use the following sequence:
2772  *
2773  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
2774  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2775  *    - Write address to EC_LPC_ADDR_ACPI_DATA
2776  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2777  *    - Write value to EC_LPC_ADDR_ACPI_DATA
2778  */
2779 #define EC_CMD_ACPI_WRITE 0x81
2780 
2781 /*
2782  * ACPI Query Embedded Controller
2783  *
2784  * This clears the lowest-order bit in the currently pending host events, and
2785  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
2786  * event 0x80000000 = 32), or 0 if no event was pending.
2787  */
2788 #define EC_CMD_ACPI_QUERY_EVENT 0x84
2789 
2790 /* Valid addresses in ACPI memory space, for read/write commands */
2791 
2792 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
2793 #define EC_ACPI_MEM_VERSION            0x00
2794 /*
2795  * Test location; writing value here updates test compliment byte to (0xff -
2796  * value).
2797  */
2798 #define EC_ACPI_MEM_TEST               0x01
2799 /* Test compliment; writes here are ignored. */
2800 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
2801 
2802 /* Keyboard backlight brightness percent (0 - 100) */
2803 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
2804 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
2805 #define EC_ACPI_MEM_FAN_DUTY           0x04
2806 
2807 /*
2808  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
2809  * independent thresholds attached to them. The current value of the ID
2810  * register determines which sensor is affected by the THRESHOLD and COMMIT
2811  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
2812  * as the memory-mapped sensors. The COMMIT register applies those settings.
2813  *
2814  * The spec does not mandate any way to read back the threshold settings
2815  * themselves, but when a threshold is crossed the AP needs a way to determine
2816  * which sensor(s) are responsible. Each reading of the ID register clears and
2817  * returns one sensor ID that has crossed one of its threshold (in either
2818  * direction) since the last read. A value of 0xFF means "no new thresholds
2819  * have tripped". Setting or enabling the thresholds for a sensor will clear
2820  * the unread event count for that sensor.
2821  */
2822 #define EC_ACPI_MEM_TEMP_ID            0x05
2823 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
2824 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
2825 /*
2826  * Here are the bits for the COMMIT register:
2827  *   bit 0 selects the threshold index for the chosen sensor (0/1)
2828  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
2829  * Each write to the commit register affects one threshold.
2830  */
2831 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
2832 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
2833 /*
2834  * Example:
2835  *
2836  * Set the thresholds for sensor 2 to 50 C and 60 C:
2837  *   write 2 to [0x05]      --  select temp sensor 2
2838  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
2839  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
2840  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
2841  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
2842  *
2843  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
2844  *   write 2 to [0x05]      --  select temp sensor 2
2845  *   write 0x1 to [0x07]    --  disable threshold 1
2846  */
2847 
2848 /* DPTF battery charging current limit */
2849 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
2850 
2851 /* Charging limit is specified in 64 mA steps */
2852 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
2853 /* Value to disable DPTF battery charging limit */
2854 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
2855 
2856 /* Current version of ACPI memory address space */
2857 #define EC_ACPI_MEM_VERSION_CURRENT 1
2858 
2859 
2860 /*****************************************************************************/
2861 /*
2862  * HDMI CEC commands
2863  *
2864  * These commands are for sending and receiving message via HDMI CEC
2865  */
2866 #define EC_MAX_CEC_MSG_LEN 16
2867 
2868 /* CEC message from the AP to be written on the CEC bus */
2869 #define EC_CMD_CEC_WRITE_MSG 0x00B8
2870 
2871 /**
2872  * struct ec_params_cec_write - Message to write to the CEC bus
2873  * @msg: message content to write to the CEC bus
2874  */
2875 struct ec_params_cec_write {
2876 	uint8_t msg[EC_MAX_CEC_MSG_LEN];
2877 } __packed;
2878 
2879 /* Set various CEC parameters */
2880 #define EC_CMD_CEC_SET 0x00BA
2881 
2882 /**
2883  * struct ec_params_cec_set - CEC parameters set
2884  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
2885  * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
2886  *	or 1 to enable CEC functionality, in case cmd is CEC_CMD_LOGICAL_ADDRESS,
2887  *	this field encodes the requested logical address between 0 and 15
2888  *	or 0xff to unregister
2889  */
2890 struct ec_params_cec_set {
2891 	uint8_t cmd; /* enum cec_command */
2892 	uint8_t val;
2893 } __packed;
2894 
2895 /* Read various CEC parameters */
2896 #define EC_CMD_CEC_GET 0x00BB
2897 
2898 /**
2899  * struct ec_params_cec_get - CEC parameters get
2900  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
2901  */
2902 struct ec_params_cec_get {
2903 	uint8_t cmd; /* enum cec_command */
2904 } __packed;
2905 
2906 /**
2907  * struct ec_response_cec_get - CEC parameters get response
2908  * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
2909  *	disabled or 1 if CEC functionality is enabled,
2910  *	in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
2911  *	configured logical address between 0 and 15 or 0xff if unregistered
2912  */
2913 struct ec_response_cec_get {
2914 	uint8_t val;
2915 } __packed;
2916 
2917 /* CEC parameters command */
2918 enum ec_cec_command {
2919 	/* CEC reading, writing and events enable */
2920 	CEC_CMD_ENABLE,
2921 	/* CEC logical address  */
2922 	CEC_CMD_LOGICAL_ADDRESS,
2923 };
2924 
2925 /* Events from CEC to AP */
2926 enum mkbp_cec_event {
2927 	/* Outgoing message was acknowledged by a follower */
2928 	EC_MKBP_CEC_SEND_OK			= BIT(0),
2929 	/* Outgoing message was not acknowledged */
2930 	EC_MKBP_CEC_SEND_FAILED			= BIT(1),
2931 };
2932 
2933 /*****************************************************************************/
2934 /*
2935  * Special commands
2936  *
2937  * These do not follow the normal rules for commands.  See each command for
2938  * details.
2939  */
2940 
2941 /*
2942  * Reboot NOW
2943  *
2944  * This command will work even when the EC LPC interface is busy, because the
2945  * reboot command is processed at interrupt level.  Note that when the EC
2946  * reboots, the host will reboot too, so there is no response to this command.
2947  *
2948  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
2949  */
2950 #define EC_CMD_REBOOT 0xd1  /* Think "die" */
2951 
2952 /*
2953  * Resend last response (not supported on LPC).
2954  *
2955  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
2956  * there was no previous command, or the previous command's response was too
2957  * big to save.
2958  */
2959 #define EC_CMD_RESEND_RESPONSE 0xdb
2960 
2961 /*
2962  * This header byte on a command indicate version 0. Any header byte less
2963  * than this means that we are talking to an old EC which doesn't support
2964  * versioning. In that case, we assume version 0.
2965  *
2966  * Header bytes greater than this indicate a later version. For example,
2967  * EC_CMD_VERSION0 + 1 means we are using version 1.
2968  *
2969  * The old EC interface must not use commands 0xdc or higher.
2970  */
2971 #define EC_CMD_VERSION0 0xdc
2972 
2973 #endif  /* !__ACPI__ */
2974 
2975 /*****************************************************************************/
2976 /*
2977  * PD commands
2978  *
2979  * These commands are for PD MCU communication.
2980  */
2981 
2982 /* EC to PD MCU exchange status command */
2983 #define EC_CMD_PD_EXCHANGE_STATUS 0x100
2984 
2985 /* Status of EC being sent to PD */
2986 struct ec_params_pd_status {
2987 	int8_t batt_soc; /* battery state of charge */
2988 } __packed;
2989 
2990 /* Status of PD being sent back to EC */
2991 struct ec_response_pd_status {
2992 	int8_t status;        /* PD MCU status */
2993 	uint32_t curr_lim_ma; /* input current limit */
2994 } __packed;
2995 
2996 /* Set USB type-C port role and muxes */
2997 #define EC_CMD_USB_PD_CONTROL 0x101
2998 
2999 enum usb_pd_control_role {
3000 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
3001 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
3002 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
3003 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
3004 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
3005 };
3006 
3007 enum usb_pd_control_mux {
3008 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
3009 	USB_PD_CTRL_MUX_NONE = 1,
3010 	USB_PD_CTRL_MUX_USB = 2,
3011 	USB_PD_CTRL_MUX_DP = 3,
3012 	USB_PD_CTRL_MUX_DOCK = 4,
3013 	USB_PD_CTRL_MUX_AUTO = 5,
3014 };
3015 
3016 enum usb_pd_control_swap {
3017 	USB_PD_CTRL_SWAP_NONE = 0,
3018 	USB_PD_CTRL_SWAP_DATA = 1,
3019 	USB_PD_CTRL_SWAP_POWER = 2,
3020 	USB_PD_CTRL_SWAP_VCONN = 3,
3021 	USB_PD_CTRL_SWAP_COUNT
3022 };
3023 
3024 struct ec_params_usb_pd_control {
3025 	uint8_t port;
3026 	uint8_t role;
3027 	uint8_t mux;
3028 	uint8_t swap;
3029 } __packed;
3030 
3031 #define PD_CTRL_RESP_ENABLED_COMMS      (1 << 0) /* Communication enabled */
3032 #define PD_CTRL_RESP_ENABLED_CONNECTED  (1 << 1) /* Device connected */
3033 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */
3034 
3035 #define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
3036 #define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
3037 #define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
3038 #define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
3039 #define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
3040 #define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
3041 #define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
3042 
3043 struct ec_response_usb_pd_control_v1 {
3044 	uint8_t enabled;
3045 	uint8_t role;
3046 	uint8_t polarity;
3047 	char state[32];
3048 } __packed;
3049 
3050 #define EC_CMD_USB_PD_PORTS 0x102
3051 
3052 /* Maximum number of PD ports on a device, num_ports will be <= this */
3053 #define EC_USB_PD_MAX_PORTS 8
3054 
3055 struct ec_response_usb_pd_ports {
3056 	uint8_t num_ports;
3057 } __packed;
3058 
3059 #define EC_CMD_USB_PD_POWER_INFO 0x103
3060 
3061 #define PD_POWER_CHARGING_PORT 0xff
3062 struct ec_params_usb_pd_power_info {
3063 	uint8_t port;
3064 } __packed;
3065 
3066 enum usb_chg_type {
3067 	USB_CHG_TYPE_NONE,
3068 	USB_CHG_TYPE_PD,
3069 	USB_CHG_TYPE_C,
3070 	USB_CHG_TYPE_PROPRIETARY,
3071 	USB_CHG_TYPE_BC12_DCP,
3072 	USB_CHG_TYPE_BC12_CDP,
3073 	USB_CHG_TYPE_BC12_SDP,
3074 	USB_CHG_TYPE_OTHER,
3075 	USB_CHG_TYPE_VBUS,
3076 	USB_CHG_TYPE_UNKNOWN,
3077 };
3078 enum usb_power_roles {
3079 	USB_PD_PORT_POWER_DISCONNECTED,
3080 	USB_PD_PORT_POWER_SOURCE,
3081 	USB_PD_PORT_POWER_SINK,
3082 	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
3083 };
3084 
3085 struct usb_chg_measures {
3086 	uint16_t voltage_max;
3087 	uint16_t voltage_now;
3088 	uint16_t current_max;
3089 	uint16_t current_lim;
3090 } __packed;
3091 
3092 struct ec_response_usb_pd_power_info {
3093 	uint8_t role;
3094 	uint8_t type;
3095 	uint8_t dualrole;
3096 	uint8_t reserved1;
3097 	struct usb_chg_measures meas;
3098 	uint32_t max_power;
3099 } __packed;
3100 
3101 struct ec_params_usb_pd_info_request {
3102 	uint8_t port;
3103 } __packed;
3104 
3105 /* Read USB-PD Device discovery info */
3106 #define EC_CMD_USB_PD_DISCOVERY 0x0113
3107 struct ec_params_usb_pd_discovery_entry {
3108 	uint16_t vid;  /* USB-IF VID */
3109 	uint16_t pid;  /* USB-IF PID */
3110 	uint8_t ptype; /* product type (hub,periph,cable,ama) */
3111 } __packed;
3112 
3113 /* Override default charge behavior */
3114 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
3115 
3116 /* Negative port parameters have special meaning */
3117 enum usb_pd_override_ports {
3118 	OVERRIDE_DONT_CHARGE = -2,
3119 	OVERRIDE_OFF = -1,
3120 	/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
3121 };
3122 
3123 struct ec_params_charge_port_override {
3124 	int16_t override_port; /* Override port# */
3125 } __packed;
3126 
3127 /* Read (and delete) one entry of PD event log */
3128 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
3129 
3130 struct ec_response_pd_log {
3131 	uint32_t timestamp; /* relative timestamp in milliseconds */
3132 	uint8_t type;       /* event type : see PD_EVENT_xx below */
3133 	uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
3134 	uint16_t data;      /* type-defined data payload */
3135 	uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */
3136 } __packed;
3137 
3138 /* The timestamp is the microsecond counter shifted to get about a ms. */
3139 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
3140 
3141 #define PD_LOG_SIZE_MASK  0x1f
3142 #define PD_LOG_PORT_MASK  0xe0
3143 #define PD_LOG_PORT_SHIFT    5
3144 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
3145 				      ((size) & PD_LOG_SIZE_MASK))
3146 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
3147 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
3148 
3149 /* PD event log : entry types */
3150 /* PD MCU events */
3151 #define PD_EVENT_MCU_BASE       0x00
3152 #define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
3153 #define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
3154 /* Reserved for custom board event */
3155 #define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
3156 /* PD generic accessory events */
3157 #define PD_EVENT_ACC_BASE       0x20
3158 #define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
3159 #define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
3160 /* PD power supply events */
3161 #define PD_EVENT_PS_BASE        0x40
3162 #define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
3163 /* PD video dongles events */
3164 #define PD_EVENT_VIDEO_BASE     0x60
3165 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
3166 #define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
3167 /* Returned in the "type" field, when there is no entry available */
3168 #define PD_EVENT_NO_ENTRY       0xff
3169 
3170 /*
3171  * PD_EVENT_MCU_CHARGE event definition :
3172  * the payload is "struct usb_chg_measures"
3173  * the data field contains the port state flags as defined below :
3174  */
3175 /* Port partner is a dual role device */
3176 #define CHARGE_FLAGS_DUAL_ROLE         BIT(15)
3177 /* Port is the pending override port */
3178 #define CHARGE_FLAGS_DELAYED_OVERRIDE  BIT(14)
3179 /* Port is the override port */
3180 #define CHARGE_FLAGS_OVERRIDE          BIT(13)
3181 /* Charger type */
3182 #define CHARGE_FLAGS_TYPE_SHIFT               3
3183 #define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
3184 /* Power delivery role */
3185 #define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
3186 
3187 /*
3188  * PD_EVENT_PS_FAULT data field flags definition :
3189  */
3190 #define PS_FAULT_OCP                          1
3191 #define PS_FAULT_FAST_OCP                     2
3192 #define PS_FAULT_OVP                          3
3193 #define PS_FAULT_DISCH                        4
3194 
3195 /*
3196  * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
3197  */
3198 struct mcdp_version {
3199 	uint8_t major;
3200 	uint8_t minor;
3201 	uint16_t build;
3202 } __packed;
3203 
3204 struct mcdp_info {
3205 	uint8_t family[2];
3206 	uint8_t chipid[2];
3207 	struct mcdp_version irom;
3208 	struct mcdp_version fw;
3209 } __packed;
3210 
3211 /* struct mcdp_info field decoding */
3212 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
3213 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
3214 
3215 /* Get info about USB-C SS muxes */
3216 #define EC_CMD_USB_PD_MUX_INFO 0x11a
3217 
3218 struct ec_params_usb_pd_mux_info {
3219 	uint8_t port; /* USB-C port number */
3220 } __packed;
3221 
3222 /* Flags representing mux state */
3223 #define USB_PD_MUX_USB_ENABLED       (1 << 0)
3224 #define USB_PD_MUX_DP_ENABLED        (1 << 1)
3225 #define USB_PD_MUX_POLARITY_INVERTED (1 << 2)
3226 #define USB_PD_MUX_HPD_IRQ           (1 << 3)
3227 
3228 struct ec_response_usb_pd_mux_info {
3229 	uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
3230 } __packed;
3231 
3232 /*****************************************************************************/
3233 /*
3234  * Passthru commands
3235  *
3236  * Some platforms have sub-processors chained to each other.  For example.
3237  *
3238  *     AP <--> EC <--> PD MCU
3239  *
3240  * The top 2 bits of the command number are used to indicate which device the
3241  * command is intended for.  Device 0 is always the device receiving the
3242  * command; other device mapping is board-specific.
3243  *
3244  * When a device receives a command to be passed to a sub-processor, it passes
3245  * it on with the device number set back to 0.  This allows the sub-processor
3246  * to remain blissfully unaware of whether the command originated on the next
3247  * device up the chain, or was passed through from the AP.
3248  *
3249  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
3250  *     AP sends command 0x4002 to the EC
3251  *     EC sends command 0x0002 to the PD MCU
3252  *     EC forwards PD MCU response back to the AP
3253  */
3254 
3255 /* Offset and max command number for sub-device n */
3256 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
3257 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
3258 
3259 /*****************************************************************************/
3260 /*
3261  * Deprecated constants. These constants have been renamed for clarity. The
3262  * meaning and size has not changed. Programs that use the old names should
3263  * switch to the new names soon, as the old names may not be carried forward
3264  * forever.
3265  */
3266 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
3267 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
3268 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
3269 
3270 #endif  /* __CROS_EC_COMMANDS_H */
3271