1 /*
2  * GPMC support functions
3  *
4  * Copyright (C) 2005-2006 Nokia Corporation
5  *
6  * Author: Juha Yrjola
7  *
8  * Copyright (C) 2009 Texas Instruments
9  * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 #include <linux/irq.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/err.h>
19 #include <linux/clk.h>
20 #include <linux/ioport.h>
21 #include <linux/spinlock.h>
22 #include <linux/io.h>
23 #include <linux/gpio/driver.h>
24 #include <linux/gpio/consumer.h> /* GPIO descriptor enum */
25 #include <linux/interrupt.h>
26 #include <linux/irqdomain.h>
27 #include <linux/platform_device.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/of_platform.h>
32 #include <linux/omap-gpmc.h>
33 #include <linux/pm_runtime.h>
34 
35 #include <linux/platform_data/mtd-nand-omap2.h>
36 
37 #include <asm/mach-types.h>
38 
39 #define	DEVICE_NAME		"omap-gpmc"
40 
41 /* GPMC register offsets */
42 #define GPMC_REVISION		0x00
43 #define GPMC_SYSCONFIG		0x10
44 #define GPMC_SYSSTATUS		0x14
45 #define GPMC_IRQSTATUS		0x18
46 #define GPMC_IRQENABLE		0x1c
47 #define GPMC_TIMEOUT_CONTROL	0x40
48 #define GPMC_ERR_ADDRESS	0x44
49 #define GPMC_ERR_TYPE		0x48
50 #define GPMC_CONFIG		0x50
51 #define GPMC_STATUS		0x54
52 #define GPMC_PREFETCH_CONFIG1	0x1e0
53 #define GPMC_PREFETCH_CONFIG2	0x1e4
54 #define GPMC_PREFETCH_CONTROL	0x1ec
55 #define GPMC_PREFETCH_STATUS	0x1f0
56 #define GPMC_ECC_CONFIG		0x1f4
57 #define GPMC_ECC_CONTROL	0x1f8
58 #define GPMC_ECC_SIZE_CONFIG	0x1fc
59 #define GPMC_ECC1_RESULT        0x200
60 #define GPMC_ECC_BCH_RESULT_0   0x240   /* not available on OMAP2 */
61 #define	GPMC_ECC_BCH_RESULT_1	0x244	/* not available on OMAP2 */
62 #define	GPMC_ECC_BCH_RESULT_2	0x248	/* not available on OMAP2 */
63 #define	GPMC_ECC_BCH_RESULT_3	0x24c	/* not available on OMAP2 */
64 #define	GPMC_ECC_BCH_RESULT_4	0x300	/* not available on OMAP2 */
65 #define	GPMC_ECC_BCH_RESULT_5	0x304	/* not available on OMAP2 */
66 #define	GPMC_ECC_BCH_RESULT_6	0x308	/* not available on OMAP2 */
67 
68 /* GPMC ECC control settings */
69 #define GPMC_ECC_CTRL_ECCCLEAR		0x100
70 #define GPMC_ECC_CTRL_ECCDISABLE	0x000
71 #define GPMC_ECC_CTRL_ECCREG1		0x001
72 #define GPMC_ECC_CTRL_ECCREG2		0x002
73 #define GPMC_ECC_CTRL_ECCREG3		0x003
74 #define GPMC_ECC_CTRL_ECCREG4		0x004
75 #define GPMC_ECC_CTRL_ECCREG5		0x005
76 #define GPMC_ECC_CTRL_ECCREG6		0x006
77 #define GPMC_ECC_CTRL_ECCREG7		0x007
78 #define GPMC_ECC_CTRL_ECCREG8		0x008
79 #define GPMC_ECC_CTRL_ECCREG9		0x009
80 
81 #define GPMC_CONFIG_LIMITEDADDRESS		BIT(1)
82 
83 #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS	BIT(0)
84 
85 #define	GPMC_CONFIG2_CSEXTRADELAY		BIT(7)
86 #define	GPMC_CONFIG3_ADVEXTRADELAY		BIT(7)
87 #define	GPMC_CONFIG4_OEEXTRADELAY		BIT(7)
88 #define	GPMC_CONFIG4_WEEXTRADELAY		BIT(23)
89 #define	GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN	BIT(6)
90 #define	GPMC_CONFIG6_CYCLE2CYCLESAMECSEN	BIT(7)
91 
92 #define GPMC_CS0_OFFSET		0x60
93 #define GPMC_CS_SIZE		0x30
94 #define	GPMC_BCH_SIZE		0x10
95 
96 /*
97  * The first 1MB of GPMC address space is typically mapped to
98  * the internal ROM. Never allocate the first page, to
99  * facilitate bug detection; even if we didn't boot from ROM.
100  * As GPMC minimum partition size is 16MB we can only start from
101  * there.
102  */
103 #define GPMC_MEM_START		0x1000000
104 #define GPMC_MEM_END		0x3FFFFFFF
105 
106 #define GPMC_CHUNK_SHIFT	24		/* 16 MB */
107 #define GPMC_SECTION_SHIFT	28		/* 128 MB */
108 
109 #define CS_NUM_SHIFT		24
110 #define ENABLE_PREFETCH		(0x1 << 7)
111 #define DMA_MPU_MODE		2
112 
113 #define	GPMC_REVISION_MAJOR(l)		((l >> 4) & 0xf)
114 #define	GPMC_REVISION_MINOR(l)		(l & 0xf)
115 
116 #define	GPMC_HAS_WR_ACCESS		0x1
117 #define	GPMC_HAS_WR_DATA_MUX_BUS	0x2
118 #define	GPMC_HAS_MUX_AAD		0x4
119 
120 #define GPMC_NR_WAITPINS		4
121 
122 #define GPMC_CS_CONFIG1		0x00
123 #define GPMC_CS_CONFIG2		0x04
124 #define GPMC_CS_CONFIG3		0x08
125 #define GPMC_CS_CONFIG4		0x0c
126 #define GPMC_CS_CONFIG5		0x10
127 #define GPMC_CS_CONFIG6		0x14
128 #define GPMC_CS_CONFIG7		0x18
129 #define GPMC_CS_NAND_COMMAND	0x1c
130 #define GPMC_CS_NAND_ADDRESS	0x20
131 #define GPMC_CS_NAND_DATA	0x24
132 
133 /* Control Commands */
134 #define GPMC_CONFIG_RDY_BSY	0x00000001
135 #define GPMC_CONFIG_DEV_SIZE	0x00000002
136 #define GPMC_CONFIG_DEV_TYPE	0x00000003
137 
138 #define GPMC_CONFIG1_WRAPBURST_SUPP     (1 << 31)
139 #define GPMC_CONFIG1_READMULTIPLE_SUPP  (1 << 30)
140 #define GPMC_CONFIG1_READTYPE_ASYNC     (0 << 29)
141 #define GPMC_CONFIG1_READTYPE_SYNC      (1 << 29)
142 #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
143 #define GPMC_CONFIG1_WRITETYPE_ASYNC    (0 << 27)
144 #define GPMC_CONFIG1_WRITETYPE_SYNC     (1 << 27)
145 #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) ((val & 3) << 25)
146 /** CLKACTIVATIONTIME Max Ticks */
147 #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
148 #define GPMC_CONFIG1_PAGE_LEN(val)      ((val & 3) << 23)
149 /** ATTACHEDDEVICEPAGELENGTH Max Value */
150 #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
151 #define GPMC_CONFIG1_WAIT_READ_MON      (1 << 22)
152 #define GPMC_CONFIG1_WAIT_WRITE_MON     (1 << 21)
153 #define GPMC_CONFIG1_WAIT_MON_TIME(val) ((val & 3) << 18)
154 /** WAITMONITORINGTIME Max Ticks */
155 #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX  2
156 #define GPMC_CONFIG1_WAIT_PIN_SEL(val)  ((val & 3) << 16)
157 #define GPMC_CONFIG1_DEVICESIZE(val)    ((val & 3) << 12)
158 #define GPMC_CONFIG1_DEVICESIZE_16      GPMC_CONFIG1_DEVICESIZE(1)
159 /** DEVICESIZE Max Value */
160 #define GPMC_CONFIG1_DEVICESIZE_MAX     1
161 #define GPMC_CONFIG1_DEVICETYPE(val)    ((val & 3) << 10)
162 #define GPMC_CONFIG1_DEVICETYPE_NOR     GPMC_CONFIG1_DEVICETYPE(0)
163 #define GPMC_CONFIG1_MUXTYPE(val)       ((val & 3) << 8)
164 #define GPMC_CONFIG1_TIME_PARA_GRAN     (1 << 4)
165 #define GPMC_CONFIG1_FCLK_DIV(val)      (val & 3)
166 #define GPMC_CONFIG1_FCLK_DIV2          (GPMC_CONFIG1_FCLK_DIV(1))
167 #define GPMC_CONFIG1_FCLK_DIV3          (GPMC_CONFIG1_FCLK_DIV(2))
168 #define GPMC_CONFIG1_FCLK_DIV4          (GPMC_CONFIG1_FCLK_DIV(3))
169 #define GPMC_CONFIG7_CSVALID		(1 << 6)
170 
171 #define GPMC_CONFIG7_BASEADDRESS_MASK	0x3f
172 #define GPMC_CONFIG7_CSVALID_MASK	BIT(6)
173 #define GPMC_CONFIG7_MASKADDRESS_OFFSET	8
174 #define GPMC_CONFIG7_MASKADDRESS_MASK	(0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
175 /* All CONFIG7 bits except reserved bits */
176 #define GPMC_CONFIG7_MASK		(GPMC_CONFIG7_BASEADDRESS_MASK | \
177 					 GPMC_CONFIG7_CSVALID_MASK |     \
178 					 GPMC_CONFIG7_MASKADDRESS_MASK)
179 
180 #define GPMC_DEVICETYPE_NOR		0
181 #define GPMC_DEVICETYPE_NAND		2
182 #define GPMC_CONFIG_WRITEPROTECT	0x00000010
183 #define WR_RD_PIN_MONITORING		0x00600000
184 
185 /* ECC commands */
186 #define GPMC_ECC_READ		0 /* Reset Hardware ECC for read */
187 #define GPMC_ECC_WRITE		1 /* Reset Hardware ECC for write */
188 #define GPMC_ECC_READSYN	2 /* Reset before syndrom is read back */
189 
190 #define	GPMC_NR_NAND_IRQS	2 /* number of NAND specific IRQs */
191 
192 enum gpmc_clk_domain {
193 	GPMC_CD_FCLK,
194 	GPMC_CD_CLK
195 };
196 
197 struct gpmc_cs_data {
198 	const char *name;
199 
200 #define GPMC_CS_RESERVED	(1 << 0)
201 	u32 flags;
202 
203 	struct resource mem;
204 };
205 
206 /* Structure to save gpmc cs context */
207 struct gpmc_cs_config {
208 	u32 config1;
209 	u32 config2;
210 	u32 config3;
211 	u32 config4;
212 	u32 config5;
213 	u32 config6;
214 	u32 config7;
215 	int is_valid;
216 };
217 
218 /*
219  * Structure to save/restore gpmc context
220  * to support core off on OMAP3
221  */
222 struct omap3_gpmc_regs {
223 	u32 sysconfig;
224 	u32 irqenable;
225 	u32 timeout_ctrl;
226 	u32 config;
227 	u32 prefetch_config1;
228 	u32 prefetch_config2;
229 	u32 prefetch_control;
230 	struct gpmc_cs_config cs_context[GPMC_CS_NUM];
231 };
232 
233 struct gpmc_device {
234 	struct device *dev;
235 	int irq;
236 	struct irq_chip irq_chip;
237 	struct gpio_chip gpio_chip;
238 	int nirqs;
239 };
240 
241 static struct irq_domain *gpmc_irq_domain;
242 
243 static struct resource	gpmc_mem_root;
244 static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
245 static DEFINE_SPINLOCK(gpmc_mem_lock);
246 /* Define chip-selects as reserved by default until probe completes */
247 static unsigned int gpmc_cs_num = GPMC_CS_NUM;
248 static unsigned int gpmc_nr_waitpins;
249 static resource_size_t phys_base, mem_size;
250 static unsigned gpmc_capability;
251 static void __iomem *gpmc_base;
252 
253 static struct clk *gpmc_l3_clk;
254 
255 static irqreturn_t gpmc_handle_irq(int irq, void *dev);
256 
gpmc_write_reg(int idx,u32 val)257 static void gpmc_write_reg(int idx, u32 val)
258 {
259 	writel_relaxed(val, gpmc_base + idx);
260 }
261 
gpmc_read_reg(int idx)262 static u32 gpmc_read_reg(int idx)
263 {
264 	return readl_relaxed(gpmc_base + idx);
265 }
266 
gpmc_cs_write_reg(int cs,int idx,u32 val)267 void gpmc_cs_write_reg(int cs, int idx, u32 val)
268 {
269 	void __iomem *reg_addr;
270 
271 	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
272 	writel_relaxed(val, reg_addr);
273 }
274 
gpmc_cs_read_reg(int cs,int idx)275 static u32 gpmc_cs_read_reg(int cs, int idx)
276 {
277 	void __iomem *reg_addr;
278 
279 	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
280 	return readl_relaxed(reg_addr);
281 }
282 
283 /* TODO: Add support for gpmc_fck to clock framework and use it */
gpmc_get_fclk_period(void)284 static unsigned long gpmc_get_fclk_period(void)
285 {
286 	unsigned long rate = clk_get_rate(gpmc_l3_clk);
287 
288 	rate /= 1000;
289 	rate = 1000000000 / rate;	/* In picoseconds */
290 
291 	return rate;
292 }
293 
294 /**
295  * gpmc_get_clk_period - get period of selected clock domain in ps
296  * @cs Chip Select Region.
297  * @cd Clock Domain.
298  *
299  * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
300  * prior to calling this function with GPMC_CD_CLK.
301  */
gpmc_get_clk_period(int cs,enum gpmc_clk_domain cd)302 static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
303 {
304 
305 	unsigned long tick_ps = gpmc_get_fclk_period();
306 	u32 l;
307 	int div;
308 
309 	switch (cd) {
310 	case GPMC_CD_CLK:
311 		/* get current clk divider */
312 		l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
313 		div = (l & 0x03) + 1;
314 		/* get GPMC_CLK period */
315 		tick_ps *= div;
316 		break;
317 	case GPMC_CD_FCLK:
318 		/* FALL-THROUGH */
319 	default:
320 		break;
321 	}
322 
323 	return tick_ps;
324 
325 }
326 
gpmc_ns_to_clk_ticks(unsigned int time_ns,int cs,enum gpmc_clk_domain cd)327 static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
328 					 enum gpmc_clk_domain cd)
329 {
330 	unsigned long tick_ps;
331 
332 	/* Calculate in picosecs to yield more exact results */
333 	tick_ps = gpmc_get_clk_period(cs, cd);
334 
335 	return (time_ns * 1000 + tick_ps - 1) / tick_ps;
336 }
337 
gpmc_ns_to_ticks(unsigned int time_ns)338 static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
339 {
340 	return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
341 }
342 
gpmc_ps_to_ticks(unsigned int time_ps)343 static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
344 {
345 	unsigned long tick_ps;
346 
347 	/* Calculate in picosecs to yield more exact results */
348 	tick_ps = gpmc_get_fclk_period();
349 
350 	return (time_ps + tick_ps - 1) / tick_ps;
351 }
352 
gpmc_clk_ticks_to_ns(unsigned int ticks,int cs,enum gpmc_clk_domain cd)353 static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
354 					 enum gpmc_clk_domain cd)
355 {
356 	return ticks * gpmc_get_clk_period(cs, cd) / 1000;
357 }
358 
gpmc_ticks_to_ns(unsigned int ticks)359 unsigned int gpmc_ticks_to_ns(unsigned int ticks)
360 {
361 	return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
362 }
363 
gpmc_ticks_to_ps(unsigned int ticks)364 static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
365 {
366 	return ticks * gpmc_get_fclk_period();
367 }
368 
gpmc_round_ps_to_ticks(unsigned int time_ps)369 static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
370 {
371 	unsigned long ticks = gpmc_ps_to_ticks(time_ps);
372 
373 	return ticks * gpmc_get_fclk_period();
374 }
375 
gpmc_cs_modify_reg(int cs,int reg,u32 mask,bool value)376 static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
377 {
378 	u32 l;
379 
380 	l = gpmc_cs_read_reg(cs, reg);
381 	if (value)
382 		l |= mask;
383 	else
384 		l &= ~mask;
385 	gpmc_cs_write_reg(cs, reg, l);
386 }
387 
gpmc_cs_bool_timings(int cs,const struct gpmc_bool_timings * p)388 static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
389 {
390 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
391 			   GPMC_CONFIG1_TIME_PARA_GRAN,
392 			   p->time_para_granularity);
393 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
394 			   GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
395 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
396 			   GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
397 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
398 			   GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
399 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
400 			   GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
401 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
402 			   GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
403 			   p->cycle2cyclesamecsen);
404 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
405 			   GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
406 			   p->cycle2cyclediffcsen);
407 }
408 
409 #ifdef CONFIG_OMAP_GPMC_DEBUG
410 /**
411  * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
412  * @cs:      Chip Select Region
413  * @reg:     GPMC_CS_CONFIGn register offset.
414  * @st_bit:  Start Bit
415  * @end_bit: End Bit. Must be >= @st_bit.
416  * @ma:x     Maximum parameter value (before optional @shift).
417  *           If 0, maximum is as high as @st_bit and @end_bit allow.
418  * @name:    DTS node name, w/o "gpmc,"
419  * @cd:      Clock Domain of timing parameter.
420  * @shift:   Parameter value left shifts @shift, which is then printed instead of value.
421  * @raw:     Raw Format Option.
422  *           raw format:  gpmc,name = <value>
423  *           tick format: gpmc,name = <value> /&zwj;* x ns -- y ns; x ticks *&zwj;/
424  *           Where x ns -- y ns result in the same tick value.
425  *           When @max is exceeded, "invalid" is printed inside comment.
426  * @noval:   Parameter values equal to 0 are not printed.
427  * @return:  Specified timing parameter (after optional @shift).
428  *
429  */
get_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,const char * name,const enum gpmc_clk_domain cd,int shift,bool raw,bool noval)430 static int get_gpmc_timing_reg(
431 	/* timing specifiers */
432 	int cs, int reg, int st_bit, int end_bit, int max,
433 	const char *name, const enum gpmc_clk_domain cd,
434 	/* value transform */
435 	int shift,
436 	/* format specifiers */
437 	bool raw, bool noval)
438 {
439 	u32 l;
440 	int nr_bits;
441 	int mask;
442 	bool invalid;
443 
444 	l = gpmc_cs_read_reg(cs, reg);
445 	nr_bits = end_bit - st_bit + 1;
446 	mask = (1 << nr_bits) - 1;
447 	l = (l >> st_bit) & mask;
448 	if (!max)
449 		max = mask;
450 	invalid = l > max;
451 	if (shift)
452 		l = (shift << l);
453 	if (noval && (l == 0))
454 		return 0;
455 	if (!raw) {
456 		/* DTS tick format for timings in ns */
457 		unsigned int time_ns;
458 		unsigned int time_ns_min = 0;
459 
460 		if (l)
461 			time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
462 		time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
463 		pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
464 			name, time_ns, time_ns_min, time_ns, l,
465 			invalid ? "; invalid " : " ");
466 	} else {
467 		/* raw format */
468 		pr_info("gpmc,%s = <%u>;%s\n", name, l,
469 			invalid ? " /* invalid */" : "");
470 	}
471 
472 	return l;
473 }
474 
475 #define GPMC_PRINT_CONFIG(cs, config) \
476 	pr_info("cs%i %s: 0x%08x\n", cs, #config, \
477 		gpmc_cs_read_reg(cs, config))
478 #define GPMC_GET_RAW(reg, st, end, field) \
479 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
480 #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
481 	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
482 #define GPMC_GET_RAW_BOOL(reg, st, end, field) \
483 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
484 #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
485 	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
486 #define GPMC_GET_TICKS(reg, st, end, field) \
487 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
488 #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
489 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
490 #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
491 	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
492 
gpmc_show_regs(int cs,const char * desc)493 static void gpmc_show_regs(int cs, const char *desc)
494 {
495 	pr_info("gpmc cs%i %s:\n", cs, desc);
496 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
497 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
498 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
499 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
500 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
501 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
502 }
503 
504 /*
505  * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
506  * see commit c9fb809.
507  */
gpmc_cs_show_timings(int cs,const char * desc)508 static void gpmc_cs_show_timings(int cs, const char *desc)
509 {
510 	gpmc_show_regs(cs, desc);
511 
512 	pr_info("gpmc cs%i access configuration:\n", cs);
513 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1,  4,  4, "time-para-granularity");
514 	GPMC_GET_RAW(GPMC_CS_CONFIG1,  8,  9, "mux-add-data");
515 	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
516 			 GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
517 	GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
518 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
519 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
520 	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
521 			       GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
522 			       "burst-length");
523 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
524 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
525 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
526 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
527 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
528 
529 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2,  7,  7, "cs-extra-delay");
530 
531 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3,  7,  7, "adv-extra-delay");
532 
533 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
534 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4,  7,  7, "oe-extra-delay");
535 
536 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  7,  7, "cycle2cycle-samecsen");
537 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  6,  6, "cycle2cycle-diffcsen");
538 
539 	pr_info("gpmc cs%i timings configuration:\n", cs);
540 	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  0,  3, "cs-on-ns");
541 	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  8, 12, "cs-rd-off-ns");
542 	GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
543 
544 	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  0,  3, "adv-on-ns");
545 	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  8, 12, "adv-rd-off-ns");
546 	GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
547 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
548 		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
549 		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
550 				"adv-aad-mux-rd-off-ns");
551 		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
552 				"adv-aad-mux-wr-off-ns");
553 	}
554 
555 	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  0,  3, "oe-on-ns");
556 	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  8, 12, "oe-off-ns");
557 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
558 		GPMC_GET_TICKS(GPMC_CS_CONFIG4,  4,  6, "oe-aad-mux-on-ns");
559 		GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
560 	}
561 	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
562 	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
563 
564 	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  0,  4, "rd-cycle-ns");
565 	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  8, 12, "wr-cycle-ns");
566 	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
567 
568 	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
569 
570 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
571 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
572 
573 	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
574 			      GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
575 			      "wait-monitoring-ns", GPMC_CD_CLK);
576 	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
577 			      GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
578 			      "clk-activation-ns", GPMC_CD_FCLK);
579 
580 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
581 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
582 }
583 #else
gpmc_cs_show_timings(int cs,const char * desc)584 static inline void gpmc_cs_show_timings(int cs, const char *desc)
585 {
586 }
587 #endif
588 
589 /**
590  * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
591  * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
592  * prior to calling this function with @cd equal to GPMC_CD_CLK.
593  *
594  * @cs:      Chip Select Region.
595  * @reg:     GPMC_CS_CONFIGn register offset.
596  * @st_bit:  Start Bit
597  * @end_bit: End Bit. Must be >= @st_bit.
598  * @max:     Maximum parameter value.
599  *           If 0, maximum is as high as @st_bit and @end_bit allow.
600  * @time:    Timing parameter in ns.
601  * @cd:      Timing parameter clock domain.
602  * @name:    Timing parameter name.
603  * @return:  0 on success, -1 on error.
604  */
set_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,int time,enum gpmc_clk_domain cd,const char * name)605 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
606 			       int time, enum gpmc_clk_domain cd, const char *name)
607 {
608 	u32 l;
609 	int ticks, mask, nr_bits;
610 
611 	if (time == 0)
612 		ticks = 0;
613 	else
614 		ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
615 	nr_bits = end_bit - st_bit + 1;
616 	mask = (1 << nr_bits) - 1;
617 
618 	if (!max)
619 		max = mask;
620 
621 	if (ticks > max) {
622 		pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
623 		       __func__, cs, name, time, ticks, max);
624 
625 		return -1;
626 	}
627 
628 	l = gpmc_cs_read_reg(cs, reg);
629 #ifdef CONFIG_OMAP_GPMC_DEBUG
630 	pr_info(
631 		"GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
632 	       cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
633 			(l >> st_bit) & mask, time);
634 #endif
635 	l &= ~(mask << st_bit);
636 	l |= ticks << st_bit;
637 	gpmc_cs_write_reg(cs, reg, l);
638 
639 	return 0;
640 }
641 
642 #define GPMC_SET_ONE_CD_MAX(reg, st, end, max, field, cd)  \
643 	if (set_gpmc_timing_reg(cs, (reg), (st), (end), (max), \
644 	    t->field, (cd), #field) < 0)                       \
645 		return -1
646 
647 #define GPMC_SET_ONE(reg, st, end, field) \
648 	GPMC_SET_ONE_CD_MAX(reg, st, end, 0, field, GPMC_CD_FCLK)
649 
650 /**
651  * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
652  * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
653  * read  --> don't sample bus too early
654  * write --> data is longer on bus
655  *
656  * Formula:
657  * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
658  *                    / waitmonitoring_ticks)
659  * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
660  * div <= 0 check.
661  *
662  * @wait_monitoring: WAITMONITORINGTIME in ns.
663  * @return:          -1 on failure to scale, else proper divider > 0.
664  */
gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)665 static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
666 {
667 
668 	int div = gpmc_ns_to_ticks(wait_monitoring);
669 
670 	div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
671 	div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
672 
673 	if (div > 4)
674 		return -1;
675 	if (div <= 0)
676 		div = 1;
677 
678 	return div;
679 
680 }
681 
682 /**
683  * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
684  * @sync_clk: GPMC_CLK period in ps.
685  * @return:   Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
686  *            Else, returns -1.
687  */
gpmc_calc_divider(unsigned int sync_clk)688 int gpmc_calc_divider(unsigned int sync_clk)
689 {
690 	int div = gpmc_ps_to_ticks(sync_clk);
691 
692 	if (div > 4)
693 		return -1;
694 	if (div <= 0)
695 		div = 1;
696 
697 	return div;
698 }
699 
700 /**
701  * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
702  * @cs:     Chip Select Region.
703  * @t:      GPMC timing parameters.
704  * @s:      GPMC timing settings.
705  * @return: 0 on success, -1 on error.
706  */
gpmc_cs_set_timings(int cs,const struct gpmc_timings * t,const struct gpmc_settings * s)707 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
708 			const struct gpmc_settings *s)
709 {
710 	int div;
711 	u32 l;
712 
713 	div = gpmc_calc_divider(t->sync_clk);
714 	if (div < 0)
715 		return div;
716 
717 	/*
718 	 * See if we need to change the divider for waitmonitoringtime.
719 	 *
720 	 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
721 	 * pure asynchronous accesses, i.e. both read and write asynchronous.
722 	 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
723 	 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
724 	 *
725 	 * This statement must not change div to scale async WAITMONITORINGTIME
726 	 * to protect mixed synchronous and asynchronous accesses.
727 	 *
728 	 * We raise an error later if WAITMONITORINGTIME does not fit.
729 	 */
730 	if (!s->sync_read && !s->sync_write &&
731 	    (s->wait_on_read || s->wait_on_write)
732 	   ) {
733 
734 		div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
735 		if (div < 0) {
736 			pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
737 			       __func__,
738 			       t->wait_monitoring
739 			       );
740 			return -1;
741 		}
742 	}
743 
744 	GPMC_SET_ONE(GPMC_CS_CONFIG2,  0,  3, cs_on);
745 	GPMC_SET_ONE(GPMC_CS_CONFIG2,  8, 12, cs_rd_off);
746 	GPMC_SET_ONE(GPMC_CS_CONFIG2, 16, 20, cs_wr_off);
747 
748 	GPMC_SET_ONE(GPMC_CS_CONFIG3,  0,  3, adv_on);
749 	GPMC_SET_ONE(GPMC_CS_CONFIG3,  8, 12, adv_rd_off);
750 	GPMC_SET_ONE(GPMC_CS_CONFIG3, 16, 20, adv_wr_off);
751 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
752 		GPMC_SET_ONE(GPMC_CS_CONFIG3,  4,  6, adv_aad_mux_on);
753 		GPMC_SET_ONE(GPMC_CS_CONFIG3, 24, 26, adv_aad_mux_rd_off);
754 		GPMC_SET_ONE(GPMC_CS_CONFIG3, 28, 30, adv_aad_mux_wr_off);
755 	}
756 
757 	GPMC_SET_ONE(GPMC_CS_CONFIG4,  0,  3, oe_on);
758 	GPMC_SET_ONE(GPMC_CS_CONFIG4,  8, 12, oe_off);
759 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
760 		GPMC_SET_ONE(GPMC_CS_CONFIG4,  4,  6, oe_aad_mux_on);
761 		GPMC_SET_ONE(GPMC_CS_CONFIG4, 13, 15, oe_aad_mux_off);
762 	}
763 	GPMC_SET_ONE(GPMC_CS_CONFIG4, 16, 19, we_on);
764 	GPMC_SET_ONE(GPMC_CS_CONFIG4, 24, 28, we_off);
765 
766 	GPMC_SET_ONE(GPMC_CS_CONFIG5,  0,  4, rd_cycle);
767 	GPMC_SET_ONE(GPMC_CS_CONFIG5,  8, 12, wr_cycle);
768 	GPMC_SET_ONE(GPMC_CS_CONFIG5, 16, 20, access);
769 
770 	GPMC_SET_ONE(GPMC_CS_CONFIG5, 24, 27, page_burst_access);
771 
772 	GPMC_SET_ONE(GPMC_CS_CONFIG6, 0, 3, bus_turnaround);
773 	GPMC_SET_ONE(GPMC_CS_CONFIG6, 8, 11, cycle2cycle_delay);
774 
775 	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
776 		GPMC_SET_ONE(GPMC_CS_CONFIG6, 16, 19, wr_data_mux_bus);
777 	if (gpmc_capability & GPMC_HAS_WR_ACCESS)
778 		GPMC_SET_ONE(GPMC_CS_CONFIG6, 24, 28, wr_access);
779 
780 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
781 	l &= ~0x03;
782 	l |= (div - 1);
783 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
784 
785 	GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
786 			    GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
787 			    wait_monitoring, GPMC_CD_CLK);
788 	GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
789 			    GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
790 			    clk_activation, GPMC_CD_FCLK);
791 
792 #ifdef CONFIG_OMAP_GPMC_DEBUG
793 	pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
794 			cs, (div * gpmc_get_fclk_period()) / 1000, div);
795 #endif
796 
797 	gpmc_cs_bool_timings(cs, &t->bool_timings);
798 	gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
799 
800 	return 0;
801 }
802 
gpmc_cs_set_memconf(int cs,u32 base,u32 size)803 static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
804 {
805 	u32 l;
806 	u32 mask;
807 
808 	/*
809 	 * Ensure that base address is aligned on a
810 	 * boundary equal to or greater than size.
811 	 */
812 	if (base & (size - 1))
813 		return -EINVAL;
814 
815 	base >>= GPMC_CHUNK_SHIFT;
816 	mask = (1 << GPMC_SECTION_SHIFT) - size;
817 	mask >>= GPMC_CHUNK_SHIFT;
818 	mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
819 
820 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
821 	l &= ~GPMC_CONFIG7_MASK;
822 	l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
823 	l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
824 	l |= GPMC_CONFIG7_CSVALID;
825 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
826 
827 	return 0;
828 }
829 
gpmc_cs_enable_mem(int cs)830 static void gpmc_cs_enable_mem(int cs)
831 {
832 	u32 l;
833 
834 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
835 	l |= GPMC_CONFIG7_CSVALID;
836 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
837 }
838 
gpmc_cs_disable_mem(int cs)839 static void gpmc_cs_disable_mem(int cs)
840 {
841 	u32 l;
842 
843 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
844 	l &= ~GPMC_CONFIG7_CSVALID;
845 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
846 }
847 
gpmc_cs_get_memconf(int cs,u32 * base,u32 * size)848 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
849 {
850 	u32 l;
851 	u32 mask;
852 
853 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
854 	*base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
855 	mask = (l >> 8) & 0x0f;
856 	*size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
857 }
858 
gpmc_cs_mem_enabled(int cs)859 static int gpmc_cs_mem_enabled(int cs)
860 {
861 	u32 l;
862 
863 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
864 	return l & GPMC_CONFIG7_CSVALID;
865 }
866 
gpmc_cs_set_reserved(int cs,int reserved)867 static void gpmc_cs_set_reserved(int cs, int reserved)
868 {
869 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
870 
871 	gpmc->flags |= GPMC_CS_RESERVED;
872 }
873 
gpmc_cs_reserved(int cs)874 static bool gpmc_cs_reserved(int cs)
875 {
876 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
877 
878 	return gpmc->flags & GPMC_CS_RESERVED;
879 }
880 
gpmc_cs_set_name(int cs,const char * name)881 static void gpmc_cs_set_name(int cs, const char *name)
882 {
883 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
884 
885 	gpmc->name = name;
886 }
887 
gpmc_cs_get_name(int cs)888 static const char *gpmc_cs_get_name(int cs)
889 {
890 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
891 
892 	return gpmc->name;
893 }
894 
gpmc_mem_align(unsigned long size)895 static unsigned long gpmc_mem_align(unsigned long size)
896 {
897 	int order;
898 
899 	size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
900 	order = GPMC_CHUNK_SHIFT - 1;
901 	do {
902 		size >>= 1;
903 		order++;
904 	} while (size);
905 	size = 1 << order;
906 	return size;
907 }
908 
gpmc_cs_insert_mem(int cs,unsigned long base,unsigned long size)909 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
910 {
911 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
912 	struct resource *res = &gpmc->mem;
913 	int r;
914 
915 	size = gpmc_mem_align(size);
916 	spin_lock(&gpmc_mem_lock);
917 	res->start = base;
918 	res->end = base + size - 1;
919 	r = request_resource(&gpmc_mem_root, res);
920 	spin_unlock(&gpmc_mem_lock);
921 
922 	return r;
923 }
924 
gpmc_cs_delete_mem(int cs)925 static int gpmc_cs_delete_mem(int cs)
926 {
927 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
928 	struct resource *res = &gpmc->mem;
929 	int r;
930 
931 	spin_lock(&gpmc_mem_lock);
932 	r = release_resource(res);
933 	res->start = 0;
934 	res->end = 0;
935 	spin_unlock(&gpmc_mem_lock);
936 
937 	return r;
938 }
939 
940 /**
941  * gpmc_cs_remap - remaps a chip-select physical base address
942  * @cs:		chip-select to remap
943  * @base:	physical base address to re-map chip-select to
944  *
945  * Re-maps a chip-select to a new physical base address specified by
946  * "base". Returns 0 on success and appropriate negative error code
947  * on failure.
948  */
gpmc_cs_remap(int cs,u32 base)949 static int gpmc_cs_remap(int cs, u32 base)
950 {
951 	int ret;
952 	u32 old_base, size;
953 
954 	if (cs >= gpmc_cs_num) {
955 		pr_err("%s: requested chip-select is disabled\n", __func__);
956 		return -ENODEV;
957 	}
958 
959 	/*
960 	 * Make sure we ignore any device offsets from the GPMC partition
961 	 * allocated for the chip select and that the new base confirms
962 	 * to the GPMC 16MB minimum granularity.
963 	 */
964 	base &= ~(SZ_16M - 1);
965 
966 	gpmc_cs_get_memconf(cs, &old_base, &size);
967 	if (base == old_base)
968 		return 0;
969 
970 	ret = gpmc_cs_delete_mem(cs);
971 	if (ret < 0)
972 		return ret;
973 
974 	ret = gpmc_cs_insert_mem(cs, base, size);
975 	if (ret < 0)
976 		return ret;
977 
978 	ret = gpmc_cs_set_memconf(cs, base, size);
979 
980 	return ret;
981 }
982 
gpmc_cs_request(int cs,unsigned long size,unsigned long * base)983 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
984 {
985 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
986 	struct resource *res = &gpmc->mem;
987 	int r = -1;
988 
989 	if (cs >= gpmc_cs_num) {
990 		pr_err("%s: requested chip-select is disabled\n", __func__);
991 		return -ENODEV;
992 	}
993 	size = gpmc_mem_align(size);
994 	if (size > (1 << GPMC_SECTION_SHIFT))
995 		return -ENOMEM;
996 
997 	spin_lock(&gpmc_mem_lock);
998 	if (gpmc_cs_reserved(cs)) {
999 		r = -EBUSY;
1000 		goto out;
1001 	}
1002 	if (gpmc_cs_mem_enabled(cs))
1003 		r = adjust_resource(res, res->start & ~(size - 1), size);
1004 	if (r < 0)
1005 		r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
1006 				      size, NULL, NULL);
1007 	if (r < 0)
1008 		goto out;
1009 
1010 	/* Disable CS while changing base address and size mask */
1011 	gpmc_cs_disable_mem(cs);
1012 
1013 	r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
1014 	if (r < 0) {
1015 		release_resource(res);
1016 		goto out;
1017 	}
1018 
1019 	/* Enable CS */
1020 	gpmc_cs_enable_mem(cs);
1021 	*base = res->start;
1022 	gpmc_cs_set_reserved(cs, 1);
1023 out:
1024 	spin_unlock(&gpmc_mem_lock);
1025 	return r;
1026 }
1027 EXPORT_SYMBOL(gpmc_cs_request);
1028 
gpmc_cs_free(int cs)1029 void gpmc_cs_free(int cs)
1030 {
1031 	struct gpmc_cs_data *gpmc;
1032 	struct resource *res;
1033 
1034 	spin_lock(&gpmc_mem_lock);
1035 	if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1036 		printk(KERN_ERR "Trying to free non-reserved GPMC CS%d\n", cs);
1037 		BUG();
1038 		spin_unlock(&gpmc_mem_lock);
1039 		return;
1040 	}
1041 	gpmc = &gpmc_cs[cs];
1042 	res = &gpmc->mem;
1043 
1044 	gpmc_cs_disable_mem(cs);
1045 	if (res->flags)
1046 		release_resource(res);
1047 	gpmc_cs_set_reserved(cs, 0);
1048 	spin_unlock(&gpmc_mem_lock);
1049 }
1050 EXPORT_SYMBOL(gpmc_cs_free);
1051 
1052 /**
1053  * gpmc_configure - write request to configure gpmc
1054  * @cmd: command type
1055  * @wval: value to write
1056  * @return status of the operation
1057  */
gpmc_configure(int cmd,int wval)1058 int gpmc_configure(int cmd, int wval)
1059 {
1060 	u32 regval;
1061 
1062 	switch (cmd) {
1063 	case GPMC_CONFIG_WP:
1064 		regval = gpmc_read_reg(GPMC_CONFIG);
1065 		if (wval)
1066 			regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
1067 		else
1068 			regval |= GPMC_CONFIG_WRITEPROTECT;  /* WP is OFF */
1069 		gpmc_write_reg(GPMC_CONFIG, regval);
1070 		break;
1071 
1072 	default:
1073 		pr_err("%s: command not supported\n", __func__);
1074 		return -EINVAL;
1075 	}
1076 
1077 	return 0;
1078 }
1079 EXPORT_SYMBOL(gpmc_configure);
1080 
gpmc_nand_writebuffer_empty(void)1081 static bool gpmc_nand_writebuffer_empty(void)
1082 {
1083 	if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
1084 		return true;
1085 
1086 	return false;
1087 }
1088 
1089 static struct gpmc_nand_ops nand_ops = {
1090 	.nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
1091 };
1092 
1093 /**
1094  * gpmc_omap_get_nand_ops - Get the GPMC NAND interface
1095  * @regs: the GPMC NAND register map exclusive for NAND use.
1096  * @cs: GPMC chip select number on which the NAND sits. The
1097  *      register map returned will be specific to this chip select.
1098  *
1099  * Returns NULL on error e.g. invalid cs.
1100  */
gpmc_omap_get_nand_ops(struct gpmc_nand_regs * reg,int cs)1101 struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
1102 {
1103 	int i;
1104 
1105 	if (cs >= gpmc_cs_num)
1106 		return NULL;
1107 
1108 	reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
1109 				GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
1110 	reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
1111 				GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
1112 	reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
1113 				GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
1114 	reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
1115 	reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
1116 	reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
1117 	reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
1118 	reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
1119 	reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
1120 	reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
1121 	reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1122 
1123 	for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
1124 		reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
1125 					   GPMC_BCH_SIZE * i;
1126 		reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
1127 					   GPMC_BCH_SIZE * i;
1128 		reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
1129 					   GPMC_BCH_SIZE * i;
1130 		reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
1131 					   GPMC_BCH_SIZE * i;
1132 		reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
1133 					   i * GPMC_BCH_SIZE;
1134 		reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
1135 					   i * GPMC_BCH_SIZE;
1136 		reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
1137 					   i * GPMC_BCH_SIZE;
1138 	}
1139 
1140 	return &nand_ops;
1141 }
1142 EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
1143 
gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings * t,struct gpmc_settings * s,int freq,int latency)1144 static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
1145 						struct gpmc_settings *s,
1146 						int freq, int latency)
1147 {
1148 	struct gpmc_device_timings dev_t;
1149 	const int t_cer  = 15;
1150 	const int t_avdp = 12;
1151 	const int t_cez  = 20; /* max of t_cez, t_oez */
1152 	const int t_wpl  = 40;
1153 	const int t_wph  = 30;
1154 	int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
1155 
1156 	switch (freq) {
1157 	case 104:
1158 		min_gpmc_clk_period = 9600; /* 104 MHz */
1159 		t_ces   = 3;
1160 		t_avds  = 4;
1161 		t_avdh  = 2;
1162 		t_ach   = 3;
1163 		t_aavdh = 6;
1164 		t_rdyo  = 6;
1165 		break;
1166 	case 83:
1167 		min_gpmc_clk_period = 12000; /* 83 MHz */
1168 		t_ces   = 5;
1169 		t_avds  = 4;
1170 		t_avdh  = 2;
1171 		t_ach   = 6;
1172 		t_aavdh = 6;
1173 		t_rdyo  = 9;
1174 		break;
1175 	case 66:
1176 		min_gpmc_clk_period = 15000; /* 66 MHz */
1177 		t_ces   = 6;
1178 		t_avds  = 5;
1179 		t_avdh  = 2;
1180 		t_ach   = 6;
1181 		t_aavdh = 6;
1182 		t_rdyo  = 11;
1183 		break;
1184 	default:
1185 		min_gpmc_clk_period = 18500; /* 54 MHz */
1186 		t_ces   = 7;
1187 		t_avds  = 7;
1188 		t_avdh  = 7;
1189 		t_ach   = 9;
1190 		t_aavdh = 7;
1191 		t_rdyo  = 15;
1192 		break;
1193 	}
1194 
1195 	/* Set synchronous read timings */
1196 	memset(&dev_t, 0, sizeof(dev_t));
1197 
1198 	if (!s->sync_write) {
1199 		dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
1200 		dev_t.t_wpl = t_wpl * 1000;
1201 		dev_t.t_wph = t_wph * 1000;
1202 		dev_t.t_aavdh = t_aavdh * 1000;
1203 	}
1204 	dev_t.ce_xdelay = true;
1205 	dev_t.avd_xdelay = true;
1206 	dev_t.oe_xdelay = true;
1207 	dev_t.we_xdelay = true;
1208 	dev_t.clk = min_gpmc_clk_period;
1209 	dev_t.t_bacc = dev_t.clk;
1210 	dev_t.t_ces = t_ces * 1000;
1211 	dev_t.t_avds = t_avds * 1000;
1212 	dev_t.t_avdh = t_avdh * 1000;
1213 	dev_t.t_ach = t_ach * 1000;
1214 	dev_t.cyc_iaa = (latency + 1);
1215 	dev_t.t_cez_r = t_cez * 1000;
1216 	dev_t.t_cez_w = dev_t.t_cez_r;
1217 	dev_t.cyc_aavdh_oe = 1;
1218 	dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
1219 
1220 	gpmc_calc_timings(t, s, &dev_t);
1221 }
1222 
gpmc_omap_onenand_set_timings(struct device * dev,int cs,int freq,int latency,struct gpmc_onenand_info * info)1223 int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
1224 				  int latency,
1225 				  struct gpmc_onenand_info *info)
1226 {
1227 	int ret;
1228 	struct gpmc_timings gpmc_t;
1229 	struct gpmc_settings gpmc_s;
1230 
1231 	gpmc_read_settings_dt(dev->of_node, &gpmc_s);
1232 
1233 	info->sync_read = gpmc_s.sync_read;
1234 	info->sync_write = gpmc_s.sync_write;
1235 	info->burst_len = gpmc_s.burst_len;
1236 
1237 	if (!gpmc_s.sync_read && !gpmc_s.sync_write)
1238 		return 0;
1239 
1240 	gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
1241 
1242 	ret = gpmc_cs_program_settings(cs, &gpmc_s);
1243 	if (ret < 0)
1244 		return ret;
1245 
1246 	return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1247 }
1248 EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
1249 
gpmc_get_client_irq(unsigned irq_config)1250 int gpmc_get_client_irq(unsigned irq_config)
1251 {
1252 	if (!gpmc_irq_domain) {
1253 		pr_warn("%s called before GPMC IRQ domain available\n",
1254 			__func__);
1255 		return 0;
1256 	}
1257 
1258 	/* we restrict this to NAND IRQs only */
1259 	if (irq_config >= GPMC_NR_NAND_IRQS)
1260 		return 0;
1261 
1262 	return irq_create_mapping(gpmc_irq_domain, irq_config);
1263 }
1264 
gpmc_irq_endis(unsigned long hwirq,bool endis)1265 static int gpmc_irq_endis(unsigned long hwirq, bool endis)
1266 {
1267 	u32 regval;
1268 
1269 	/* bits GPMC_NR_NAND_IRQS to 8 are reserved */
1270 	if (hwirq >= GPMC_NR_NAND_IRQS)
1271 		hwirq += 8 - GPMC_NR_NAND_IRQS;
1272 
1273 	regval = gpmc_read_reg(GPMC_IRQENABLE);
1274 	if (endis)
1275 		regval |= BIT(hwirq);
1276 	else
1277 		regval &= ~BIT(hwirq);
1278 	gpmc_write_reg(GPMC_IRQENABLE, regval);
1279 
1280 	return 0;
1281 }
1282 
gpmc_irq_disable(struct irq_data * p)1283 static void gpmc_irq_disable(struct irq_data *p)
1284 {
1285 	gpmc_irq_endis(p->hwirq, false);
1286 }
1287 
gpmc_irq_enable(struct irq_data * p)1288 static void gpmc_irq_enable(struct irq_data *p)
1289 {
1290 	gpmc_irq_endis(p->hwirq, true);
1291 }
1292 
gpmc_irq_mask(struct irq_data * d)1293 static void gpmc_irq_mask(struct irq_data *d)
1294 {
1295 	gpmc_irq_endis(d->hwirq, false);
1296 }
1297 
gpmc_irq_unmask(struct irq_data * d)1298 static void gpmc_irq_unmask(struct irq_data *d)
1299 {
1300 	gpmc_irq_endis(d->hwirq, true);
1301 }
1302 
gpmc_irq_edge_config(unsigned long hwirq,bool rising_edge)1303 static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
1304 {
1305 	u32 regval;
1306 
1307 	/* NAND IRQs polarity is not configurable */
1308 	if (hwirq < GPMC_NR_NAND_IRQS)
1309 		return;
1310 
1311 	/* WAITPIN starts at BIT 8 */
1312 	hwirq += 8 - GPMC_NR_NAND_IRQS;
1313 
1314 	regval = gpmc_read_reg(GPMC_CONFIG);
1315 	if (rising_edge)
1316 		regval &= ~BIT(hwirq);
1317 	else
1318 		regval |= BIT(hwirq);
1319 
1320 	gpmc_write_reg(GPMC_CONFIG, regval);
1321 }
1322 
gpmc_irq_ack(struct irq_data * d)1323 static void gpmc_irq_ack(struct irq_data *d)
1324 {
1325 	unsigned int hwirq = d->hwirq;
1326 
1327 	/* skip reserved bits */
1328 	if (hwirq >= GPMC_NR_NAND_IRQS)
1329 		hwirq += 8 - GPMC_NR_NAND_IRQS;
1330 
1331 	/* Setting bit to 1 clears (or Acks) the interrupt */
1332 	gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
1333 }
1334 
gpmc_irq_set_type(struct irq_data * d,unsigned int trigger)1335 static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
1336 {
1337 	/* can't set type for NAND IRQs */
1338 	if (d->hwirq < GPMC_NR_NAND_IRQS)
1339 		return -EINVAL;
1340 
1341 	/* We can support either rising or falling edge at a time */
1342 	if (trigger == IRQ_TYPE_EDGE_FALLING)
1343 		gpmc_irq_edge_config(d->hwirq, false);
1344 	else if (trigger == IRQ_TYPE_EDGE_RISING)
1345 		gpmc_irq_edge_config(d->hwirq, true);
1346 	else
1347 		return -EINVAL;
1348 
1349 	return 0;
1350 }
1351 
gpmc_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hw)1352 static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
1353 			irq_hw_number_t hw)
1354 {
1355 	struct gpmc_device *gpmc = d->host_data;
1356 
1357 	irq_set_chip_data(virq, gpmc);
1358 	if (hw < GPMC_NR_NAND_IRQS) {
1359 		irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
1360 		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1361 					 handle_simple_irq);
1362 	} else {
1363 		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1364 					 handle_edge_irq);
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 static const struct irq_domain_ops gpmc_irq_domain_ops = {
1371 	.map    = gpmc_irq_map,
1372 	.xlate  = irq_domain_xlate_twocell,
1373 };
1374 
gpmc_handle_irq(int irq,void * data)1375 static irqreturn_t gpmc_handle_irq(int irq, void *data)
1376 {
1377 	int hwirq, virq;
1378 	u32 regval, regvalx;
1379 	struct gpmc_device *gpmc = data;
1380 
1381 	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1382 	regvalx = regval;
1383 
1384 	if (!regval)
1385 		return IRQ_NONE;
1386 
1387 	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
1388 		/* skip reserved status bits */
1389 		if (hwirq == GPMC_NR_NAND_IRQS)
1390 			regvalx >>= 8 - GPMC_NR_NAND_IRQS;
1391 
1392 		if (regvalx & BIT(hwirq)) {
1393 			virq = irq_find_mapping(gpmc_irq_domain, hwirq);
1394 			if (!virq) {
1395 				dev_warn(gpmc->dev,
1396 					 "spurious irq detected hwirq %d, virq %d\n",
1397 					 hwirq, virq);
1398 			}
1399 
1400 			generic_handle_irq(virq);
1401 		}
1402 	}
1403 
1404 	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1405 
1406 	return IRQ_HANDLED;
1407 }
1408 
gpmc_setup_irq(struct gpmc_device * gpmc)1409 static int gpmc_setup_irq(struct gpmc_device *gpmc)
1410 {
1411 	u32 regval;
1412 	int rc;
1413 
1414 	/* Disable interrupts */
1415 	gpmc_write_reg(GPMC_IRQENABLE, 0);
1416 
1417 	/* clear interrupts */
1418 	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1419 	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1420 
1421 	gpmc->irq_chip.name = "gpmc";
1422 	gpmc->irq_chip.irq_enable = gpmc_irq_enable;
1423 	gpmc->irq_chip.irq_disable = gpmc_irq_disable;
1424 	gpmc->irq_chip.irq_ack = gpmc_irq_ack;
1425 	gpmc->irq_chip.irq_mask = gpmc_irq_mask;
1426 	gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
1427 	gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
1428 
1429 	gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
1430 						gpmc->nirqs,
1431 						&gpmc_irq_domain_ops,
1432 						gpmc);
1433 	if (!gpmc_irq_domain) {
1434 		dev_err(gpmc->dev, "IRQ domain add failed\n");
1435 		return -ENODEV;
1436 	}
1437 
1438 	rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
1439 	if (rc) {
1440 		dev_err(gpmc->dev, "failed to request irq %d: %d\n",
1441 			gpmc->irq, rc);
1442 		irq_domain_remove(gpmc_irq_domain);
1443 		gpmc_irq_domain = NULL;
1444 	}
1445 
1446 	return rc;
1447 }
1448 
gpmc_free_irq(struct gpmc_device * gpmc)1449 static int gpmc_free_irq(struct gpmc_device *gpmc)
1450 {
1451 	int hwirq;
1452 
1453 	free_irq(gpmc->irq, gpmc);
1454 
1455 	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
1456 		irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
1457 
1458 	irq_domain_remove(gpmc_irq_domain);
1459 	gpmc_irq_domain = NULL;
1460 
1461 	return 0;
1462 }
1463 
gpmc_mem_exit(void)1464 static void gpmc_mem_exit(void)
1465 {
1466 	int cs;
1467 
1468 	for (cs = 0; cs < gpmc_cs_num; cs++) {
1469 		if (!gpmc_cs_mem_enabled(cs))
1470 			continue;
1471 		gpmc_cs_delete_mem(cs);
1472 	}
1473 
1474 }
1475 
gpmc_mem_init(void)1476 static void gpmc_mem_init(void)
1477 {
1478 	int cs;
1479 
1480 	gpmc_mem_root.start = GPMC_MEM_START;
1481 	gpmc_mem_root.end = GPMC_MEM_END;
1482 
1483 	/* Reserve all regions that has been set up by bootloader */
1484 	for (cs = 0; cs < gpmc_cs_num; cs++) {
1485 		u32 base, size;
1486 
1487 		if (!gpmc_cs_mem_enabled(cs))
1488 			continue;
1489 		gpmc_cs_get_memconf(cs, &base, &size);
1490 		if (gpmc_cs_insert_mem(cs, base, size)) {
1491 			pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
1492 				__func__, cs, base, base + size);
1493 			gpmc_cs_disable_mem(cs);
1494 		}
1495 	}
1496 }
1497 
gpmc_round_ps_to_sync_clk(u32 time_ps,u32 sync_clk)1498 static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
1499 {
1500 	u32 temp;
1501 	int div;
1502 
1503 	div = gpmc_calc_divider(sync_clk);
1504 	temp = gpmc_ps_to_ticks(time_ps);
1505 	temp = (temp + div - 1) / div;
1506 	return gpmc_ticks_to_ps(temp * div);
1507 }
1508 
1509 /* XXX: can the cycles be avoided ? */
gpmc_calc_sync_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1510 static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1511 				       struct gpmc_device_timings *dev_t,
1512 				       bool mux)
1513 {
1514 	u32 temp;
1515 
1516 	/* adv_rd_off */
1517 	temp = dev_t->t_avdp_r;
1518 	/* XXX: mux check required ? */
1519 	if (mux) {
1520 		/* XXX: t_avdp not to be required for sync, only added for tusb
1521 		 * this indirectly necessitates requirement of t_avdp_r and
1522 		 * t_avdp_w instead of having a single t_avdp
1523 		 */
1524 		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_avdh);
1525 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1526 	}
1527 	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1528 
1529 	/* oe_on */
1530 	temp = dev_t->t_oeasu; /* XXX: remove this ? */
1531 	if (mux) {
1532 		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_ach);
1533 		temp = max_t(u32, temp, gpmc_t->adv_rd_off +
1534 				gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
1535 	}
1536 	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1537 
1538 	/* access */
1539 	/* XXX: any scope for improvement ?, by combining oe_on
1540 	 * and clk_activation, need to check whether
1541 	 * access = clk_activation + round to sync clk ?
1542 	 */
1543 	temp = max_t(u32, dev_t->t_iaa,	dev_t->cyc_iaa * gpmc_t->sync_clk);
1544 	temp += gpmc_t->clk_activation;
1545 	if (dev_t->cyc_oe)
1546 		temp = max_t(u32, temp, gpmc_t->oe_on +
1547 				gpmc_ticks_to_ps(dev_t->cyc_oe));
1548 	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1549 
1550 	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1551 	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1552 
1553 	/* rd_cycle */
1554 	temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
1555 	temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
1556 							gpmc_t->access;
1557 	/* XXX: barter t_ce_rdyz with t_cez_r ? */
1558 	if (dev_t->t_ce_rdyz)
1559 		temp = max_t(u32, temp,	gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
1560 	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1561 
1562 	return 0;
1563 }
1564 
gpmc_calc_sync_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1565 static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1566 					struct gpmc_device_timings *dev_t,
1567 					bool mux)
1568 {
1569 	u32 temp;
1570 
1571 	/* adv_wr_off */
1572 	temp = dev_t->t_avdp_w;
1573 	if (mux) {
1574 		temp = max_t(u32, temp,
1575 			gpmc_t->clk_activation + dev_t->t_avdh);
1576 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1577 	}
1578 	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1579 
1580 	/* wr_data_mux_bus */
1581 	temp = max_t(u32, dev_t->t_weasu,
1582 			gpmc_t->clk_activation + dev_t->t_rdyo);
1583 	/* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
1584 	 * and in that case remember to handle we_on properly
1585 	 */
1586 	if (mux) {
1587 		temp = max_t(u32, temp,
1588 			gpmc_t->adv_wr_off + dev_t->t_aavdh);
1589 		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1590 				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1591 	}
1592 	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1593 
1594 	/* we_on */
1595 	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1596 		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1597 	else
1598 		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1599 
1600 	/* wr_access */
1601 	/* XXX: gpmc_capability check reqd ? , even if not, will not harm */
1602 	gpmc_t->wr_access = gpmc_t->access;
1603 
1604 	/* we_off */
1605 	temp = gpmc_t->we_on + dev_t->t_wpl;
1606 	temp = max_t(u32, temp,
1607 			gpmc_t->wr_access + gpmc_ticks_to_ps(1));
1608 	temp = max_t(u32, temp,
1609 		gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
1610 	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1611 
1612 	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1613 							dev_t->t_wph);
1614 
1615 	/* wr_cycle */
1616 	temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
1617 	temp += gpmc_t->wr_access;
1618 	/* XXX: barter t_ce_rdyz with t_cez_w ? */
1619 	if (dev_t->t_ce_rdyz)
1620 		temp = max_t(u32, temp,
1621 				 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
1622 	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1623 
1624 	return 0;
1625 }
1626 
gpmc_calc_async_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1627 static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1628 					struct gpmc_device_timings *dev_t,
1629 					bool mux)
1630 {
1631 	u32 temp;
1632 
1633 	/* adv_rd_off */
1634 	temp = dev_t->t_avdp_r;
1635 	if (mux)
1636 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1637 	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1638 
1639 	/* oe_on */
1640 	temp = dev_t->t_oeasu;
1641 	if (mux)
1642 		temp = max_t(u32, temp,
1643 			gpmc_t->adv_rd_off + dev_t->t_aavdh);
1644 	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1645 
1646 	/* access */
1647 	temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
1648 				gpmc_t->oe_on + dev_t->t_oe);
1649 	temp = max_t(u32, temp,
1650 				gpmc_t->cs_on + dev_t->t_ce);
1651 	temp = max_t(u32, temp,
1652 				gpmc_t->adv_on + dev_t->t_aa);
1653 	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1654 
1655 	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1656 	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1657 
1658 	/* rd_cycle */
1659 	temp = max_t(u32, dev_t->t_rd_cycle,
1660 			gpmc_t->cs_rd_off + dev_t->t_cez_r);
1661 	temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
1662 	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1663 
1664 	return 0;
1665 }
1666 
gpmc_calc_async_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1667 static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1668 					 struct gpmc_device_timings *dev_t,
1669 					 bool mux)
1670 {
1671 	u32 temp;
1672 
1673 	/* adv_wr_off */
1674 	temp = dev_t->t_avdp_w;
1675 	if (mux)
1676 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1677 	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1678 
1679 	/* wr_data_mux_bus */
1680 	temp = dev_t->t_weasu;
1681 	if (mux) {
1682 		temp = max_t(u32, temp,	gpmc_t->adv_wr_off + dev_t->t_aavdh);
1683 		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1684 				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1685 	}
1686 	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1687 
1688 	/* we_on */
1689 	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1690 		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1691 	else
1692 		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1693 
1694 	/* we_off */
1695 	temp = gpmc_t->we_on + dev_t->t_wpl;
1696 	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1697 
1698 	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1699 							dev_t->t_wph);
1700 
1701 	/* wr_cycle */
1702 	temp = max_t(u32, dev_t->t_wr_cycle,
1703 				gpmc_t->cs_wr_off + dev_t->t_cez_w);
1704 	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1705 
1706 	return 0;
1707 }
1708 
gpmc_calc_sync_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t)1709 static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1710 			struct gpmc_device_timings *dev_t)
1711 {
1712 	u32 temp;
1713 
1714 	gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1715 						gpmc_get_fclk_period();
1716 
1717 	gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1718 					dev_t->t_bacc,
1719 					gpmc_t->sync_clk);
1720 
1721 	temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1722 	gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1723 
1724 	if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1725 		return 0;
1726 
1727 	if (dev_t->ce_xdelay)
1728 		gpmc_t->bool_timings.cs_extra_delay = true;
1729 	if (dev_t->avd_xdelay)
1730 		gpmc_t->bool_timings.adv_extra_delay = true;
1731 	if (dev_t->oe_xdelay)
1732 		gpmc_t->bool_timings.oe_extra_delay = true;
1733 	if (dev_t->we_xdelay)
1734 		gpmc_t->bool_timings.we_extra_delay = true;
1735 
1736 	return 0;
1737 }
1738 
gpmc_calc_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool sync)1739 static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1740 				    struct gpmc_device_timings *dev_t,
1741 				    bool sync)
1742 {
1743 	u32 temp;
1744 
1745 	/* cs_on */
1746 	gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1747 
1748 	/* adv_on */
1749 	temp = dev_t->t_avdasu;
1750 	if (dev_t->t_ce_avd)
1751 		temp = max_t(u32, temp,
1752 				gpmc_t->cs_on + dev_t->t_ce_avd);
1753 	gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1754 
1755 	if (sync)
1756 		gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1757 
1758 	return 0;
1759 }
1760 
1761 /* TODO: remove this function once all peripherals are confirmed to
1762  * work with generic timing. Simultaneously gpmc_cs_set_timings()
1763  * has to be modified to handle timings in ps instead of ns
1764 */
gpmc_convert_ps_to_ns(struct gpmc_timings * t)1765 static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1766 {
1767 	t->cs_on /= 1000;
1768 	t->cs_rd_off /= 1000;
1769 	t->cs_wr_off /= 1000;
1770 	t->adv_on /= 1000;
1771 	t->adv_rd_off /= 1000;
1772 	t->adv_wr_off /= 1000;
1773 	t->we_on /= 1000;
1774 	t->we_off /= 1000;
1775 	t->oe_on /= 1000;
1776 	t->oe_off /= 1000;
1777 	t->page_burst_access /= 1000;
1778 	t->access /= 1000;
1779 	t->rd_cycle /= 1000;
1780 	t->wr_cycle /= 1000;
1781 	t->bus_turnaround /= 1000;
1782 	t->cycle2cycle_delay /= 1000;
1783 	t->wait_monitoring /= 1000;
1784 	t->clk_activation /= 1000;
1785 	t->wr_access /= 1000;
1786 	t->wr_data_mux_bus /= 1000;
1787 }
1788 
gpmc_calc_timings(struct gpmc_timings * gpmc_t,struct gpmc_settings * gpmc_s,struct gpmc_device_timings * dev_t)1789 int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1790 		      struct gpmc_settings *gpmc_s,
1791 		      struct gpmc_device_timings *dev_t)
1792 {
1793 	bool mux = false, sync = false;
1794 
1795 	if (gpmc_s) {
1796 		mux = gpmc_s->mux_add_data ? true : false;
1797 		sync = (gpmc_s->sync_read || gpmc_s->sync_write);
1798 	}
1799 
1800 	memset(gpmc_t, 0, sizeof(*gpmc_t));
1801 
1802 	gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1803 
1804 	if (gpmc_s && gpmc_s->sync_read)
1805 		gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1806 	else
1807 		gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1808 
1809 	if (gpmc_s && gpmc_s->sync_write)
1810 		gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1811 	else
1812 		gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1813 
1814 	/* TODO: remove, see function definition */
1815 	gpmc_convert_ps_to_ns(gpmc_t);
1816 
1817 	return 0;
1818 }
1819 
1820 /**
1821  * gpmc_cs_program_settings - programs non-timing related settings
1822  * @cs:		GPMC chip-select to program
1823  * @p:		pointer to GPMC settings structure
1824  *
1825  * Programs non-timing related settings for a GPMC chip-select, such as
1826  * bus-width, burst configuration, etc. Function should be called once
1827  * for each chip-select that is being used and must be called before
1828  * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
1829  * register will be initialised to zero by this function. Returns 0 on
1830  * success and appropriate negative error code on failure.
1831  */
gpmc_cs_program_settings(int cs,struct gpmc_settings * p)1832 int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
1833 {
1834 	u32 config1;
1835 
1836 	if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
1837 		pr_err("%s: invalid width %d!", __func__, p->device_width);
1838 		return -EINVAL;
1839 	}
1840 
1841 	/* Address-data multiplexing not supported for NAND devices */
1842 	if (p->device_nand && p->mux_add_data) {
1843 		pr_err("%s: invalid configuration!\n", __func__);
1844 		return -EINVAL;
1845 	}
1846 
1847 	if ((p->mux_add_data > GPMC_MUX_AD) ||
1848 	    ((p->mux_add_data == GPMC_MUX_AAD) &&
1849 	     !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
1850 		pr_err("%s: invalid multiplex configuration!\n", __func__);
1851 		return -EINVAL;
1852 	}
1853 
1854 	/* Page/burst mode supports lengths of 4, 8 and 16 bytes */
1855 	if (p->burst_read || p->burst_write) {
1856 		switch (p->burst_len) {
1857 		case GPMC_BURST_4:
1858 		case GPMC_BURST_8:
1859 		case GPMC_BURST_16:
1860 			break;
1861 		default:
1862 			pr_err("%s: invalid page/burst-length (%d)\n",
1863 			       __func__, p->burst_len);
1864 			return -EINVAL;
1865 		}
1866 	}
1867 
1868 	if (p->wait_pin > gpmc_nr_waitpins) {
1869 		pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
1870 		return -EINVAL;
1871 	}
1872 
1873 	config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
1874 
1875 	if (p->sync_read)
1876 		config1 |= GPMC_CONFIG1_READTYPE_SYNC;
1877 	if (p->sync_write)
1878 		config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
1879 	if (p->wait_on_read)
1880 		config1 |= GPMC_CONFIG1_WAIT_READ_MON;
1881 	if (p->wait_on_write)
1882 		config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
1883 	if (p->wait_on_read || p->wait_on_write)
1884 		config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
1885 	if (p->device_nand)
1886 		config1	|= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
1887 	if (p->mux_add_data)
1888 		config1	|= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
1889 	if (p->burst_read)
1890 		config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
1891 	if (p->burst_write)
1892 		config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
1893 	if (p->burst_read || p->burst_write) {
1894 		config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
1895 		config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
1896 	}
1897 
1898 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
1899 
1900 	return 0;
1901 }
1902 
1903 #ifdef CONFIG_OF
1904 static const struct of_device_id gpmc_dt_ids[] = {
1905 	{ .compatible = "ti,omap2420-gpmc" },
1906 	{ .compatible = "ti,omap2430-gpmc" },
1907 	{ .compatible = "ti,omap3430-gpmc" },	/* omap3430 & omap3630 */
1908 	{ .compatible = "ti,omap4430-gpmc" },	/* omap4430 & omap4460 & omap543x */
1909 	{ .compatible = "ti,am3352-gpmc" },	/* am335x devices */
1910 	{ }
1911 };
1912 
1913 /**
1914  * gpmc_read_settings_dt - read gpmc settings from device-tree
1915  * @np:		pointer to device-tree node for a gpmc child device
1916  * @p:		pointer to gpmc settings structure
1917  *
1918  * Reads the GPMC settings for a GPMC child device from device-tree and
1919  * stores them in the GPMC settings structure passed. The GPMC settings
1920  * structure is initialised to zero by this function and so any
1921  * previously stored settings will be cleared.
1922  */
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)1923 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
1924 {
1925 	memset(p, 0, sizeof(struct gpmc_settings));
1926 
1927 	p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
1928 	p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
1929 	of_property_read_u32(np, "gpmc,device-width", &p->device_width);
1930 	of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
1931 
1932 	if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
1933 		p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
1934 		p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
1935 		p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
1936 		if (!p->burst_read && !p->burst_write)
1937 			pr_warn("%s: page/burst-length set but not used!\n",
1938 				__func__);
1939 	}
1940 
1941 	if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
1942 		p->wait_on_read = of_property_read_bool(np,
1943 							"gpmc,wait-on-read");
1944 		p->wait_on_write = of_property_read_bool(np,
1945 							 "gpmc,wait-on-write");
1946 		if (!p->wait_on_read && !p->wait_on_write)
1947 			pr_debug("%s: rd/wr wait monitoring not enabled!\n",
1948 				 __func__);
1949 	}
1950 }
1951 
gpmc_read_timings_dt(struct device_node * np,struct gpmc_timings * gpmc_t)1952 static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
1953 						struct gpmc_timings *gpmc_t)
1954 {
1955 	struct gpmc_bool_timings *p;
1956 
1957 	if (!np || !gpmc_t)
1958 		return;
1959 
1960 	memset(gpmc_t, 0, sizeof(*gpmc_t));
1961 
1962 	/* minimum clock period for syncronous mode */
1963 	of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
1964 
1965 	/* chip select timtings */
1966 	of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
1967 	of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
1968 	of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
1969 
1970 	/* ADV signal timings */
1971 	of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
1972 	of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
1973 	of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
1974 	of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
1975 			     &gpmc_t->adv_aad_mux_on);
1976 	of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
1977 			     &gpmc_t->adv_aad_mux_rd_off);
1978 	of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
1979 			     &gpmc_t->adv_aad_mux_wr_off);
1980 
1981 	/* WE signal timings */
1982 	of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
1983 	of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
1984 
1985 	/* OE signal timings */
1986 	of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
1987 	of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
1988 	of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
1989 			     &gpmc_t->oe_aad_mux_on);
1990 	of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
1991 			     &gpmc_t->oe_aad_mux_off);
1992 
1993 	/* access and cycle timings */
1994 	of_property_read_u32(np, "gpmc,page-burst-access-ns",
1995 			     &gpmc_t->page_burst_access);
1996 	of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
1997 	of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
1998 	of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
1999 	of_property_read_u32(np, "gpmc,bus-turnaround-ns",
2000 			     &gpmc_t->bus_turnaround);
2001 	of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
2002 			     &gpmc_t->cycle2cycle_delay);
2003 	of_property_read_u32(np, "gpmc,wait-monitoring-ns",
2004 			     &gpmc_t->wait_monitoring);
2005 	of_property_read_u32(np, "gpmc,clk-activation-ns",
2006 			     &gpmc_t->clk_activation);
2007 
2008 	/* only applicable to OMAP3+ */
2009 	of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
2010 	of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
2011 			     &gpmc_t->wr_data_mux_bus);
2012 
2013 	/* bool timing parameters */
2014 	p = &gpmc_t->bool_timings;
2015 
2016 	p->cycle2cyclediffcsen =
2017 		of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
2018 	p->cycle2cyclesamecsen =
2019 		of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
2020 	p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
2021 	p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
2022 	p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
2023 	p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
2024 	p->time_para_granularity =
2025 		of_property_read_bool(np, "gpmc,time-para-granularity");
2026 }
2027 
2028 /**
2029  * gpmc_probe_generic_child - configures the gpmc for a child device
2030  * @pdev:	pointer to gpmc platform device
2031  * @child:	pointer to device-tree node for child device
2032  *
2033  * Allocates and configures a GPMC chip-select for a child device.
2034  * Returns 0 on success and appropriate negative error code on failure.
2035  */
gpmc_probe_generic_child(struct platform_device * pdev,struct device_node * child)2036 static int gpmc_probe_generic_child(struct platform_device *pdev,
2037 				struct device_node *child)
2038 {
2039 	struct gpmc_settings gpmc_s;
2040 	struct gpmc_timings gpmc_t;
2041 	struct resource res;
2042 	unsigned long base;
2043 	const char *name;
2044 	int ret, cs;
2045 	u32 val;
2046 	struct gpio_desc *waitpin_desc = NULL;
2047 	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2048 
2049 	if (of_property_read_u32(child, "reg", &cs) < 0) {
2050 		dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
2051 			child);
2052 		return -ENODEV;
2053 	}
2054 
2055 	if (of_address_to_resource(child, 0, &res) < 0) {
2056 		dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
2057 			child);
2058 		return -ENODEV;
2059 	}
2060 
2061 	/*
2062 	 * Check if we have multiple instances of the same device
2063 	 * on a single chip select. If so, use the already initialized
2064 	 * timings.
2065 	 */
2066 	name = gpmc_cs_get_name(cs);
2067 	if (name && of_node_cmp(child->name, name) == 0)
2068 		goto no_timings;
2069 
2070 	ret = gpmc_cs_request(cs, resource_size(&res), &base);
2071 	if (ret < 0) {
2072 		dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
2073 		return ret;
2074 	}
2075 	gpmc_cs_set_name(cs, child->name);
2076 
2077 	gpmc_read_settings_dt(child, &gpmc_s);
2078 	gpmc_read_timings_dt(child, &gpmc_t);
2079 
2080 	/*
2081 	 * For some GPMC devices we still need to rely on the bootloader
2082 	 * timings because the devices can be connected via FPGA.
2083 	 * REVISIT: Add timing support from slls644g.pdf.
2084 	 */
2085 	if (!gpmc_t.cs_rd_off) {
2086 		WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
2087 			cs);
2088 		gpmc_cs_show_timings(cs,
2089 				     "please add GPMC bootloader timings to .dts");
2090 		goto no_timings;
2091 	}
2092 
2093 	/* CS must be disabled while making changes to gpmc configuration */
2094 	gpmc_cs_disable_mem(cs);
2095 
2096 	/*
2097 	 * FIXME: gpmc_cs_request() will map the CS to an arbitary
2098 	 * location in the gpmc address space. When booting with
2099 	 * device-tree we want the NOR flash to be mapped to the
2100 	 * location specified in the device-tree blob. So remap the
2101 	 * CS to this location. Once DT migration is complete should
2102 	 * just make gpmc_cs_request() map a specific address.
2103 	 */
2104 	ret = gpmc_cs_remap(cs, res.start);
2105 	if (ret < 0) {
2106 		dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
2107 			cs, &res.start);
2108 		if (res.start < GPMC_MEM_START) {
2109 			dev_info(&pdev->dev,
2110 				 "GPMC CS %d start cannot be lesser than 0x%x\n",
2111 				 cs, GPMC_MEM_START);
2112 		} else if (res.end > GPMC_MEM_END) {
2113 			dev_info(&pdev->dev,
2114 				 "GPMC CS %d end cannot be greater than 0x%x\n",
2115 				 cs, GPMC_MEM_END);
2116 		}
2117 		goto err;
2118 	}
2119 
2120 	if (of_node_cmp(child->name, "nand") == 0) {
2121 		/* Warn about older DT blobs with no compatible property */
2122 		if (!of_property_read_bool(child, "compatible")) {
2123 			dev_warn(&pdev->dev,
2124 				 "Incompatible NAND node: missing compatible");
2125 			ret = -EINVAL;
2126 			goto err;
2127 		}
2128 	}
2129 
2130 	if (of_node_cmp(child->name, "onenand") == 0) {
2131 		/* Warn about older DT blobs with no compatible property */
2132 		if (!of_property_read_bool(child, "compatible")) {
2133 			dev_warn(&pdev->dev,
2134 				 "Incompatible OneNAND node: missing compatible");
2135 			ret = -EINVAL;
2136 			goto err;
2137 		}
2138 	}
2139 
2140 	if (of_device_is_compatible(child, "ti,omap2-nand")) {
2141 		/* NAND specific setup */
2142 		val = 8;
2143 		of_property_read_u32(child, "nand-bus-width", &val);
2144 		switch (val) {
2145 		case 8:
2146 			gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
2147 			break;
2148 		case 16:
2149 			gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
2150 			break;
2151 		default:
2152 			dev_err(&pdev->dev, "%s: invalid 'nand-bus-width'\n",
2153 				child->name);
2154 			ret = -EINVAL;
2155 			goto err;
2156 		}
2157 
2158 		/* disable write protect */
2159 		gpmc_configure(GPMC_CONFIG_WP, 0);
2160 		gpmc_s.device_nand = true;
2161 	} else {
2162 		ret = of_property_read_u32(child, "bank-width",
2163 					   &gpmc_s.device_width);
2164 		if (ret < 0 && !gpmc_s.device_width) {
2165 			dev_err(&pdev->dev,
2166 				"%pOF has no 'gpmc,device-width' property\n",
2167 				child);
2168 			goto err;
2169 		}
2170 	}
2171 
2172 	/* Reserve wait pin if it is required and valid */
2173 	if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
2174 		unsigned int wait_pin = gpmc_s.wait_pin;
2175 
2176 		waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
2177 							 wait_pin, "WAITPIN");
2178 		if (IS_ERR(waitpin_desc)) {
2179 			dev_err(&pdev->dev, "invalid wait-pin: %d\n", wait_pin);
2180 			ret = PTR_ERR(waitpin_desc);
2181 			goto err;
2182 		}
2183 	}
2184 
2185 	gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
2186 
2187 	ret = gpmc_cs_program_settings(cs, &gpmc_s);
2188 	if (ret < 0)
2189 		goto err_cs;
2190 
2191 	ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
2192 	if (ret) {
2193 		dev_err(&pdev->dev, "failed to set gpmc timings for: %s\n",
2194 			child->name);
2195 		goto err_cs;
2196 	}
2197 
2198 	/* Clear limited address i.e. enable A26-A11 */
2199 	val = gpmc_read_reg(GPMC_CONFIG);
2200 	val &= ~GPMC_CONFIG_LIMITEDADDRESS;
2201 	gpmc_write_reg(GPMC_CONFIG, val);
2202 
2203 	/* Enable CS region */
2204 	gpmc_cs_enable_mem(cs);
2205 
2206 no_timings:
2207 
2208 	/* create platform device, NULL on error or when disabled */
2209 	if (!of_platform_device_create(child, NULL, &pdev->dev))
2210 		goto err_child_fail;
2211 
2212 	/* is child a common bus? */
2213 	if (of_match_node(of_default_bus_match_table, child))
2214 		/* create children and other common bus children */
2215 		if (of_platform_default_populate(child, NULL, &pdev->dev))
2216 			goto err_child_fail;
2217 
2218 	return 0;
2219 
2220 err_child_fail:
2221 
2222 	dev_err(&pdev->dev, "failed to create gpmc child %s\n", child->name);
2223 	ret = -ENODEV;
2224 
2225 err_cs:
2226 	gpiochip_free_own_desc(waitpin_desc);
2227 err:
2228 	gpmc_cs_free(cs);
2229 
2230 	return ret;
2231 }
2232 
gpmc_probe_dt(struct platform_device * pdev)2233 static int gpmc_probe_dt(struct platform_device *pdev)
2234 {
2235 	int ret;
2236 	const struct of_device_id *of_id =
2237 		of_match_device(gpmc_dt_ids, &pdev->dev);
2238 
2239 	if (!of_id)
2240 		return 0;
2241 
2242 	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
2243 				   &gpmc_cs_num);
2244 	if (ret < 0) {
2245 		pr_err("%s: number of chip-selects not defined\n", __func__);
2246 		return ret;
2247 	} else if (gpmc_cs_num < 1) {
2248 		pr_err("%s: all chip-selects are disabled\n", __func__);
2249 		return -EINVAL;
2250 	} else if (gpmc_cs_num > GPMC_CS_NUM) {
2251 		pr_err("%s: number of supported chip-selects cannot be > %d\n",
2252 					 __func__, GPMC_CS_NUM);
2253 		return -EINVAL;
2254 	}
2255 
2256 	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
2257 				   &gpmc_nr_waitpins);
2258 	if (ret < 0) {
2259 		pr_err("%s: number of wait pins not found!\n", __func__);
2260 		return ret;
2261 	}
2262 
2263 	return 0;
2264 }
2265 
gpmc_probe_dt_children(struct platform_device * pdev)2266 static void gpmc_probe_dt_children(struct platform_device *pdev)
2267 {
2268 	int ret;
2269 	struct device_node *child;
2270 
2271 	for_each_available_child_of_node(pdev->dev.of_node, child) {
2272 
2273 		if (!child->name)
2274 			continue;
2275 
2276 		ret = gpmc_probe_generic_child(pdev, child);
2277 		if (ret) {
2278 			dev_err(&pdev->dev, "failed to probe DT child '%s': %d\n",
2279 				child->name, ret);
2280 		}
2281 	}
2282 }
2283 #else
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2284 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2285 {
2286 	memset(p, 0, sizeof(*p));
2287 }
gpmc_probe_dt(struct platform_device * pdev)2288 static int gpmc_probe_dt(struct platform_device *pdev)
2289 {
2290 	return 0;
2291 }
2292 
gpmc_probe_dt_children(struct platform_device * pdev)2293 static void gpmc_probe_dt_children(struct platform_device *pdev)
2294 {
2295 }
2296 #endif /* CONFIG_OF */
2297 
gpmc_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)2298 static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
2299 {
2300 	return 1;	/* we're input only */
2301 }
2302 
gpmc_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)2303 static int gpmc_gpio_direction_input(struct gpio_chip *chip,
2304 				     unsigned int offset)
2305 {
2306 	return 0;	/* we're input only */
2307 }
2308 
gpmc_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int value)2309 static int gpmc_gpio_direction_output(struct gpio_chip *chip,
2310 				      unsigned int offset, int value)
2311 {
2312 	return -EINVAL;	/* we're input only */
2313 }
2314 
gpmc_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)2315 static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
2316 			  int value)
2317 {
2318 }
2319 
gpmc_gpio_get(struct gpio_chip * chip,unsigned int offset)2320 static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
2321 {
2322 	u32 reg;
2323 
2324 	offset += 8;
2325 
2326 	reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
2327 
2328 	return !!reg;
2329 }
2330 
gpmc_gpio_init(struct gpmc_device * gpmc)2331 static int gpmc_gpio_init(struct gpmc_device *gpmc)
2332 {
2333 	int ret;
2334 
2335 	gpmc->gpio_chip.parent = gpmc->dev;
2336 	gpmc->gpio_chip.owner = THIS_MODULE;
2337 	gpmc->gpio_chip.label = DEVICE_NAME;
2338 	gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
2339 	gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
2340 	gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
2341 	gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
2342 	gpmc->gpio_chip.set = gpmc_gpio_set;
2343 	gpmc->gpio_chip.get = gpmc_gpio_get;
2344 	gpmc->gpio_chip.base = -1;
2345 
2346 	ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
2347 	if (ret < 0) {
2348 		dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
2349 		return ret;
2350 	}
2351 
2352 	return 0;
2353 }
2354 
gpmc_probe(struct platform_device * pdev)2355 static int gpmc_probe(struct platform_device *pdev)
2356 {
2357 	int rc;
2358 	u32 l;
2359 	struct resource *res;
2360 	struct gpmc_device *gpmc;
2361 
2362 	gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
2363 	if (!gpmc)
2364 		return -ENOMEM;
2365 
2366 	gpmc->dev = &pdev->dev;
2367 	platform_set_drvdata(pdev, gpmc);
2368 
2369 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2370 	if (res == NULL)
2371 		return -ENOENT;
2372 
2373 	phys_base = res->start;
2374 	mem_size = resource_size(res);
2375 
2376 	gpmc_base = devm_ioremap_resource(&pdev->dev, res);
2377 	if (IS_ERR(gpmc_base))
2378 		return PTR_ERR(gpmc_base);
2379 
2380 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2381 	if (!res) {
2382 		dev_err(&pdev->dev, "Failed to get resource: irq\n");
2383 		return -ENOENT;
2384 	}
2385 
2386 	gpmc->irq = res->start;
2387 
2388 	gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2389 	if (IS_ERR(gpmc_l3_clk)) {
2390 		dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2391 		return PTR_ERR(gpmc_l3_clk);
2392 	}
2393 
2394 	if (!clk_get_rate(gpmc_l3_clk)) {
2395 		dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
2396 		return -EINVAL;
2397 	}
2398 
2399 	if (pdev->dev.of_node) {
2400 		rc = gpmc_probe_dt(pdev);
2401 		if (rc)
2402 			return rc;
2403 	} else {
2404 		gpmc_cs_num = GPMC_CS_NUM;
2405 		gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2406 	}
2407 
2408 	pm_runtime_enable(&pdev->dev);
2409 	pm_runtime_get_sync(&pdev->dev);
2410 
2411 	l = gpmc_read_reg(GPMC_REVISION);
2412 
2413 	/*
2414 	 * FIXME: Once device-tree migration is complete the below flags
2415 	 * should be populated based upon the device-tree compatible
2416 	 * string. For now just use the IP revision. OMAP3+ devices have
2417 	 * the wr_access and wr_data_mux_bus register fields. OMAP4+
2418 	 * devices support the addr-addr-data multiplex protocol.
2419 	 *
2420 	 * GPMC IP revisions:
2421 	 * - OMAP24xx			= 2.0
2422 	 * - OMAP3xxx			= 5.0
2423 	 * - OMAP44xx/54xx/AM335x	= 6.0
2424 	 */
2425 	if (GPMC_REVISION_MAJOR(l) > 0x4)
2426 		gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2427 	if (GPMC_REVISION_MAJOR(l) > 0x5)
2428 		gpmc_capability |= GPMC_HAS_MUX_AAD;
2429 	dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
2430 		 GPMC_REVISION_MINOR(l));
2431 
2432 	gpmc_mem_init();
2433 	rc = gpmc_gpio_init(gpmc);
2434 	if (rc)
2435 		goto gpio_init_failed;
2436 
2437 	gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
2438 	rc = gpmc_setup_irq(gpmc);
2439 	if (rc) {
2440 		dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
2441 		goto gpio_init_failed;
2442 	}
2443 
2444 	gpmc_probe_dt_children(pdev);
2445 
2446 	return 0;
2447 
2448 gpio_init_failed:
2449 	gpmc_mem_exit();
2450 	pm_runtime_put_sync(&pdev->dev);
2451 	pm_runtime_disable(&pdev->dev);
2452 
2453 	return rc;
2454 }
2455 
gpmc_remove(struct platform_device * pdev)2456 static int gpmc_remove(struct platform_device *pdev)
2457 {
2458 	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2459 
2460 	gpmc_free_irq(gpmc);
2461 	gpmc_mem_exit();
2462 	pm_runtime_put_sync(&pdev->dev);
2463 	pm_runtime_disable(&pdev->dev);
2464 
2465 	return 0;
2466 }
2467 
2468 #ifdef CONFIG_PM_SLEEP
gpmc_suspend(struct device * dev)2469 static int gpmc_suspend(struct device *dev)
2470 {
2471 	omap3_gpmc_save_context();
2472 	pm_runtime_put_sync(dev);
2473 	return 0;
2474 }
2475 
gpmc_resume(struct device * dev)2476 static int gpmc_resume(struct device *dev)
2477 {
2478 	pm_runtime_get_sync(dev);
2479 	omap3_gpmc_restore_context();
2480 	return 0;
2481 }
2482 #endif
2483 
2484 static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
2485 
2486 static struct platform_driver gpmc_driver = {
2487 	.probe		= gpmc_probe,
2488 	.remove		= gpmc_remove,
2489 	.driver		= {
2490 		.name	= DEVICE_NAME,
2491 		.of_match_table = of_match_ptr(gpmc_dt_ids),
2492 		.pm	= &gpmc_pm_ops,
2493 	},
2494 };
2495 
gpmc_init(void)2496 static __init int gpmc_init(void)
2497 {
2498 	return platform_driver_register(&gpmc_driver);
2499 }
2500 postcore_initcall(gpmc_init);
2501 
2502 static struct omap3_gpmc_regs gpmc_context;
2503 
omap3_gpmc_save_context(void)2504 void omap3_gpmc_save_context(void)
2505 {
2506 	int i;
2507 
2508 	if (!gpmc_base)
2509 		return;
2510 
2511 	gpmc_context.sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
2512 	gpmc_context.irqenable = gpmc_read_reg(GPMC_IRQENABLE);
2513 	gpmc_context.timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
2514 	gpmc_context.config = gpmc_read_reg(GPMC_CONFIG);
2515 	gpmc_context.prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
2516 	gpmc_context.prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
2517 	gpmc_context.prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2518 	for (i = 0; i < gpmc_cs_num; i++) {
2519 		gpmc_context.cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
2520 		if (gpmc_context.cs_context[i].is_valid) {
2521 			gpmc_context.cs_context[i].config1 =
2522 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
2523 			gpmc_context.cs_context[i].config2 =
2524 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
2525 			gpmc_context.cs_context[i].config3 =
2526 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
2527 			gpmc_context.cs_context[i].config4 =
2528 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
2529 			gpmc_context.cs_context[i].config5 =
2530 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
2531 			gpmc_context.cs_context[i].config6 =
2532 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
2533 			gpmc_context.cs_context[i].config7 =
2534 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
2535 		}
2536 	}
2537 }
2538 
omap3_gpmc_restore_context(void)2539 void omap3_gpmc_restore_context(void)
2540 {
2541 	int i;
2542 
2543 	if (!gpmc_base)
2544 		return;
2545 
2546 	gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context.sysconfig);
2547 	gpmc_write_reg(GPMC_IRQENABLE, gpmc_context.irqenable);
2548 	gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context.timeout_ctrl);
2549 	gpmc_write_reg(GPMC_CONFIG, gpmc_context.config);
2550 	gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context.prefetch_config1);
2551 	gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context.prefetch_config2);
2552 	gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context.prefetch_control);
2553 	for (i = 0; i < gpmc_cs_num; i++) {
2554 		if (gpmc_context.cs_context[i].is_valid) {
2555 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
2556 				gpmc_context.cs_context[i].config1);
2557 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
2558 				gpmc_context.cs_context[i].config2);
2559 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
2560 				gpmc_context.cs_context[i].config3);
2561 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
2562 				gpmc_context.cs_context[i].config4);
2563 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
2564 				gpmc_context.cs_context[i].config5);
2565 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
2566 				gpmc_context.cs_context[i].config6);
2567 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
2568 				gpmc_context.cs_context[i].config7);
2569 		}
2570 	}
2571 }
2572