1 /*
2 * Copyright (C) 2009 ST-Ericsson SA
3 * Copyright (C) 2009 STMicroelectronics
4 *
5 * I2C master mode controller driver, used in Nomadik 8815
6 * and Ux500 platforms.
7 *
8 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9 * Author: Sachin Verma <sachin.verma@st.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2, as
13 * published by the Free Software Foundation.
14 */
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/amba/bus.h>
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/i2c.h>
21 #include <linux/err.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/of.h>
26 #include <linux/pinctrl/consumer.h>
27
28 #define DRIVER_NAME "nmk-i2c"
29
30 /* I2C Controller register offsets */
31 #define I2C_CR (0x000)
32 #define I2C_SCR (0x004)
33 #define I2C_HSMCR (0x008)
34 #define I2C_MCR (0x00C)
35 #define I2C_TFR (0x010)
36 #define I2C_SR (0x014)
37 #define I2C_RFR (0x018)
38 #define I2C_TFTR (0x01C)
39 #define I2C_RFTR (0x020)
40 #define I2C_DMAR (0x024)
41 #define I2C_BRCR (0x028)
42 #define I2C_IMSCR (0x02C)
43 #define I2C_RISR (0x030)
44 #define I2C_MISR (0x034)
45 #define I2C_ICR (0x038)
46
47 /* Control registers */
48 #define I2C_CR_PE (0x1 << 0) /* Peripheral Enable */
49 #define I2C_CR_OM (0x3 << 1) /* Operating mode */
50 #define I2C_CR_SAM (0x1 << 3) /* Slave addressing mode */
51 #define I2C_CR_SM (0x3 << 4) /* Speed mode */
52 #define I2C_CR_SGCM (0x1 << 6) /* Slave general call mode */
53 #define I2C_CR_FTX (0x1 << 7) /* Flush Transmit */
54 #define I2C_CR_FRX (0x1 << 8) /* Flush Receive */
55 #define I2C_CR_DMA_TX_EN (0x1 << 9) /* DMA Tx enable */
56 #define I2C_CR_DMA_RX_EN (0x1 << 10) /* DMA Rx Enable */
57 #define I2C_CR_DMA_SLE (0x1 << 11) /* DMA sync. logic enable */
58 #define I2C_CR_LM (0x1 << 12) /* Loopback mode */
59 #define I2C_CR_FON (0x3 << 13) /* Filtering on */
60 #define I2C_CR_FS (0x3 << 15) /* Force stop enable */
61
62 /* Master controller (MCR) register */
63 #define I2C_MCR_OP (0x1 << 0) /* Operation */
64 #define I2C_MCR_A7 (0x7f << 1) /* 7-bit address */
65 #define I2C_MCR_EA10 (0x7 << 8) /* 10-bit Extended address */
66 #define I2C_MCR_SB (0x1 << 11) /* Extended address */
67 #define I2C_MCR_AM (0x3 << 12) /* Address type */
68 #define I2C_MCR_STOP (0x1 << 14) /* Stop condition */
69 #define I2C_MCR_LENGTH (0x7ff << 15) /* Transaction length */
70
71 /* Status register (SR) */
72 #define I2C_SR_OP (0x3 << 0) /* Operation */
73 #define I2C_SR_STATUS (0x3 << 2) /* controller status */
74 #define I2C_SR_CAUSE (0x7 << 4) /* Abort cause */
75 #define I2C_SR_TYPE (0x3 << 7) /* Receive type */
76 #define I2C_SR_LENGTH (0x7ff << 9) /* Transfer length */
77
78 /* Interrupt mask set/clear (IMSCR) bits */
79 #define I2C_IT_TXFE (0x1 << 0)
80 #define I2C_IT_TXFNE (0x1 << 1)
81 #define I2C_IT_TXFF (0x1 << 2)
82 #define I2C_IT_TXFOVR (0x1 << 3)
83 #define I2C_IT_RXFE (0x1 << 4)
84 #define I2C_IT_RXFNF (0x1 << 5)
85 #define I2C_IT_RXFF (0x1 << 6)
86 #define I2C_IT_RFSR (0x1 << 16)
87 #define I2C_IT_RFSE (0x1 << 17)
88 #define I2C_IT_WTSR (0x1 << 18)
89 #define I2C_IT_MTD (0x1 << 19)
90 #define I2C_IT_STD (0x1 << 20)
91 #define I2C_IT_MAL (0x1 << 24)
92 #define I2C_IT_BERR (0x1 << 25)
93 #define I2C_IT_MTDWS (0x1 << 28)
94
95 #define GEN_MASK(val, mask, sb) (((val) << (sb)) & (mask))
96
97 /* some bits in ICR are reserved */
98 #define I2C_CLEAR_ALL_INTS 0x131f007f
99
100 /* first three msb bits are reserved */
101 #define IRQ_MASK(mask) (mask & 0x1fffffff)
102
103 /* maximum threshold value */
104 #define MAX_I2C_FIFO_THRESHOLD 15
105
106 enum i2c_freq_mode {
107 I2C_FREQ_MODE_STANDARD, /* up to 100 Kb/s */
108 I2C_FREQ_MODE_FAST, /* up to 400 Kb/s */
109 I2C_FREQ_MODE_HIGH_SPEED, /* up to 3.4 Mb/s */
110 I2C_FREQ_MODE_FAST_PLUS, /* up to 1 Mb/s */
111 };
112
113 /**
114 * struct i2c_vendor_data - per-vendor variations
115 * @has_mtdws: variant has the MTDWS bit
116 * @fifodepth: variant FIFO depth
117 */
118 struct i2c_vendor_data {
119 bool has_mtdws;
120 u32 fifodepth;
121 };
122
123 enum i2c_status {
124 I2C_NOP,
125 I2C_ON_GOING,
126 I2C_OK,
127 I2C_ABORT
128 };
129
130 /* operation */
131 enum i2c_operation {
132 I2C_NO_OPERATION = 0xff,
133 I2C_WRITE = 0x00,
134 I2C_READ = 0x01
135 };
136
137 /**
138 * struct i2c_nmk_client - client specific data
139 * @slave_adr: 7-bit slave address
140 * @count: no. bytes to be transferred
141 * @buffer: client data buffer
142 * @xfer_bytes: bytes transferred till now
143 * @operation: current I2C operation
144 */
145 struct i2c_nmk_client {
146 unsigned short slave_adr;
147 unsigned long count;
148 unsigned char *buffer;
149 unsigned long xfer_bytes;
150 enum i2c_operation operation;
151 };
152
153 /**
154 * struct nmk_i2c_dev - private data structure of the controller.
155 * @vendor: vendor data for this variant.
156 * @adev: parent amba device.
157 * @adap: corresponding I2C adapter.
158 * @irq: interrupt line for the controller.
159 * @virtbase: virtual io memory area.
160 * @clk: hardware i2c block clock.
161 * @cli: holder of client specific data.
162 * @clk_freq: clock frequency for the operation mode
163 * @tft: Tx FIFO Threshold in bytes
164 * @rft: Rx FIFO Threshold in bytes
165 * @timeout Slave response timeout (ms)
166 * @sm: speed mode
167 * @stop: stop condition.
168 * @xfer_complete: acknowledge completion for a I2C message.
169 * @result: controller propogated result.
170 */
171 struct nmk_i2c_dev {
172 struct i2c_vendor_data *vendor;
173 struct amba_device *adev;
174 struct i2c_adapter adap;
175 int irq;
176 void __iomem *virtbase;
177 struct clk *clk;
178 struct i2c_nmk_client cli;
179 u32 clk_freq;
180 unsigned char tft;
181 unsigned char rft;
182 int timeout;
183 enum i2c_freq_mode sm;
184 int stop;
185 struct completion xfer_complete;
186 int result;
187 };
188
189 /* controller's abort causes */
190 static const char *abort_causes[] = {
191 "no ack received after address transmission",
192 "no ack received during data phase",
193 "ack received after xmission of master code",
194 "master lost arbitration",
195 "slave restarts",
196 "slave reset",
197 "overflow, maxsize is 2047 bytes",
198 };
199
i2c_set_bit(void __iomem * reg,u32 mask)200 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
201 {
202 writel(readl(reg) | mask, reg);
203 }
204
i2c_clr_bit(void __iomem * reg,u32 mask)205 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
206 {
207 writel(readl(reg) & ~mask, reg);
208 }
209
210 /**
211 * flush_i2c_fifo() - This function flushes the I2C FIFO
212 * @dev: private data of I2C Driver
213 *
214 * This function flushes the I2C Tx and Rx FIFOs. It returns
215 * 0 on successful flushing of FIFO
216 */
flush_i2c_fifo(struct nmk_i2c_dev * dev)217 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
218 {
219 #define LOOP_ATTEMPTS 10
220 int i;
221 unsigned long timeout;
222
223 /*
224 * flush the transmit and receive FIFO. The flushing
225 * operation takes several cycles before to be completed.
226 * On the completion, the I2C internal logic clears these
227 * bits, until then no one must access Tx, Rx FIFO and
228 * should poll on these bits waiting for the completion.
229 */
230 writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
231
232 for (i = 0; i < LOOP_ATTEMPTS; i++) {
233 timeout = jiffies + dev->adap.timeout;
234
235 while (!time_after(jiffies, timeout)) {
236 if ((readl(dev->virtbase + I2C_CR) &
237 (I2C_CR_FTX | I2C_CR_FRX)) == 0)
238 return 0;
239 }
240 }
241
242 dev_err(&dev->adev->dev,
243 "flushing operation timed out giving up after %d attempts",
244 LOOP_ATTEMPTS);
245
246 return -ETIMEDOUT;
247 }
248
249 /**
250 * disable_all_interrupts() - Disable all interrupts of this I2c Bus
251 * @dev: private data of I2C Driver
252 */
disable_all_interrupts(struct nmk_i2c_dev * dev)253 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
254 {
255 u32 mask = IRQ_MASK(0);
256 writel(mask, dev->virtbase + I2C_IMSCR);
257 }
258
259 /**
260 * clear_all_interrupts() - Clear all interrupts of I2C Controller
261 * @dev: private data of I2C Driver
262 */
clear_all_interrupts(struct nmk_i2c_dev * dev)263 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
264 {
265 u32 mask;
266 mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
267 writel(mask, dev->virtbase + I2C_ICR);
268 }
269
270 /**
271 * init_hw() - initialize the I2C hardware
272 * @dev: private data of I2C Driver
273 */
init_hw(struct nmk_i2c_dev * dev)274 static int init_hw(struct nmk_i2c_dev *dev)
275 {
276 int stat;
277
278 stat = flush_i2c_fifo(dev);
279 if (stat)
280 goto exit;
281
282 /* disable the controller */
283 i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
284
285 disable_all_interrupts(dev);
286
287 clear_all_interrupts(dev);
288
289 dev->cli.operation = I2C_NO_OPERATION;
290
291 exit:
292 return stat;
293 }
294
295 /* enable peripheral, master mode operation */
296 #define DEFAULT_I2C_REG_CR ((1 << 1) | I2C_CR_PE)
297
298 /**
299 * load_i2c_mcr_reg() - load the MCR register
300 * @dev: private data of controller
301 * @flags: message flags
302 */
load_i2c_mcr_reg(struct nmk_i2c_dev * dev,u16 flags)303 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
304 {
305 u32 mcr = 0;
306 unsigned short slave_adr_3msb_bits;
307
308 mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
309
310 if (unlikely(flags & I2C_M_TEN)) {
311 /* 10-bit address transaction */
312 mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
313 /*
314 * Get the top 3 bits.
315 * EA10 represents extended address in MCR. This includes
316 * the extension (MSB bits) of the 7 bit address loaded
317 * in A7
318 */
319 slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
320
321 mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
322 } else {
323 /* 7-bit address transaction */
324 mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
325 }
326
327 /* start byte procedure not applied */
328 mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
329
330 /* check the operation, master read/write? */
331 if (dev->cli.operation == I2C_WRITE)
332 mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
333 else
334 mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
335
336 /* stop or repeated start? */
337 if (dev->stop)
338 mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
339 else
340 mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
341
342 mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
343
344 return mcr;
345 }
346
347 /**
348 * setup_i2c_controller() - setup the controller
349 * @dev: private data of controller
350 */
setup_i2c_controller(struct nmk_i2c_dev * dev)351 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
352 {
353 u32 brcr1, brcr2;
354 u32 i2c_clk, div;
355 u32 ns;
356 u16 slsu;
357
358 writel(0x0, dev->virtbase + I2C_CR);
359 writel(0x0, dev->virtbase + I2C_HSMCR);
360 writel(0x0, dev->virtbase + I2C_TFTR);
361 writel(0x0, dev->virtbase + I2C_RFTR);
362 writel(0x0, dev->virtbase + I2C_DMAR);
363
364 i2c_clk = clk_get_rate(dev->clk);
365
366 /*
367 * set the slsu:
368 *
369 * slsu defines the data setup time after SCL clock
370 * stretching in terms of i2c clk cycles + 1 (zero means
371 * "wait one cycle"), the needed setup time for the three
372 * modes are 250ns, 100ns, 10ns respectively.
373 *
374 * As the time for one cycle T in nanoseconds is
375 * T = (1/f) * 1000000000 =>
376 * slsu = cycles / (1000000000 / f) + 1
377 */
378 ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk);
379 switch (dev->sm) {
380 case I2C_FREQ_MODE_FAST:
381 case I2C_FREQ_MODE_FAST_PLUS:
382 slsu = DIV_ROUND_UP(100, ns); /* Fast */
383 break;
384 case I2C_FREQ_MODE_HIGH_SPEED:
385 slsu = DIV_ROUND_UP(10, ns); /* High */
386 break;
387 case I2C_FREQ_MODE_STANDARD:
388 default:
389 slsu = DIV_ROUND_UP(250, ns); /* Standard */
390 break;
391 }
392 slsu += 1;
393
394 dev_dbg(&dev->adev->dev, "calculated SLSU = %04x\n", slsu);
395 writel(slsu << 16, dev->virtbase + I2C_SCR);
396
397 /*
398 * The spec says, in case of std. mode the divider is
399 * 2 whereas it is 3 for fast and fastplus mode of
400 * operation. TODO - high speed support.
401 */
402 div = (dev->clk_freq > 100000) ? 3 : 2;
403
404 /*
405 * generate the mask for baud rate counters. The controller
406 * has two baud rate counters. One is used for High speed
407 * operation, and the other is for std, fast mode, fast mode
408 * plus operation. Currently we do not supprt high speed mode
409 * so set brcr1 to 0.
410 */
411 brcr1 = 0 << 16;
412 brcr2 = (i2c_clk/(dev->clk_freq * div)) & 0xffff;
413
414 /* set the baud rate counter register */
415 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
416
417 /*
418 * set the speed mode. Currently we support
419 * only standard and fast mode of operation
420 * TODO - support for fast mode plus (up to 1Mb/s)
421 * and high speed (up to 3.4 Mb/s)
422 */
423 if (dev->sm > I2C_FREQ_MODE_FAST) {
424 dev_err(&dev->adev->dev,
425 "do not support this mode defaulting to std. mode\n");
426 brcr2 = i2c_clk/(100000 * 2) & 0xffff;
427 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
428 writel(I2C_FREQ_MODE_STANDARD << 4,
429 dev->virtbase + I2C_CR);
430 }
431 writel(dev->sm << 4, dev->virtbase + I2C_CR);
432
433 /* set the Tx and Rx FIFO threshold */
434 writel(dev->tft, dev->virtbase + I2C_TFTR);
435 writel(dev->rft, dev->virtbase + I2C_RFTR);
436 }
437
438 /**
439 * read_i2c() - Read from I2C client device
440 * @dev: private data of I2C Driver
441 * @flags: message flags
442 *
443 * This function reads from i2c client device when controller is in
444 * master mode. There is a completion timeout. If there is no transfer
445 * before timeout error is returned.
446 */
read_i2c(struct nmk_i2c_dev * dev,u16 flags)447 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
448 {
449 int status = 0;
450 u32 mcr, irq_mask;
451 unsigned long timeout;
452
453 mcr = load_i2c_mcr_reg(dev, flags);
454 writel(mcr, dev->virtbase + I2C_MCR);
455
456 /* load the current CR value */
457 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
458 dev->virtbase + I2C_CR);
459
460 /* enable the controller */
461 i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
462
463 init_completion(&dev->xfer_complete);
464
465 /* enable interrupts by setting the mask */
466 irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
467 I2C_IT_MAL | I2C_IT_BERR);
468
469 if (dev->stop || !dev->vendor->has_mtdws)
470 irq_mask |= I2C_IT_MTD;
471 else
472 irq_mask |= I2C_IT_MTDWS;
473
474 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
475
476 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
477 dev->virtbase + I2C_IMSCR);
478
479 timeout = wait_for_completion_timeout(
480 &dev->xfer_complete, dev->adap.timeout);
481
482 if (timeout == 0) {
483 /* Controller timed out */
484 dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
485 dev->cli.slave_adr);
486 status = -ETIMEDOUT;
487 }
488 return status;
489 }
490
fill_tx_fifo(struct nmk_i2c_dev * dev,int no_bytes)491 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
492 {
493 int count;
494
495 for (count = (no_bytes - 2);
496 (count > 0) &&
497 (dev->cli.count != 0);
498 count--) {
499 /* write to the Tx FIFO */
500 writeb(*dev->cli.buffer,
501 dev->virtbase + I2C_TFR);
502 dev->cli.buffer++;
503 dev->cli.count--;
504 dev->cli.xfer_bytes++;
505 }
506
507 }
508
509 /**
510 * write_i2c() - Write data to I2C client.
511 * @dev: private data of I2C Driver
512 * @flags: message flags
513 *
514 * This function writes data to I2C client
515 */
write_i2c(struct nmk_i2c_dev * dev,u16 flags)516 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
517 {
518 u32 status = 0;
519 u32 mcr, irq_mask;
520 unsigned long timeout;
521
522 mcr = load_i2c_mcr_reg(dev, flags);
523
524 writel(mcr, dev->virtbase + I2C_MCR);
525
526 /* load the current CR value */
527 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
528 dev->virtbase + I2C_CR);
529
530 /* enable the controller */
531 i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
532
533 init_completion(&dev->xfer_complete);
534
535 /* enable interrupts by settings the masks */
536 irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
537
538 /* Fill the TX FIFO with transmit data */
539 fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
540
541 if (dev->cli.count != 0)
542 irq_mask |= I2C_IT_TXFNE;
543
544 /*
545 * check if we want to transfer a single or multiple bytes, if so
546 * set the MTDWS bit (Master Transaction Done Without Stop)
547 * to start repeated start operation
548 */
549 if (dev->stop || !dev->vendor->has_mtdws)
550 irq_mask |= I2C_IT_MTD;
551 else
552 irq_mask |= I2C_IT_MTDWS;
553
554 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
555
556 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
557 dev->virtbase + I2C_IMSCR);
558
559 timeout = wait_for_completion_timeout(
560 &dev->xfer_complete, dev->adap.timeout);
561
562 if (timeout == 0) {
563 /* Controller timed out */
564 dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
565 dev->cli.slave_adr);
566 status = -ETIMEDOUT;
567 }
568
569 return status;
570 }
571
572 /**
573 * nmk_i2c_xfer_one() - transmit a single I2C message
574 * @dev: device with a message encoded into it
575 * @flags: message flags
576 */
nmk_i2c_xfer_one(struct nmk_i2c_dev * dev,u16 flags)577 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
578 {
579 int status;
580
581 if (flags & I2C_M_RD) {
582 /* read operation */
583 dev->cli.operation = I2C_READ;
584 status = read_i2c(dev, flags);
585 } else {
586 /* write operation */
587 dev->cli.operation = I2C_WRITE;
588 status = write_i2c(dev, flags);
589 }
590
591 if (status || (dev->result)) {
592 u32 i2c_sr;
593 u32 cause;
594
595 i2c_sr = readl(dev->virtbase + I2C_SR);
596 /*
597 * Check if the controller I2C operation status
598 * is set to ABORT(11b).
599 */
600 if (((i2c_sr >> 2) & 0x3) == 0x3) {
601 /* get the abort cause */
602 cause = (i2c_sr >> 4) & 0x7;
603 dev_err(&dev->adev->dev, "%s\n",
604 cause >= ARRAY_SIZE(abort_causes) ?
605 "unknown reason" :
606 abort_causes[cause]);
607 }
608
609 (void) init_hw(dev);
610
611 status = status ? status : dev->result;
612 }
613
614 return status;
615 }
616
617 /**
618 * nmk_i2c_xfer() - I2C transfer function used by kernel framework
619 * @i2c_adap: Adapter pointer to the controller
620 * @msgs: Pointer to data to be written.
621 * @num_msgs: Number of messages to be executed
622 *
623 * This is the function called by the generic kernel i2c_transfer()
624 * or i2c_smbus...() API calls. Note that this code is protected by the
625 * semaphore set in the kernel i2c_transfer() function.
626 *
627 * NOTE:
628 * READ TRANSFER : We impose a restriction of the first message to be the
629 * index message for any read transaction.
630 * - a no index is coded as '0',
631 * - 2byte big endian index is coded as '3'
632 * !!! msg[0].buf holds the actual index.
633 * This is compatible with generic messages of smbus emulator
634 * that send a one byte index.
635 * eg. a I2C transation to read 2 bytes from index 0
636 * idx = 0;
637 * msg[0].addr = client->addr;
638 * msg[0].flags = 0x0;
639 * msg[0].len = 1;
640 * msg[0].buf = &idx;
641 *
642 * msg[1].addr = client->addr;
643 * msg[1].flags = I2C_M_RD;
644 * msg[1].len = 2;
645 * msg[1].buf = rd_buff
646 * i2c_transfer(adap, msg, 2);
647 *
648 * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
649 * If you want to emulate an SMBUS write transaction put the
650 * index as first byte(or first and second) in the payload.
651 * eg. a I2C transation to write 2 bytes from index 1
652 * wr_buff[0] = 0x1;
653 * wr_buff[1] = 0x23;
654 * wr_buff[2] = 0x46;
655 * msg[0].flags = 0x0;
656 * msg[0].len = 3;
657 * msg[0].buf = wr_buff;
658 * i2c_transfer(adap, msg, 1);
659 *
660 * To read or write a block of data (multiple bytes) using SMBUS emulation
661 * please use the i2c_smbus_read_i2c_block_data()
662 * or i2c_smbus_write_i2c_block_data() API
663 */
nmk_i2c_xfer(struct i2c_adapter * i2c_adap,struct i2c_msg msgs[],int num_msgs)664 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
665 struct i2c_msg msgs[], int num_msgs)
666 {
667 int status = 0;
668 int i;
669 struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
670 int j;
671
672 pm_runtime_get_sync(&dev->adev->dev);
673
674 /* Attempt three times to send the message queue */
675 for (j = 0; j < 3; j++) {
676 /* setup the i2c controller */
677 setup_i2c_controller(dev);
678
679 for (i = 0; i < num_msgs; i++) {
680 dev->cli.slave_adr = msgs[i].addr;
681 dev->cli.buffer = msgs[i].buf;
682 dev->cli.count = msgs[i].len;
683 dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
684 dev->result = 0;
685
686 status = nmk_i2c_xfer_one(dev, msgs[i].flags);
687 if (status != 0)
688 break;
689 }
690 if (status == 0)
691 break;
692 }
693
694 pm_runtime_put_sync(&dev->adev->dev);
695
696 /* return the no. messages processed */
697 if (status)
698 return status;
699 else
700 return num_msgs;
701 }
702
703 /**
704 * disable_interrupts() - disable the interrupts
705 * @dev: private data of controller
706 * @irq: interrupt number
707 */
disable_interrupts(struct nmk_i2c_dev * dev,u32 irq)708 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
709 {
710 irq = IRQ_MASK(irq);
711 writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
712 dev->virtbase + I2C_IMSCR);
713 return 0;
714 }
715
716 /**
717 * i2c_irq_handler() - interrupt routine
718 * @irq: interrupt number
719 * @arg: data passed to the handler
720 *
721 * This is the interrupt handler for the i2c driver. Currently
722 * it handles the major interrupts like Rx & Tx FIFO management
723 * interrupts, master transaction interrupts, arbitration and
724 * bus error interrupts. The rest of the interrupts are treated as
725 * unhandled.
726 */
i2c_irq_handler(int irq,void * arg)727 static irqreturn_t i2c_irq_handler(int irq, void *arg)
728 {
729 struct nmk_i2c_dev *dev = arg;
730 u32 tft, rft;
731 u32 count;
732 u32 misr, src;
733
734 /* load Tx FIFO and Rx FIFO threshold values */
735 tft = readl(dev->virtbase + I2C_TFTR);
736 rft = readl(dev->virtbase + I2C_RFTR);
737
738 /* read interrupt status register */
739 misr = readl(dev->virtbase + I2C_MISR);
740
741 src = __ffs(misr);
742 switch ((1 << src)) {
743
744 /* Transmit FIFO nearly empty interrupt */
745 case I2C_IT_TXFNE:
746 {
747 if (dev->cli.operation == I2C_READ) {
748 /*
749 * in read operation why do we care for writing?
750 * so disable the Transmit FIFO interrupt
751 */
752 disable_interrupts(dev, I2C_IT_TXFNE);
753 } else {
754 fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
755 /*
756 * if done, close the transfer by disabling the
757 * corresponding TXFNE interrupt
758 */
759 if (dev->cli.count == 0)
760 disable_interrupts(dev, I2C_IT_TXFNE);
761 }
762 }
763 break;
764
765 /*
766 * Rx FIFO nearly full interrupt.
767 * This is set when the numer of entries in Rx FIFO is
768 * greater or equal than the threshold value programmed
769 * in RFT
770 */
771 case I2C_IT_RXFNF:
772 for (count = rft; count > 0; count--) {
773 /* Read the Rx FIFO */
774 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
775 dev->cli.buffer++;
776 }
777 dev->cli.count -= rft;
778 dev->cli.xfer_bytes += rft;
779 break;
780
781 /* Rx FIFO full */
782 case I2C_IT_RXFF:
783 for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
784 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
785 dev->cli.buffer++;
786 }
787 dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
788 dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
789 break;
790
791 /* Master Transaction Done with/without stop */
792 case I2C_IT_MTD:
793 case I2C_IT_MTDWS:
794 if (dev->cli.operation == I2C_READ) {
795 while (!(readl(dev->virtbase + I2C_RISR)
796 & I2C_IT_RXFE)) {
797 if (dev->cli.count == 0)
798 break;
799 *dev->cli.buffer =
800 readb(dev->virtbase + I2C_RFR);
801 dev->cli.buffer++;
802 dev->cli.count--;
803 dev->cli.xfer_bytes++;
804 }
805 }
806
807 disable_all_interrupts(dev);
808 clear_all_interrupts(dev);
809
810 if (dev->cli.count) {
811 dev->result = -EIO;
812 dev_err(&dev->adev->dev,
813 "%lu bytes still remain to be xfered\n",
814 dev->cli.count);
815 (void) init_hw(dev);
816 }
817 complete(&dev->xfer_complete);
818
819 break;
820
821 /* Master Arbitration lost interrupt */
822 case I2C_IT_MAL:
823 dev->result = -EIO;
824 (void) init_hw(dev);
825
826 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
827 complete(&dev->xfer_complete);
828
829 break;
830
831 /*
832 * Bus Error interrupt.
833 * This happens when an unexpected start/stop condition occurs
834 * during the transaction.
835 */
836 case I2C_IT_BERR:
837 dev->result = -EIO;
838 /* get the status */
839 if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
840 (void) init_hw(dev);
841
842 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
843 complete(&dev->xfer_complete);
844
845 break;
846
847 /*
848 * Tx FIFO overrun interrupt.
849 * This is set when a write operation in Tx FIFO is performed and
850 * the Tx FIFO is full.
851 */
852 case I2C_IT_TXFOVR:
853 dev->result = -EIO;
854 (void) init_hw(dev);
855
856 dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
857 complete(&dev->xfer_complete);
858
859 break;
860
861 /* unhandled interrupts by this driver - TODO*/
862 case I2C_IT_TXFE:
863 case I2C_IT_TXFF:
864 case I2C_IT_RXFE:
865 case I2C_IT_RFSR:
866 case I2C_IT_RFSE:
867 case I2C_IT_WTSR:
868 case I2C_IT_STD:
869 dev_err(&dev->adev->dev, "unhandled Interrupt\n");
870 break;
871 default:
872 dev_err(&dev->adev->dev, "spurious Interrupt..\n");
873 break;
874 }
875
876 return IRQ_HANDLED;
877 }
878
879 #ifdef CONFIG_PM_SLEEP
nmk_i2c_suspend_late(struct device * dev)880 static int nmk_i2c_suspend_late(struct device *dev)
881 {
882 int ret;
883
884 ret = pm_runtime_force_suspend(dev);
885 if (ret)
886 return ret;
887
888 pinctrl_pm_select_sleep_state(dev);
889 return 0;
890 }
891
nmk_i2c_resume_early(struct device * dev)892 static int nmk_i2c_resume_early(struct device *dev)
893 {
894 return pm_runtime_force_resume(dev);
895 }
896 #endif
897
898 #ifdef CONFIG_PM
nmk_i2c_runtime_suspend(struct device * dev)899 static int nmk_i2c_runtime_suspend(struct device *dev)
900 {
901 struct amba_device *adev = to_amba_device(dev);
902 struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
903
904 clk_disable_unprepare(nmk_i2c->clk);
905 pinctrl_pm_select_idle_state(dev);
906 return 0;
907 }
908
nmk_i2c_runtime_resume(struct device * dev)909 static int nmk_i2c_runtime_resume(struct device *dev)
910 {
911 struct amba_device *adev = to_amba_device(dev);
912 struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
913 int ret;
914
915 ret = clk_prepare_enable(nmk_i2c->clk);
916 if (ret) {
917 dev_err(dev, "can't prepare_enable clock\n");
918 return ret;
919 }
920
921 pinctrl_pm_select_default_state(dev);
922
923 ret = init_hw(nmk_i2c);
924 if (ret) {
925 clk_disable_unprepare(nmk_i2c->clk);
926 pinctrl_pm_select_idle_state(dev);
927 }
928
929 return ret;
930 }
931 #endif
932
933 static const struct dev_pm_ops nmk_i2c_pm = {
934 SET_LATE_SYSTEM_SLEEP_PM_OPS(nmk_i2c_suspend_late, nmk_i2c_resume_early)
935 SET_RUNTIME_PM_OPS(nmk_i2c_runtime_suspend,
936 nmk_i2c_runtime_resume,
937 NULL)
938 };
939
nmk_i2c_functionality(struct i2c_adapter * adap)940 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
941 {
942 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
943 }
944
945 static const struct i2c_algorithm nmk_i2c_algo = {
946 .master_xfer = nmk_i2c_xfer,
947 .functionality = nmk_i2c_functionality
948 };
949
nmk_i2c_of_probe(struct device_node * np,struct nmk_i2c_dev * nmk)950 static void nmk_i2c_of_probe(struct device_node *np,
951 struct nmk_i2c_dev *nmk)
952 {
953 /* Default to 100 kHz if no frequency is given in the node */
954 if (of_property_read_u32(np, "clock-frequency", &nmk->clk_freq))
955 nmk->clk_freq = 100000;
956
957 /* This driver only supports 'standard' and 'fast' modes of operation. */
958 if (nmk->clk_freq <= 100000)
959 nmk->sm = I2C_FREQ_MODE_STANDARD;
960 else
961 nmk->sm = I2C_FREQ_MODE_FAST;
962 nmk->tft = 1; /* Tx FIFO threshold */
963 nmk->rft = 8; /* Rx FIFO threshold */
964 nmk->timeout = 200; /* Slave response timeout(ms) */
965 }
966
nmk_i2c_probe(struct amba_device * adev,const struct amba_id * id)967 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
968 {
969 int ret = 0;
970 struct device_node *np = adev->dev.of_node;
971 struct nmk_i2c_dev *dev;
972 struct i2c_adapter *adap;
973 struct i2c_vendor_data *vendor = id->data;
974 u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
975
976 dev = devm_kzalloc(&adev->dev, sizeof(struct nmk_i2c_dev), GFP_KERNEL);
977 if (!dev) {
978 dev_err(&adev->dev, "cannot allocate memory\n");
979 ret = -ENOMEM;
980 goto err_no_mem;
981 }
982 dev->vendor = vendor;
983 dev->adev = adev;
984 nmk_i2c_of_probe(np, dev);
985
986 if (dev->tft > max_fifo_threshold) {
987 dev_warn(&adev->dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
988 dev->tft, max_fifo_threshold);
989 dev->tft = max_fifo_threshold;
990 }
991
992 if (dev->rft > max_fifo_threshold) {
993 dev_warn(&adev->dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
994 dev->rft, max_fifo_threshold);
995 dev->rft = max_fifo_threshold;
996 }
997
998 amba_set_drvdata(adev, dev);
999
1000 dev->virtbase = devm_ioremap(&adev->dev, adev->res.start,
1001 resource_size(&adev->res));
1002 if (!dev->virtbase) {
1003 ret = -ENOMEM;
1004 goto err_no_mem;
1005 }
1006
1007 dev->irq = adev->irq[0];
1008 ret = devm_request_irq(&adev->dev, dev->irq, i2c_irq_handler, 0,
1009 DRIVER_NAME, dev);
1010 if (ret) {
1011 dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
1012 goto err_no_mem;
1013 }
1014
1015 dev->clk = devm_clk_get(&adev->dev, NULL);
1016 if (IS_ERR(dev->clk)) {
1017 dev_err(&adev->dev, "could not get i2c clock\n");
1018 ret = PTR_ERR(dev->clk);
1019 goto err_no_mem;
1020 }
1021
1022 ret = clk_prepare_enable(dev->clk);
1023 if (ret) {
1024 dev_err(&adev->dev, "can't prepare_enable clock\n");
1025 goto err_no_mem;
1026 }
1027
1028 init_hw(dev);
1029
1030 adap = &dev->adap;
1031 adap->dev.of_node = np;
1032 adap->dev.parent = &adev->dev;
1033 adap->owner = THIS_MODULE;
1034 adap->class = I2C_CLASS_DEPRECATED;
1035 adap->algo = &nmk_i2c_algo;
1036 adap->timeout = msecs_to_jiffies(dev->timeout);
1037 snprintf(adap->name, sizeof(adap->name),
1038 "Nomadik I2C at %pR", &adev->res);
1039
1040 i2c_set_adapdata(adap, dev);
1041
1042 dev_info(&adev->dev,
1043 "initialize %s on virtual base %p\n",
1044 adap->name, dev->virtbase);
1045
1046 ret = i2c_add_adapter(adap);
1047 if (ret)
1048 goto err_no_adap;
1049
1050 pm_runtime_put(&adev->dev);
1051
1052 return 0;
1053
1054 err_no_adap:
1055 clk_disable_unprepare(dev->clk);
1056 err_no_mem:
1057
1058 return ret;
1059 }
1060
nmk_i2c_remove(struct amba_device * adev)1061 static int nmk_i2c_remove(struct amba_device *adev)
1062 {
1063 struct resource *res = &adev->res;
1064 struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1065
1066 i2c_del_adapter(&dev->adap);
1067 flush_i2c_fifo(dev);
1068 disable_all_interrupts(dev);
1069 clear_all_interrupts(dev);
1070 /* disable the controller */
1071 i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1072 clk_disable_unprepare(dev->clk);
1073 if (res)
1074 release_mem_region(res->start, resource_size(res));
1075
1076 return 0;
1077 }
1078
1079 static struct i2c_vendor_data vendor_stn8815 = {
1080 .has_mtdws = false,
1081 .fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
1082 };
1083
1084 static struct i2c_vendor_data vendor_db8500 = {
1085 .has_mtdws = true,
1086 .fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
1087 };
1088
1089 static const struct amba_id nmk_i2c_ids[] = {
1090 {
1091 .id = 0x00180024,
1092 .mask = 0x00ffffff,
1093 .data = &vendor_stn8815,
1094 },
1095 {
1096 .id = 0x00380024,
1097 .mask = 0x00ffffff,
1098 .data = &vendor_db8500,
1099 },
1100 {},
1101 };
1102
1103 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1104
1105 static struct amba_driver nmk_i2c_driver = {
1106 .drv = {
1107 .owner = THIS_MODULE,
1108 .name = DRIVER_NAME,
1109 .pm = &nmk_i2c_pm,
1110 },
1111 .id_table = nmk_i2c_ids,
1112 .probe = nmk_i2c_probe,
1113 .remove = nmk_i2c_remove,
1114 };
1115
nmk_i2c_init(void)1116 static int __init nmk_i2c_init(void)
1117 {
1118 return amba_driver_register(&nmk_i2c_driver);
1119 }
1120
nmk_i2c_exit(void)1121 static void __exit nmk_i2c_exit(void)
1122 {
1123 amba_driver_unregister(&nmk_i2c_driver);
1124 }
1125
1126 subsys_initcall(nmk_i2c_init);
1127 module_exit(nmk_i2c_exit);
1128
1129 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1130 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1131 MODULE_LICENSE("GPL");
1132