1 /*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/edac.h>
17 #include "edac_module.h"
18
19 #define EDAC_MOD_STR "i3000_edac"
20
21 #define I3000_RANKS 8
22 #define I3000_RANKS_PER_CHANNEL 4
23 #define I3000_CHANNELS 2
24
25 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
26
27 #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
28 #define I3000_MCHBAR_MASK 0xffffc000
29 #define I3000_MMR_WINDOW_SIZE 16384
30
31 #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
32 *
33 * 7:1 reserved
34 * 0 bit 32 of address
35 */
36 #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
37 *
38 * 31:7 address
39 * 6:1 reserved
40 * 0 Error channel 0/1
41 */
42 #define I3000_DEAP_GRAIN (1 << 7)
43
44 /*
45 * Helper functions to decode the DEAP/EDEAP hardware registers.
46 *
47 * The type promotion here is deliberate; we're deriving an
48 * unsigned long pfn and offset from hardware regs which are u8/u32.
49 */
50
deap_pfn(u8 edeap,u32 deap)51 static inline unsigned long deap_pfn(u8 edeap, u32 deap)
52 {
53 deap >>= PAGE_SHIFT;
54 deap |= (edeap & 1) << (32 - PAGE_SHIFT);
55 return deap;
56 }
57
deap_offset(u32 deap)58 static inline unsigned long deap_offset(u32 deap)
59 {
60 return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
61 }
62
deap_channel(u32 deap)63 static inline int deap_channel(u32 deap)
64 {
65 return deap & 1;
66 }
67
68 #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
69 *
70 * 7:0 DRAM ECC Syndrome
71 */
72
73 #define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
74 *
75 * 15:12 reserved
76 * 11 MCH Thermal Sensor Event
77 * for SMI/SCI/SERR
78 * 10 reserved
79 * 9 LOCK to non-DRAM Memory Flag (LCKF)
80 * 8 Received Refresh Timeout Flag (RRTOF)
81 * 7:2 reserved
82 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
83 * 0 Single-bit DRAM ECC Error Flag (DSERR)
84 */
85 #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
86 #define I3000_ERRSTS_UE 0x0002
87 #define I3000_ERRSTS_CE 0x0001
88
89 #define I3000_ERRCMD 0xca /* Error Command (16b)
90 *
91 * 15:12 reserved
92 * 11 SERR on MCH Thermal Sensor Event
93 * (TSESERR)
94 * 10 reserved
95 * 9 SERR on LOCK to non-DRAM Memory
96 * (LCKERR)
97 * 8 SERR on DRAM Refresh Timeout
98 * (DRTOERR)
99 * 7:2 reserved
100 * 1 SERR Multi-Bit DRAM ECC Error
101 * (DMERR)
102 * 0 SERR on Single-Bit ECC Error
103 * (DSERR)
104 */
105
106 /* Intel MMIO register space - device 0 function 0 - MMR space */
107
108 #define I3000_DRB_SHIFT 25 /* 32MiB grain */
109
110 #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
111 *
112 * 7:0 Channel 0 DRAM Rank Boundary Address
113 */
114 #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
115 *
116 * 7:0 Channel 1 DRAM Rank Boundary Address
117 */
118
119 #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
120 *
121 * 7 reserved
122 * 6:4 DRAM odd Rank Attribute
123 * 3 reserved
124 * 2:0 DRAM even Rank Attribute
125 *
126 * Each attribute defines the page
127 * size of the corresponding rank:
128 * 000: unpopulated
129 * 001: reserved
130 * 010: 4 KB
131 * 011: 8 KB
132 * 100: 16 KB
133 * Others: reserved
134 */
135 #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
136
odd_rank_attrib(unsigned char dra)137 static inline unsigned char odd_rank_attrib(unsigned char dra)
138 {
139 return (dra & 0x70) >> 4;
140 }
141
even_rank_attrib(unsigned char dra)142 static inline unsigned char even_rank_attrib(unsigned char dra)
143 {
144 return dra & 0x07;
145 }
146
147 #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
148 *
149 * 31:30 reserved
150 * 29 Initialization Complete (IC)
151 * 28:11 reserved
152 * 10:8 Refresh Mode Select (RMS)
153 * 7 reserved
154 * 6:4 Mode Select (SMS)
155 * 3:2 reserved
156 * 1:0 DRAM Type (DT)
157 */
158
159 #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
160 *
161 * 31 Enhanced Addressing Enable (ENHADE)
162 * 30:0 reserved
163 */
164
165 enum i3000p_chips {
166 I3000 = 0,
167 };
168
169 struct i3000_dev_info {
170 const char *ctl_name;
171 };
172
173 struct i3000_error_info {
174 u16 errsts;
175 u8 derrsyn;
176 u8 edeap;
177 u32 deap;
178 u16 errsts2;
179 };
180
181 static const struct i3000_dev_info i3000_devs[] = {
182 [I3000] = {
183 .ctl_name = "i3000"},
184 };
185
186 static struct pci_dev *mci_pdev;
187 static int i3000_registered = 1;
188 static struct edac_pci_ctl_info *i3000_pci;
189
i3000_get_error_info(struct mem_ctl_info * mci,struct i3000_error_info * info)190 static void i3000_get_error_info(struct mem_ctl_info *mci,
191 struct i3000_error_info *info)
192 {
193 struct pci_dev *pdev;
194
195 pdev = to_pci_dev(mci->pdev);
196
197 /*
198 * This is a mess because there is no atomic way to read all the
199 * registers at once and the registers can transition from CE being
200 * overwritten by UE.
201 */
202 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
203 if (!(info->errsts & I3000_ERRSTS_BITS))
204 return;
205 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
206 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
207 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
208 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
209
210 /*
211 * If the error is the same for both reads then the first set
212 * of reads is valid. If there is a change then there is a CE
213 * with no info and the second set of reads is valid and
214 * should be UE info.
215 */
216 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
217 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
218 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
219 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
220 }
221
222 /*
223 * Clear any error bits.
224 * (Yes, we really clear bits by writing 1 to them.)
225 */
226 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
227 I3000_ERRSTS_BITS);
228 }
229
i3000_process_error_info(struct mem_ctl_info * mci,struct i3000_error_info * info,int handle_errors)230 static int i3000_process_error_info(struct mem_ctl_info *mci,
231 struct i3000_error_info *info,
232 int handle_errors)
233 {
234 int row, multi_chan, channel;
235 unsigned long pfn, offset;
236
237 multi_chan = mci->csrows[0]->nr_channels - 1;
238
239 if (!(info->errsts & I3000_ERRSTS_BITS))
240 return 0;
241
242 if (!handle_errors)
243 return 1;
244
245 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
246 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
247 -1, -1, -1,
248 "UE overwrote CE", "");
249 info->errsts = info->errsts2;
250 }
251
252 pfn = deap_pfn(info->edeap, info->deap);
253 offset = deap_offset(info->deap);
254 channel = deap_channel(info->deap);
255
256 row = edac_mc_find_csrow_by_page(mci, pfn);
257
258 if (info->errsts & I3000_ERRSTS_UE)
259 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
260 pfn, offset, 0,
261 row, -1, -1,
262 "i3000 UE", "");
263 else
264 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
265 pfn, offset, info->derrsyn,
266 row, multi_chan ? channel : 0, -1,
267 "i3000 CE", "");
268
269 return 1;
270 }
271
i3000_check(struct mem_ctl_info * mci)272 static void i3000_check(struct mem_ctl_info *mci)
273 {
274 struct i3000_error_info info;
275
276 edac_dbg(1, "MC%d\n", mci->mc_idx);
277 i3000_get_error_info(mci, &info);
278 i3000_process_error_info(mci, &info, 1);
279 }
280
i3000_is_interleaved(const unsigned char * c0dra,const unsigned char * c1dra,const unsigned char * c0drb,const unsigned char * c1drb)281 static int i3000_is_interleaved(const unsigned char *c0dra,
282 const unsigned char *c1dra,
283 const unsigned char *c0drb,
284 const unsigned char *c1drb)
285 {
286 int i;
287
288 /*
289 * If the channels aren't populated identically then
290 * we're not interleaved.
291 */
292 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
293 if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
294 even_rank_attrib(c0dra[i]) !=
295 even_rank_attrib(c1dra[i]))
296 return 0;
297
298 /*
299 * If the rank boundaries for the two channels are different
300 * then we're not interleaved.
301 */
302 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
303 if (c0drb[i] != c1drb[i])
304 return 0;
305
306 return 1;
307 }
308
i3000_probe1(struct pci_dev * pdev,int dev_idx)309 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
310 {
311 int rc;
312 int i, j;
313 struct mem_ctl_info *mci = NULL;
314 struct edac_mc_layer layers[2];
315 unsigned long last_cumul_size, nr_pages;
316 int interleaved, nr_channels;
317 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
318 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
319 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
320 unsigned long mchbar;
321 void __iomem *window;
322
323 edac_dbg(0, "MC:\n");
324
325 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
326 mchbar &= I3000_MCHBAR_MASK;
327 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
328 if (!window) {
329 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
330 mchbar);
331 return -ENODEV;
332 }
333
334 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
335 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
336 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
337 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
338
339 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
340 c0drb[i] = readb(window + I3000_C0DRB + i);
341 c1drb[i] = readb(window + I3000_C1DRB + i);
342 }
343
344 iounmap(window);
345
346 /*
347 * Figure out how many channels we have.
348 *
349 * If we have what the datasheet calls "asymmetric channels"
350 * (essentially the same as what was called "virtual single
351 * channel mode" in the i82875) then it's a single channel as
352 * far as EDAC is concerned.
353 */
354 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
355 nr_channels = interleaved ? 2 : 1;
356
357 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
358 layers[0].size = I3000_RANKS / nr_channels;
359 layers[0].is_virt_csrow = true;
360 layers[1].type = EDAC_MC_LAYER_CHANNEL;
361 layers[1].size = nr_channels;
362 layers[1].is_virt_csrow = false;
363 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
364 if (!mci)
365 return -ENOMEM;
366
367 edac_dbg(3, "MC: init mci\n");
368
369 mci->pdev = &pdev->dev;
370 mci->mtype_cap = MEM_FLAG_DDR2;
371
372 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
373 mci->edac_cap = EDAC_FLAG_SECDED;
374
375 mci->mod_name = EDAC_MOD_STR;
376 mci->ctl_name = i3000_devs[dev_idx].ctl_name;
377 mci->dev_name = pci_name(pdev);
378 mci->edac_check = i3000_check;
379 mci->ctl_page_to_phys = NULL;
380
381 /*
382 * The dram rank boundary (DRB) reg values are boundary addresses
383 * for each DRAM rank with a granularity of 32MB. DRB regs are
384 * cumulative; the last one will contain the total memory
385 * contained in all ranks.
386 *
387 * If we're in interleaved mode then we're only walking through
388 * the ranks of controller 0, so we double all the values we see.
389 */
390 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
391 u8 value;
392 u32 cumul_size;
393 struct csrow_info *csrow = mci->csrows[i];
394
395 value = drb[i];
396 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
397 if (interleaved)
398 cumul_size <<= 1;
399 edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
400 if (cumul_size == last_cumul_size)
401 continue;
402
403 csrow->first_page = last_cumul_size;
404 csrow->last_page = cumul_size - 1;
405 nr_pages = cumul_size - last_cumul_size;
406 last_cumul_size = cumul_size;
407
408 for (j = 0; j < nr_channels; j++) {
409 struct dimm_info *dimm = csrow->channels[j]->dimm;
410
411 dimm->nr_pages = nr_pages / nr_channels;
412 dimm->grain = I3000_DEAP_GRAIN;
413 dimm->mtype = MEM_DDR2;
414 dimm->dtype = DEV_UNKNOWN;
415 dimm->edac_mode = EDAC_UNKNOWN;
416 }
417 }
418
419 /*
420 * Clear any error bits.
421 * (Yes, we really clear bits by writing 1 to them.)
422 */
423 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
424 I3000_ERRSTS_BITS);
425
426 rc = -ENODEV;
427 if (edac_mc_add_mc(mci)) {
428 edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
429 goto fail;
430 }
431
432 /* allocating generic PCI control info */
433 i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
434 if (!i3000_pci) {
435 printk(KERN_WARNING
436 "%s(): Unable to create PCI control\n",
437 __func__);
438 printk(KERN_WARNING
439 "%s(): PCI error report via EDAC not setup\n",
440 __func__);
441 }
442
443 /* get this far and it's successful */
444 edac_dbg(3, "MC: success\n");
445 return 0;
446
447 fail:
448 if (mci)
449 edac_mc_free(mci);
450
451 return rc;
452 }
453
454 /* returns count (>= 0), or negative on error */
i3000_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)455 static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
456 {
457 int rc;
458
459 edac_dbg(0, "MC:\n");
460
461 if (pci_enable_device(pdev) < 0)
462 return -EIO;
463
464 rc = i3000_probe1(pdev, ent->driver_data);
465 if (!mci_pdev)
466 mci_pdev = pci_dev_get(pdev);
467
468 return rc;
469 }
470
i3000_remove_one(struct pci_dev * pdev)471 static void i3000_remove_one(struct pci_dev *pdev)
472 {
473 struct mem_ctl_info *mci;
474
475 edac_dbg(0, "\n");
476
477 if (i3000_pci)
478 edac_pci_release_generic_ctl(i3000_pci);
479
480 mci = edac_mc_del_mc(&pdev->dev);
481 if (!mci)
482 return;
483
484 edac_mc_free(mci);
485 }
486
487 static const struct pci_device_id i3000_pci_tbl[] = {
488 {
489 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
490 I3000},
491 {
492 0,
493 } /* 0 terminated list. */
494 };
495
496 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
497
498 static struct pci_driver i3000_driver = {
499 .name = EDAC_MOD_STR,
500 .probe = i3000_init_one,
501 .remove = i3000_remove_one,
502 .id_table = i3000_pci_tbl,
503 };
504
i3000_init(void)505 static int __init i3000_init(void)
506 {
507 int pci_rc;
508
509 edac_dbg(3, "MC:\n");
510
511 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
512 opstate_init();
513
514 pci_rc = pci_register_driver(&i3000_driver);
515 if (pci_rc < 0)
516 goto fail0;
517
518 if (!mci_pdev) {
519 i3000_registered = 0;
520 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
521 PCI_DEVICE_ID_INTEL_3000_HB, NULL);
522 if (!mci_pdev) {
523 edac_dbg(0, "i3000 pci_get_device fail\n");
524 pci_rc = -ENODEV;
525 goto fail1;
526 }
527
528 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
529 if (pci_rc < 0) {
530 edac_dbg(0, "i3000 init fail\n");
531 pci_rc = -ENODEV;
532 goto fail1;
533 }
534 }
535
536 return 0;
537
538 fail1:
539 pci_unregister_driver(&i3000_driver);
540
541 fail0:
542 pci_dev_put(mci_pdev);
543
544 return pci_rc;
545 }
546
i3000_exit(void)547 static void __exit i3000_exit(void)
548 {
549 edac_dbg(3, "MC:\n");
550
551 pci_unregister_driver(&i3000_driver);
552 if (!i3000_registered) {
553 i3000_remove_one(mci_pdev);
554 pci_dev_put(mci_pdev);
555 }
556 }
557
558 module_init(i3000_init);
559 module_exit(i3000_exit);
560
561 MODULE_LICENSE("GPL");
562 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
563 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
564
565 module_param(edac_op_state, int, 0444);
566 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
567