1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 SiFive
4  * Copyright (C) 2018 Christoph Hellwig
5  */
6 #define pr_fmt(fmt) "plic: " fmt
7 #include <linux/interrupt.h>
8 #include <linux/io.h>
9 #include <linux/irq.h>
10 #include <linux/irqchip.h>
11 #include <linux/irqdomain.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/spinlock.h>
18 
19 /*
20  * This driver implements a version of the RISC-V PLIC with the actual layout
21  * specified in chapter 8 of the SiFive U5 Coreplex Series Manual:
22  *
23  *     https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
24  *
25  * The largest number supported by devices marked as 'sifive,plic-1.0.0', is
26  * 1024, of which device 0 is defined as non-existent by the RISC-V Privileged
27  * Spec.
28  */
29 
30 #define MAX_DEVICES			1024
31 #define MAX_CONTEXTS			15872
32 
33 /*
34  * Each interrupt source has a priority register associated with it.
35  * We always hardwire it to one in Linux.
36  */
37 #define PRIORITY_BASE			0
38 #define     PRIORITY_PER_ID		4
39 
40 /*
41  * Each hart context has a vector of interrupt enable bits associated with it.
42  * There's one bit for each interrupt source.
43  */
44 #define ENABLE_BASE			0x2000
45 #define     ENABLE_PER_HART		0x80
46 
47 /*
48  * Each hart context has a set of control registers associated with it.  Right
49  * now there's only two: a source priority threshold over which the hart will
50  * take an interrupt, and a register to claim interrupts.
51  */
52 #define CONTEXT_BASE			0x200000
53 #define     CONTEXT_PER_HART		0x1000
54 #define     CONTEXT_THRESHOLD		0x00
55 #define     CONTEXT_CLAIM		0x04
56 
57 static void __iomem *plic_regs;
58 
59 struct plic_handler {
60 	bool			present;
61 	int			ctxid;
62 };
63 static DEFINE_PER_CPU(struct plic_handler, plic_handlers);
64 
plic_hart_offset(int ctxid)65 static inline void __iomem *plic_hart_offset(int ctxid)
66 {
67 	return plic_regs + CONTEXT_BASE + ctxid * CONTEXT_PER_HART;
68 }
69 
plic_enable_base(int ctxid)70 static inline u32 __iomem *plic_enable_base(int ctxid)
71 {
72 	return plic_regs + ENABLE_BASE + ctxid * ENABLE_PER_HART;
73 }
74 
75 /*
76  * Protect mask operations on the registers given that we can't assume that
77  * atomic memory operations work on them.
78  */
79 static DEFINE_RAW_SPINLOCK(plic_toggle_lock);
80 
plic_toggle(int ctxid,int hwirq,int enable)81 static inline void plic_toggle(int ctxid, int hwirq, int enable)
82 {
83 	u32 __iomem *reg = plic_enable_base(ctxid) + (hwirq / 32);
84 	u32 hwirq_mask = 1 << (hwirq % 32);
85 
86 	raw_spin_lock(&plic_toggle_lock);
87 	if (enable)
88 		writel(readl(reg) | hwirq_mask, reg);
89 	else
90 		writel(readl(reg) & ~hwirq_mask, reg);
91 	raw_spin_unlock(&plic_toggle_lock);
92 }
93 
plic_irq_toggle(struct irq_data * d,int enable)94 static inline void plic_irq_toggle(struct irq_data *d, int enable)
95 {
96 	int cpu;
97 
98 	writel(enable, plic_regs + PRIORITY_BASE + d->hwirq * PRIORITY_PER_ID);
99 	for_each_cpu(cpu, irq_data_get_affinity_mask(d)) {
100 		struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu);
101 
102 		if (handler->present)
103 			plic_toggle(handler->ctxid, d->hwirq, enable);
104 	}
105 }
106 
plic_irq_enable(struct irq_data * d)107 static void plic_irq_enable(struct irq_data *d)
108 {
109 	plic_irq_toggle(d, 1);
110 }
111 
plic_irq_disable(struct irq_data * d)112 static void plic_irq_disable(struct irq_data *d)
113 {
114 	plic_irq_toggle(d, 0);
115 }
116 
117 static struct irq_chip plic_chip = {
118 	.name		= "SiFive PLIC",
119 	/*
120 	 * There is no need to mask/unmask PLIC interrupts.  They are "masked"
121 	 * by reading claim and "unmasked" when writing it back.
122 	 */
123 	.irq_enable	= plic_irq_enable,
124 	.irq_disable	= plic_irq_disable,
125 };
126 
plic_irqdomain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)127 static int plic_irqdomain_map(struct irq_domain *d, unsigned int irq,
128 			      irq_hw_number_t hwirq)
129 {
130 	irq_set_chip_and_handler(irq, &plic_chip, handle_simple_irq);
131 	irq_set_chip_data(irq, NULL);
132 	irq_set_noprobe(irq);
133 	return 0;
134 }
135 
136 static const struct irq_domain_ops plic_irqdomain_ops = {
137 	.map		= plic_irqdomain_map,
138 	.xlate		= irq_domain_xlate_onecell,
139 };
140 
141 static struct irq_domain *plic_irqdomain;
142 
143 /*
144  * Handling an interrupt is a two-step process: first you claim the interrupt
145  * by reading the claim register, then you complete the interrupt by writing
146  * that source ID back to the same claim register.  This automatically enables
147  * and disables the interrupt, so there's nothing else to do.
148  */
plic_handle_irq(struct pt_regs * regs)149 static void plic_handle_irq(struct pt_regs *regs)
150 {
151 	struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
152 	void __iomem *claim = plic_hart_offset(handler->ctxid) + CONTEXT_CLAIM;
153 	irq_hw_number_t hwirq;
154 
155 	WARN_ON_ONCE(!handler->present);
156 
157 	csr_clear(sie, SIE_SEIE);
158 	while ((hwirq = readl(claim))) {
159 		int irq = irq_find_mapping(plic_irqdomain, hwirq);
160 
161 		if (unlikely(irq <= 0))
162 			pr_warn_ratelimited("can't find mapping for hwirq %lu\n",
163 					hwirq);
164 		else
165 			generic_handle_irq(irq);
166 		writel(hwirq, claim);
167 	}
168 	csr_set(sie, SIE_SEIE);
169 }
170 
171 /*
172  * Walk up the DT tree until we find an active RISC-V core (HART) node and
173  * extract the cpuid from it.
174  */
plic_find_hart_id(struct device_node * node)175 static int plic_find_hart_id(struct device_node *node)
176 {
177 	for (; node; node = node->parent) {
178 		if (of_device_is_compatible(node, "riscv"))
179 			return riscv_of_processor_hart(node);
180 	}
181 
182 	return -1;
183 }
184 
plic_init(struct device_node * node,struct device_node * parent)185 static int __init plic_init(struct device_node *node,
186 		struct device_node *parent)
187 {
188 	int error = 0, nr_handlers, nr_mapped = 0, i;
189 	u32 nr_irqs;
190 
191 	if (plic_regs) {
192 		pr_warn("PLIC already present.\n");
193 		return -ENXIO;
194 	}
195 
196 	plic_regs = of_iomap(node, 0);
197 	if (WARN_ON(!plic_regs))
198 		return -EIO;
199 
200 	error = -EINVAL;
201 	of_property_read_u32(node, "riscv,ndev", &nr_irqs);
202 	if (WARN_ON(!nr_irqs))
203 		goto out_iounmap;
204 
205 	nr_handlers = of_irq_count(node);
206 	if (WARN_ON(!nr_handlers))
207 		goto out_iounmap;
208 	if (WARN_ON(nr_handlers < num_possible_cpus()))
209 		goto out_iounmap;
210 
211 	error = -ENOMEM;
212 	plic_irqdomain = irq_domain_add_linear(node, nr_irqs + 1,
213 			&plic_irqdomain_ops, NULL);
214 	if (WARN_ON(!plic_irqdomain))
215 		goto out_iounmap;
216 
217 	for (i = 0; i < nr_handlers; i++) {
218 		struct of_phandle_args parent;
219 		struct plic_handler *handler;
220 		irq_hw_number_t hwirq;
221 		int cpu;
222 
223 		if (of_irq_parse_one(node, i, &parent)) {
224 			pr_err("failed to parse parent for context %d.\n", i);
225 			continue;
226 		}
227 
228 		/* skip context holes */
229 		if (parent.args[0] == -1)
230 			continue;
231 
232 		cpu = plic_find_hart_id(parent.np);
233 		if (cpu < 0) {
234 			pr_warn("failed to parse hart ID for context %d.\n", i);
235 			continue;
236 		}
237 
238 		handler = per_cpu_ptr(&plic_handlers, cpu);
239 		handler->present = true;
240 		handler->ctxid = i;
241 
242 		/* priority must be > threshold to trigger an interrupt */
243 		writel(0, plic_hart_offset(i) + CONTEXT_THRESHOLD);
244 		for (hwirq = 1; hwirq <= nr_irqs; hwirq++)
245 			plic_toggle(i, hwirq, 0);
246 		nr_mapped++;
247 	}
248 
249 	pr_info("mapped %d interrupts to %d (out of %d) handlers.\n",
250 		nr_irqs, nr_mapped, nr_handlers);
251 	set_handle_irq(plic_handle_irq);
252 	return 0;
253 
254 out_iounmap:
255 	iounmap(plic_regs);
256 	return error;
257 }
258 
259 IRQCHIP_DECLARE(sifive_plic, "sifive,plic-1.0.0", plic_init);
260 IRQCHIP_DECLARE(riscv_plic0, "riscv,plic0", plic_init); /* for legacy systems */
261 IRQCHIP_DECLARE(thead_c900_plic, "thead,c900-plic", plic_init); /* for firmware driver */
262