1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mm.h>
30 #include <linux/vmstat.h>
31 #include <linux/writeback.h>
32 #include <linux/page-flags.h>
33
34 struct mem_cgroup;
35 struct page;
36 struct mm_struct;
37 struct kmem_cache;
38
39 /* Cgroup-specific page state, on top of universal node page state */
40 enum memcg_stat_item {
41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 MEMCG_RSS,
43 MEMCG_RSS_HUGE,
44 MEMCG_SWAP,
45 MEMCG_SOCK,
46 /* XXX: why are these zone and not node counters? */
47 MEMCG_KERNEL_STACK_KB,
48 MEMCG_NR_STAT,
49 };
50
51 enum memcg_memory_event {
52 MEMCG_LOW,
53 MEMCG_HIGH,
54 MEMCG_MAX,
55 MEMCG_OOM,
56 MEMCG_OOM_KILL,
57 MEMCG_SWAP_MAX,
58 MEMCG_SWAP_FAIL,
59 MEMCG_NR_MEMORY_EVENTS,
60 };
61
62 enum mem_cgroup_protection {
63 MEMCG_PROT_NONE,
64 MEMCG_PROT_LOW,
65 MEMCG_PROT_MIN,
66 };
67
68 struct mem_cgroup_reclaim_cookie {
69 pg_data_t *pgdat;
70 int priority;
71 unsigned int generation;
72 };
73
74 #ifdef CONFIG_MEMCG
75
76 #define MEM_CGROUP_ID_SHIFT 16
77 #define MEM_CGROUP_ID_MAX USHRT_MAX
78
79 struct mem_cgroup_id {
80 int id;
81 atomic_t ref;
82 };
83
84 /*
85 * Per memcg event counter is incremented at every pagein/pageout. With THP,
86 * it will be incremated by the number of pages. This counter is used for
87 * for trigger some periodic events. This is straightforward and better
88 * than using jiffies etc. to handle periodic memcg event.
89 */
90 enum mem_cgroup_events_target {
91 MEM_CGROUP_TARGET_THRESH,
92 MEM_CGROUP_TARGET_SOFTLIMIT,
93 MEM_CGROUP_TARGET_NUMAINFO,
94 MEM_CGROUP_NTARGETS,
95 };
96
97 struct mem_cgroup_stat_cpu {
98 long count[MEMCG_NR_STAT];
99 unsigned long events[NR_VM_EVENT_ITEMS];
100 unsigned long nr_page_events;
101 unsigned long targets[MEM_CGROUP_NTARGETS];
102 };
103
104 struct mem_cgroup_reclaim_iter {
105 struct mem_cgroup *position;
106 /* scan generation, increased every round-trip */
107 unsigned int generation;
108 };
109
110 struct lruvec_stat {
111 long count[NR_VM_NODE_STAT_ITEMS];
112 };
113
114 /*
115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
116 * which have elements charged to this memcg.
117 */
118 struct memcg_shrinker_map {
119 struct rcu_head rcu;
120 unsigned long map[0];
121 };
122
123 /*
124 * per-zone information in memory controller.
125 */
126 struct mem_cgroup_per_node {
127 struct lruvec lruvec;
128
129 struct lruvec_stat __percpu *lruvec_stat_cpu;
130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
131
132 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
133
134 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
135
136 #ifdef CONFIG_MEMCG_KMEM
137 struct memcg_shrinker_map __rcu *shrinker_map;
138 #endif
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 bool congested; /* memcg has many dirty pages */
144 /* backed by a congested BDI */
145
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
148 };
149
150 struct mem_cgroup_threshold {
151 struct eventfd_ctx *eventfd;
152 unsigned long threshold;
153 };
154
155 /* For threshold */
156 struct mem_cgroup_threshold_ary {
157 /* An array index points to threshold just below or equal to usage. */
158 int current_threshold;
159 /* Size of entries[] */
160 unsigned int size;
161 /* Array of thresholds */
162 struct mem_cgroup_threshold entries[0];
163 };
164
165 struct mem_cgroup_thresholds {
166 /* Primary thresholds array */
167 struct mem_cgroup_threshold_ary *primary;
168 /*
169 * Spare threshold array.
170 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 * It must be able to store at least primary->size - 1 entries.
172 */
173 struct mem_cgroup_threshold_ary *spare;
174 };
175
176 enum memcg_kmem_state {
177 KMEM_NONE,
178 KMEM_ALLOCATED,
179 KMEM_ONLINE,
180 };
181
182 #if defined(CONFIG_SMP)
183 struct memcg_padding {
184 char x[0];
185 } ____cacheline_internodealigned_in_smp;
186 #define MEMCG_PADDING(name) struct memcg_padding name;
187 #else
188 #define MEMCG_PADDING(name)
189 #endif
190
191 /*
192 * The memory controller data structure. The memory controller controls both
193 * page cache and RSS per cgroup. We would eventually like to provide
194 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
195 * to help the administrator determine what knobs to tune.
196 */
197 struct mem_cgroup {
198 struct cgroup_subsys_state css;
199
200 /* Private memcg ID. Used to ID objects that outlive the cgroup */
201 struct mem_cgroup_id id;
202
203 /* Accounted resources */
204 struct page_counter memory;
205 struct page_counter swap;
206
207 /* Legacy consumer-oriented counters */
208 struct page_counter memsw;
209 struct page_counter kmem;
210 struct page_counter tcpmem;
211
212 /* Upper bound of normal memory consumption range */
213 unsigned long high;
214
215 /* Range enforcement for interrupt charges */
216 struct work_struct high_work;
217
218 unsigned long soft_limit;
219
220 /* vmpressure notifications */
221 struct vmpressure vmpressure;
222
223 /*
224 * Should the accounting and control be hierarchical, per subtree?
225 */
226 bool use_hierarchy;
227
228 /*
229 * Should the OOM killer kill all belonging tasks, had it kill one?
230 */
231 bool oom_group;
232
233 /* protected by memcg_oom_lock */
234 bool oom_lock;
235 int under_oom;
236
237 int swappiness;
238 /* OOM-Killer disable */
239 int oom_kill_disable;
240
241 /* memory.events */
242 struct cgroup_file events_file;
243
244 /* handle for "memory.swap.events" */
245 struct cgroup_file swap_events_file;
246
247 /* protect arrays of thresholds */
248 struct mutex thresholds_lock;
249
250 /* thresholds for memory usage. RCU-protected */
251 struct mem_cgroup_thresholds thresholds;
252
253 /* thresholds for mem+swap usage. RCU-protected */
254 struct mem_cgroup_thresholds memsw_thresholds;
255
256 /* For oom notifier event fd */
257 struct list_head oom_notify;
258
259 /*
260 * Should we move charges of a task when a task is moved into this
261 * mem_cgroup ? And what type of charges should we move ?
262 */
263 unsigned long move_charge_at_immigrate;
264 /* taken only while moving_account > 0 */
265 spinlock_t move_lock;
266 unsigned long move_lock_flags;
267
268 MEMCG_PADDING(_pad1_);
269
270 /*
271 * set > 0 if pages under this cgroup are moving to other cgroup.
272 */
273 atomic_t moving_account;
274 struct task_struct *move_lock_task;
275
276 /* memory.stat */
277 struct mem_cgroup_stat_cpu __percpu *stat_cpu;
278
279 MEMCG_PADDING(_pad2_);
280
281 atomic_long_t stat[MEMCG_NR_STAT];
282 atomic_long_t events[NR_VM_EVENT_ITEMS];
283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284
285 unsigned long socket_pressure;
286
287 /* Legacy tcp memory accounting */
288 bool tcpmem_active;
289 int tcpmem_pressure;
290
291 #ifdef CONFIG_MEMCG_KMEM
292 /* Index in the kmem_cache->memcg_params.memcg_caches array */
293 int kmemcg_id;
294 enum memcg_kmem_state kmem_state;
295 struct list_head kmem_caches;
296 #endif
297
298 int last_scanned_node;
299 #if MAX_NUMNODES > 1
300 nodemask_t scan_nodes;
301 atomic_t numainfo_events;
302 atomic_t numainfo_updating;
303 #endif
304
305 #ifdef CONFIG_CGROUP_WRITEBACK
306 struct list_head cgwb_list;
307 struct wb_domain cgwb_domain;
308 #endif
309
310 /* List of events which userspace want to receive */
311 struct list_head event_list;
312 spinlock_t event_list_lock;
313
314 struct mem_cgroup_per_node *nodeinfo[0];
315 /* WARNING: nodeinfo must be the last member here */
316 };
317
318 /*
319 * size of first charge trial. "32" comes from vmscan.c's magic value.
320 * TODO: maybe necessary to use big numbers in big irons.
321 */
322 #define MEMCG_CHARGE_BATCH 32U
323
324 extern struct mem_cgroup *root_mem_cgroup;
325
mem_cgroup_is_root(struct mem_cgroup * memcg)326 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
327 {
328 return (memcg == root_mem_cgroup);
329 }
330
mem_cgroup_disabled(void)331 static inline bool mem_cgroup_disabled(void)
332 {
333 return !cgroup_subsys_enabled(memory_cgrp_subsys);
334 }
335
336 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
337 struct mem_cgroup *memcg);
338
339 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
340 gfp_t gfp_mask, struct mem_cgroup **memcgp,
341 bool compound);
342 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
343 gfp_t gfp_mask, struct mem_cgroup **memcgp,
344 bool compound);
345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
346 bool lrucare, bool compound);
347 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
348 bool compound);
349 void mem_cgroup_uncharge(struct page *page);
350 void mem_cgroup_uncharge_list(struct list_head *page_list);
351
352 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
353
354 static struct mem_cgroup_per_node *
mem_cgroup_nodeinfo(struct mem_cgroup * memcg,int nid)355 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
356 {
357 return memcg->nodeinfo[nid];
358 }
359
360 /**
361 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
362 * @node: node of the wanted lruvec
363 * @memcg: memcg of the wanted lruvec
364 *
365 * Returns the lru list vector holding pages for a given @node or a given
366 * @memcg and @zone. This can be the node lruvec, if the memory controller
367 * is disabled.
368 */
mem_cgroup_lruvec(struct pglist_data * pgdat,struct mem_cgroup * memcg)369 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
370 struct mem_cgroup *memcg)
371 {
372 struct mem_cgroup_per_node *mz;
373 struct lruvec *lruvec;
374
375 if (mem_cgroup_disabled()) {
376 lruvec = node_lruvec(pgdat);
377 goto out;
378 }
379
380 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
381 lruvec = &mz->lruvec;
382 out:
383 /*
384 * Since a node can be onlined after the mem_cgroup was created,
385 * we have to be prepared to initialize lruvec->pgdat here;
386 * and if offlined then reonlined, we need to reinitialize it.
387 */
388 if (unlikely(lruvec->pgdat != pgdat))
389 lruvec->pgdat = pgdat;
390 return lruvec;
391 }
392
393 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
394
395 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
396 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
397
398 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
399
400 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
401
402 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)403 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
404 return css ? container_of(css, struct mem_cgroup, css) : NULL;
405 }
406
mem_cgroup_put(struct mem_cgroup * memcg)407 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
408 {
409 if (memcg)
410 css_put(&memcg->css);
411 }
412
413 #define mem_cgroup_from_counter(counter, member) \
414 container_of(counter, struct mem_cgroup, member)
415
416 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
417 struct mem_cgroup *,
418 struct mem_cgroup_reclaim_cookie *);
419 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
420 int mem_cgroup_scan_tasks(struct mem_cgroup *,
421 int (*)(struct task_struct *, void *), void *);
422
mem_cgroup_id(struct mem_cgroup * memcg)423 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
424 {
425 if (mem_cgroup_disabled())
426 return 0;
427
428 return memcg->id.id;
429 }
430 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
431
lruvec_memcg(struct lruvec * lruvec)432 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
433 {
434 struct mem_cgroup_per_node *mz;
435
436 if (mem_cgroup_disabled())
437 return NULL;
438
439 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
440 return mz->memcg;
441 }
442
443 /**
444 * parent_mem_cgroup - find the accounting parent of a memcg
445 * @memcg: memcg whose parent to find
446 *
447 * Returns the parent memcg, or NULL if this is the root or the memory
448 * controller is in legacy no-hierarchy mode.
449 */
parent_mem_cgroup(struct mem_cgroup * memcg)450 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
451 {
452 if (!memcg->memory.parent)
453 return NULL;
454 return mem_cgroup_from_counter(memcg->memory.parent, memory);
455 }
456
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)457 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
458 struct mem_cgroup *root)
459 {
460 if (root == memcg)
461 return true;
462 if (!root->use_hierarchy)
463 return false;
464 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
465 }
466
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)467 static inline bool mm_match_cgroup(struct mm_struct *mm,
468 struct mem_cgroup *memcg)
469 {
470 struct mem_cgroup *task_memcg;
471 bool match = false;
472
473 rcu_read_lock();
474 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
475 if (task_memcg)
476 match = mem_cgroup_is_descendant(task_memcg, memcg);
477 rcu_read_unlock();
478 return match;
479 }
480
481 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
482 ino_t page_cgroup_ino(struct page *page);
483
mem_cgroup_online(struct mem_cgroup * memcg)484 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
485 {
486 if (mem_cgroup_disabled())
487 return true;
488 return !!(memcg->css.flags & CSS_ONLINE);
489 }
490
491 /*
492 * For memory reclaim.
493 */
494 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
495
496 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
497 int zid, int nr_pages);
498
499 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
500 int nid, unsigned int lru_mask);
501
502 static inline
mem_cgroup_get_lru_size(struct lruvec * lruvec,enum lru_list lru)503 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
504 {
505 struct mem_cgroup_per_node *mz;
506 unsigned long nr_pages = 0;
507 int zid;
508
509 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
510 for (zid = 0; zid < MAX_NR_ZONES; zid++)
511 nr_pages += mz->lru_zone_size[zid][lru];
512 return nr_pages;
513 }
514
515 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)516 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
517 enum lru_list lru, int zone_idx)
518 {
519 struct mem_cgroup_per_node *mz;
520
521 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
522 return mz->lru_zone_size[zone_idx][lru];
523 }
524
525 void mem_cgroup_handle_over_high(void);
526
527 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
528
529 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
530 struct task_struct *p);
531
mem_cgroup_enter_user_fault(void)532 static inline void mem_cgroup_enter_user_fault(void)
533 {
534 WARN_ON(current->in_user_fault);
535 current->in_user_fault = 1;
536 }
537
mem_cgroup_exit_user_fault(void)538 static inline void mem_cgroup_exit_user_fault(void)
539 {
540 WARN_ON(!current->in_user_fault);
541 current->in_user_fault = 0;
542 }
543
task_in_memcg_oom(struct task_struct * p)544 static inline bool task_in_memcg_oom(struct task_struct *p)
545 {
546 return p->memcg_in_oom;
547 }
548
549 bool mem_cgroup_oom_synchronize(bool wait);
550 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
551 struct mem_cgroup *oom_domain);
552 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
553
554 #ifdef CONFIG_MEMCG_SWAP
555 extern int do_swap_account;
556 #endif
557
558 struct mem_cgroup *lock_page_memcg(struct page *page);
559 void __unlock_page_memcg(struct mem_cgroup *memcg);
560 void unlock_page_memcg(struct page *page);
561
562 /*
563 * idx can be of type enum memcg_stat_item or node_stat_item.
564 * Keep in sync with memcg_exact_page_state().
565 */
memcg_page_state(struct mem_cgroup * memcg,int idx)566 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
567 int idx)
568 {
569 long x = atomic_long_read(&memcg->stat[idx]);
570 #ifdef CONFIG_SMP
571 if (x < 0)
572 x = 0;
573 #endif
574 return x;
575 }
576
577 /* idx can be of type enum memcg_stat_item or node_stat_item */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)578 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
579 int idx, int val)
580 {
581 long x;
582
583 if (mem_cgroup_disabled())
584 return;
585
586 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
587 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
588 atomic_long_add(x, &memcg->stat[idx]);
589 x = 0;
590 }
591 __this_cpu_write(memcg->stat_cpu->count[idx], x);
592 }
593
594 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)595 static inline void mod_memcg_state(struct mem_cgroup *memcg,
596 int idx, int val)
597 {
598 unsigned long flags;
599
600 local_irq_save(flags);
601 __mod_memcg_state(memcg, idx, val);
602 local_irq_restore(flags);
603 }
604
605 /**
606 * mod_memcg_page_state - update page state statistics
607 * @page: the page
608 * @idx: page state item to account
609 * @val: number of pages (positive or negative)
610 *
611 * The @page must be locked or the caller must use lock_page_memcg()
612 * to prevent double accounting when the page is concurrently being
613 * moved to another memcg:
614 *
615 * lock_page(page) or lock_page_memcg(page)
616 * if (TestClearPageState(page))
617 * mod_memcg_page_state(page, state, -1);
618 * unlock_page(page) or unlock_page_memcg(page)
619 *
620 * Kernel pages are an exception to this, since they'll never move.
621 */
__mod_memcg_page_state(struct page * page,int idx,int val)622 static inline void __mod_memcg_page_state(struct page *page,
623 int idx, int val)
624 {
625 if (page->mem_cgroup)
626 __mod_memcg_state(page->mem_cgroup, idx, val);
627 }
628
mod_memcg_page_state(struct page * page,int idx,int val)629 static inline void mod_memcg_page_state(struct page *page,
630 int idx, int val)
631 {
632 if (page->mem_cgroup)
633 mod_memcg_state(page->mem_cgroup, idx, val);
634 }
635
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)636 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
637 enum node_stat_item idx)
638 {
639 struct mem_cgroup_per_node *pn;
640 long x;
641
642 if (mem_cgroup_disabled())
643 return node_page_state(lruvec_pgdat(lruvec), idx);
644
645 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
646 x = atomic_long_read(&pn->lruvec_stat[idx]);
647 #ifdef CONFIG_SMP
648 if (x < 0)
649 x = 0;
650 #endif
651 return x;
652 }
653
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)654 static inline void __mod_lruvec_state(struct lruvec *lruvec,
655 enum node_stat_item idx, int val)
656 {
657 struct mem_cgroup_per_node *pn;
658 long x;
659
660 /* Update node */
661 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
662
663 if (mem_cgroup_disabled())
664 return;
665
666 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
667
668 /* Update memcg */
669 __mod_memcg_state(pn->memcg, idx, val);
670
671 /* Update lruvec */
672 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
673 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
674 atomic_long_add(x, &pn->lruvec_stat[idx]);
675 x = 0;
676 }
677 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
678 }
679
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)680 static inline void mod_lruvec_state(struct lruvec *lruvec,
681 enum node_stat_item idx, int val)
682 {
683 unsigned long flags;
684
685 local_irq_save(flags);
686 __mod_lruvec_state(lruvec, idx, val);
687 local_irq_restore(flags);
688 }
689
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)690 static inline void __mod_lruvec_page_state(struct page *page,
691 enum node_stat_item idx, int val)
692 {
693 pg_data_t *pgdat = page_pgdat(page);
694 struct lruvec *lruvec;
695
696 /* Untracked pages have no memcg, no lruvec. Update only the node */
697 if (!page->mem_cgroup) {
698 __mod_node_page_state(pgdat, idx, val);
699 return;
700 }
701
702 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
703 __mod_lruvec_state(lruvec, idx, val);
704 }
705
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)706 static inline void mod_lruvec_page_state(struct page *page,
707 enum node_stat_item idx, int val)
708 {
709 unsigned long flags;
710
711 local_irq_save(flags);
712 __mod_lruvec_page_state(page, idx, val);
713 local_irq_restore(flags);
714 }
715
716 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
717 gfp_t gfp_mask,
718 unsigned long *total_scanned);
719
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)720 static inline void __count_memcg_events(struct mem_cgroup *memcg,
721 enum vm_event_item idx,
722 unsigned long count)
723 {
724 unsigned long x;
725
726 if (mem_cgroup_disabled())
727 return;
728
729 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
730 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
731 atomic_long_add(x, &memcg->events[idx]);
732 x = 0;
733 }
734 __this_cpu_write(memcg->stat_cpu->events[idx], x);
735 }
736
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)737 static inline void count_memcg_events(struct mem_cgroup *memcg,
738 enum vm_event_item idx,
739 unsigned long count)
740 {
741 unsigned long flags;
742
743 local_irq_save(flags);
744 __count_memcg_events(memcg, idx, count);
745 local_irq_restore(flags);
746 }
747
count_memcg_page_event(struct page * page,enum vm_event_item idx)748 static inline void count_memcg_page_event(struct page *page,
749 enum vm_event_item idx)
750 {
751 if (page->mem_cgroup)
752 count_memcg_events(page->mem_cgroup, idx, 1);
753 }
754
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)755 static inline void count_memcg_event_mm(struct mm_struct *mm,
756 enum vm_event_item idx)
757 {
758 struct mem_cgroup *memcg;
759
760 if (mem_cgroup_disabled())
761 return;
762
763 rcu_read_lock();
764 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
765 if (likely(memcg))
766 count_memcg_events(memcg, idx, 1);
767 rcu_read_unlock();
768 }
769
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)770 static inline void memcg_memory_event(struct mem_cgroup *memcg,
771 enum memcg_memory_event event)
772 {
773 atomic_long_inc(&memcg->memory_events[event]);
774 cgroup_file_notify(&memcg->events_file);
775 }
776
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)777 static inline void memcg_memory_event_mm(struct mm_struct *mm,
778 enum memcg_memory_event event)
779 {
780 struct mem_cgroup *memcg;
781
782 if (mem_cgroup_disabled())
783 return;
784
785 rcu_read_lock();
786 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
787 if (likely(memcg))
788 memcg_memory_event(memcg, event);
789 rcu_read_unlock();
790 }
791
792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
793 void mem_cgroup_split_huge_fixup(struct page *head);
794 #endif
795
796 #else /* CONFIG_MEMCG */
797
798 #define MEM_CGROUP_ID_SHIFT 0
799 #define MEM_CGROUP_ID_MAX 0
800
801 struct mem_cgroup;
802
mem_cgroup_is_root(struct mem_cgroup * memcg)803 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
804 {
805 return true;
806 }
807
mem_cgroup_disabled(void)808 static inline bool mem_cgroup_disabled(void)
809 {
810 return true;
811 }
812
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)813 static inline void memcg_memory_event(struct mem_cgroup *memcg,
814 enum memcg_memory_event event)
815 {
816 }
817
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)818 static inline void memcg_memory_event_mm(struct mm_struct *mm,
819 enum memcg_memory_event event)
820 {
821 }
822
mem_cgroup_protected(struct mem_cgroup * root,struct mem_cgroup * memcg)823 static inline enum mem_cgroup_protection mem_cgroup_protected(
824 struct mem_cgroup *root, struct mem_cgroup *memcg)
825 {
826 return MEMCG_PROT_NONE;
827 }
828
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)829 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
830 gfp_t gfp_mask,
831 struct mem_cgroup **memcgp,
832 bool compound)
833 {
834 *memcgp = NULL;
835 return 0;
836 }
837
mem_cgroup_try_charge_delay(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)838 static inline int mem_cgroup_try_charge_delay(struct page *page,
839 struct mm_struct *mm,
840 gfp_t gfp_mask,
841 struct mem_cgroup **memcgp,
842 bool compound)
843 {
844 *memcgp = NULL;
845 return 0;
846 }
847
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare,bool compound)848 static inline void mem_cgroup_commit_charge(struct page *page,
849 struct mem_cgroup *memcg,
850 bool lrucare, bool compound)
851 {
852 }
853
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg,bool compound)854 static inline void mem_cgroup_cancel_charge(struct page *page,
855 struct mem_cgroup *memcg,
856 bool compound)
857 {
858 }
859
mem_cgroup_uncharge(struct page * page)860 static inline void mem_cgroup_uncharge(struct page *page)
861 {
862 }
863
mem_cgroup_uncharge_list(struct list_head * page_list)864 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
865 {
866 }
867
mem_cgroup_migrate(struct page * old,struct page * new)868 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
869 {
870 }
871
mem_cgroup_lruvec(struct pglist_data * pgdat,struct mem_cgroup * memcg)872 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
873 struct mem_cgroup *memcg)
874 {
875 return node_lruvec(pgdat);
876 }
877
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)878 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
879 struct pglist_data *pgdat)
880 {
881 return &pgdat->lruvec;
882 }
883
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)884 static inline bool mm_match_cgroup(struct mm_struct *mm,
885 struct mem_cgroup *memcg)
886 {
887 return true;
888 }
889
task_in_mem_cgroup(struct task_struct * task,const struct mem_cgroup * memcg)890 static inline bool task_in_mem_cgroup(struct task_struct *task,
891 const struct mem_cgroup *memcg)
892 {
893 return true;
894 }
895
get_mem_cgroup_from_mm(struct mm_struct * mm)896 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
897 {
898 return NULL;
899 }
900
get_mem_cgroup_from_page(struct page * page)901 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
902 {
903 return NULL;
904 }
905
mem_cgroup_put(struct mem_cgroup * memcg)906 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
907 {
908 }
909
910 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)911 mem_cgroup_iter(struct mem_cgroup *root,
912 struct mem_cgroup *prev,
913 struct mem_cgroup_reclaim_cookie *reclaim)
914 {
915 return NULL;
916 }
917
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)918 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
919 struct mem_cgroup *prev)
920 {
921 }
922
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)923 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
924 int (*fn)(struct task_struct *, void *), void *arg)
925 {
926 return 0;
927 }
928
mem_cgroup_id(struct mem_cgroup * memcg)929 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
930 {
931 return 0;
932 }
933
mem_cgroup_from_id(unsigned short id)934 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
935 {
936 WARN_ON_ONCE(id);
937 /* XXX: This should always return root_mem_cgroup */
938 return NULL;
939 }
940
lruvec_memcg(struct lruvec * lruvec)941 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
942 {
943 return NULL;
944 }
945
mem_cgroup_online(struct mem_cgroup * memcg)946 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
947 {
948 return true;
949 }
950
951 static inline unsigned long
mem_cgroup_get_lru_size(struct lruvec * lruvec,enum lru_list lru)952 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
953 {
954 return 0;
955 }
956 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)957 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
958 enum lru_list lru, int zone_idx)
959 {
960 return 0;
961 }
962
963 static inline unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)964 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
965 int nid, unsigned int lru_mask)
966 {
967 return 0;
968 }
969
mem_cgroup_get_max(struct mem_cgroup * memcg)970 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
971 {
972 return 0;
973 }
974
975 static inline void
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)976 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
977 {
978 }
979
lock_page_memcg(struct page * page)980 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
981 {
982 return NULL;
983 }
984
__unlock_page_memcg(struct mem_cgroup * memcg)985 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
986 {
987 }
988
unlock_page_memcg(struct page * page)989 static inline void unlock_page_memcg(struct page *page)
990 {
991 }
992
mem_cgroup_handle_over_high(void)993 static inline void mem_cgroup_handle_over_high(void)
994 {
995 }
996
mem_cgroup_enter_user_fault(void)997 static inline void mem_cgroup_enter_user_fault(void)
998 {
999 }
1000
mem_cgroup_exit_user_fault(void)1001 static inline void mem_cgroup_exit_user_fault(void)
1002 {
1003 }
1004
task_in_memcg_oom(struct task_struct * p)1005 static inline bool task_in_memcg_oom(struct task_struct *p)
1006 {
1007 return false;
1008 }
1009
mem_cgroup_oom_synchronize(bool wait)1010 static inline bool mem_cgroup_oom_synchronize(bool wait)
1011 {
1012 return false;
1013 }
1014
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1015 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1016 struct task_struct *victim, struct mem_cgroup *oom_domain)
1017 {
1018 return NULL;
1019 }
1020
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1021 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1022 {
1023 }
1024
memcg_page_state(struct mem_cgroup * memcg,int idx)1025 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
1026 int idx)
1027 {
1028 return 0;
1029 }
1030
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1031 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1032 int idx,
1033 int nr)
1034 {
1035 }
1036
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1037 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1038 int idx,
1039 int nr)
1040 {
1041 }
1042
__mod_memcg_page_state(struct page * page,int idx,int nr)1043 static inline void __mod_memcg_page_state(struct page *page,
1044 int idx,
1045 int nr)
1046 {
1047 }
1048
mod_memcg_page_state(struct page * page,int idx,int nr)1049 static inline void mod_memcg_page_state(struct page *page,
1050 int idx,
1051 int nr)
1052 {
1053 }
1054
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1055 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1056 enum node_stat_item idx)
1057 {
1058 return node_page_state(lruvec_pgdat(lruvec), idx);
1059 }
1060
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1061 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1062 enum node_stat_item idx, int val)
1063 {
1064 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1065 }
1066
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1067 static inline void mod_lruvec_state(struct lruvec *lruvec,
1068 enum node_stat_item idx, int val)
1069 {
1070 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1071 }
1072
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1073 static inline void __mod_lruvec_page_state(struct page *page,
1074 enum node_stat_item idx, int val)
1075 {
1076 __mod_node_page_state(page_pgdat(page), idx, val);
1077 }
1078
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1079 static inline void mod_lruvec_page_state(struct page *page,
1080 enum node_stat_item idx, int val)
1081 {
1082 mod_node_page_state(page_pgdat(page), idx, val);
1083 }
1084
1085 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1086 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1087 gfp_t gfp_mask,
1088 unsigned long *total_scanned)
1089 {
1090 return 0;
1091 }
1092
mem_cgroup_split_huge_fixup(struct page * head)1093 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1094 {
1095 }
1096
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1097 static inline void count_memcg_events(struct mem_cgroup *memcg,
1098 enum vm_event_item idx,
1099 unsigned long count)
1100 {
1101 }
1102
count_memcg_page_event(struct page * page,int idx)1103 static inline void count_memcg_page_event(struct page *page,
1104 int idx)
1105 {
1106 }
1107
1108 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1109 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1110 {
1111 }
1112 #endif /* CONFIG_MEMCG */
1113
1114 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_state(struct mem_cgroup * memcg,int idx)1115 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1116 int idx)
1117 {
1118 __mod_memcg_state(memcg, idx, 1);
1119 }
1120
1121 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_state(struct mem_cgroup * memcg,int idx)1122 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1123 int idx)
1124 {
1125 __mod_memcg_state(memcg, idx, -1);
1126 }
1127
1128 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_page_state(struct page * page,int idx)1129 static inline void __inc_memcg_page_state(struct page *page,
1130 int idx)
1131 {
1132 __mod_memcg_page_state(page, idx, 1);
1133 }
1134
1135 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_page_state(struct page * page,int idx)1136 static inline void __dec_memcg_page_state(struct page *page,
1137 int idx)
1138 {
1139 __mod_memcg_page_state(page, idx, -1);
1140 }
1141
__inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1142 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1143 enum node_stat_item idx)
1144 {
1145 __mod_lruvec_state(lruvec, idx, 1);
1146 }
1147
__dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1148 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1149 enum node_stat_item idx)
1150 {
1151 __mod_lruvec_state(lruvec, idx, -1);
1152 }
1153
__inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1154 static inline void __inc_lruvec_page_state(struct page *page,
1155 enum node_stat_item idx)
1156 {
1157 __mod_lruvec_page_state(page, idx, 1);
1158 }
1159
__dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1160 static inline void __dec_lruvec_page_state(struct page *page,
1161 enum node_stat_item idx)
1162 {
1163 __mod_lruvec_page_state(page, idx, -1);
1164 }
1165
1166 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_state(struct mem_cgroup * memcg,int idx)1167 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1168 int idx)
1169 {
1170 mod_memcg_state(memcg, idx, 1);
1171 }
1172
1173 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_state(struct mem_cgroup * memcg,int idx)1174 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1175 int idx)
1176 {
1177 mod_memcg_state(memcg, idx, -1);
1178 }
1179
1180 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_page_state(struct page * page,int idx)1181 static inline void inc_memcg_page_state(struct page *page,
1182 int idx)
1183 {
1184 mod_memcg_page_state(page, idx, 1);
1185 }
1186
1187 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_page_state(struct page * page,int idx)1188 static inline void dec_memcg_page_state(struct page *page,
1189 int idx)
1190 {
1191 mod_memcg_page_state(page, idx, -1);
1192 }
1193
inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1194 static inline void inc_lruvec_state(struct lruvec *lruvec,
1195 enum node_stat_item idx)
1196 {
1197 mod_lruvec_state(lruvec, idx, 1);
1198 }
1199
dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1200 static inline void dec_lruvec_state(struct lruvec *lruvec,
1201 enum node_stat_item idx)
1202 {
1203 mod_lruvec_state(lruvec, idx, -1);
1204 }
1205
inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1206 static inline void inc_lruvec_page_state(struct page *page,
1207 enum node_stat_item idx)
1208 {
1209 mod_lruvec_page_state(page, idx, 1);
1210 }
1211
dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1212 static inline void dec_lruvec_page_state(struct page *page,
1213 enum node_stat_item idx)
1214 {
1215 mod_lruvec_page_state(page, idx, -1);
1216 }
1217
1218 #ifdef CONFIG_CGROUP_WRITEBACK
1219
1220 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1221 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1222 unsigned long *pheadroom, unsigned long *pdirty,
1223 unsigned long *pwriteback);
1224
1225 #else /* CONFIG_CGROUP_WRITEBACK */
1226
mem_cgroup_wb_domain(struct bdi_writeback * wb)1227 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1228 {
1229 return NULL;
1230 }
1231
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1232 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1233 unsigned long *pfilepages,
1234 unsigned long *pheadroom,
1235 unsigned long *pdirty,
1236 unsigned long *pwriteback)
1237 {
1238 }
1239
1240 #endif /* CONFIG_CGROUP_WRITEBACK */
1241
1242 struct sock;
1243 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1244 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1245 #ifdef CONFIG_MEMCG
1246 extern struct static_key_false memcg_sockets_enabled_key;
1247 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1248 void mem_cgroup_sk_alloc(struct sock *sk);
1249 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1250 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1251 {
1252 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1253 return true;
1254 do {
1255 if (time_before(jiffies, memcg->socket_pressure))
1256 return true;
1257 } while ((memcg = parent_mem_cgroup(memcg)));
1258 return false;
1259 }
1260 #else
1261 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1262 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1263 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1264 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1265 {
1266 return false;
1267 }
1268 #endif
1269
1270 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1271 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1272 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1273 struct mem_cgroup *memcg);
1274 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1275 void memcg_kmem_uncharge(struct page *page, int order);
1276
1277 #ifdef CONFIG_MEMCG_KMEM
1278 extern struct static_key_false memcg_kmem_enabled_key;
1279 extern struct workqueue_struct *memcg_kmem_cache_wq;
1280
1281 extern int memcg_nr_cache_ids;
1282 void memcg_get_cache_ids(void);
1283 void memcg_put_cache_ids(void);
1284
1285 /*
1286 * Helper macro to loop through all memcg-specific caches. Callers must still
1287 * check if the cache is valid (it is either valid or NULL).
1288 * the slab_mutex must be held when looping through those caches
1289 */
1290 #define for_each_memcg_cache_index(_idx) \
1291 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1292
memcg_kmem_enabled(void)1293 static inline bool memcg_kmem_enabled(void)
1294 {
1295 return static_branch_unlikely(&memcg_kmem_enabled_key);
1296 }
1297
1298 /*
1299 * helper for accessing a memcg's index. It will be used as an index in the
1300 * child cache array in kmem_cache, and also to derive its name. This function
1301 * will return -1 when this is not a kmem-limited memcg.
1302 */
memcg_cache_id(struct mem_cgroup * memcg)1303 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1304 {
1305 return memcg ? memcg->kmemcg_id : -1;
1306 }
1307
1308 extern int memcg_expand_shrinker_maps(int new_id);
1309
1310 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1311 int nid, int shrinker_id);
1312 #else
1313 #define for_each_memcg_cache_index(_idx) \
1314 for (; NULL; )
1315
memcg_kmem_enabled(void)1316 static inline bool memcg_kmem_enabled(void)
1317 {
1318 return false;
1319 }
1320
memcg_cache_id(struct mem_cgroup * memcg)1321 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1322 {
1323 return -1;
1324 }
1325
memcg_get_cache_ids(void)1326 static inline void memcg_get_cache_ids(void)
1327 {
1328 }
1329
memcg_put_cache_ids(void)1330 static inline void memcg_put_cache_ids(void)
1331 {
1332 }
1333
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1334 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1335 int nid, int shrinker_id) { }
1336 #endif /* CONFIG_MEMCG_KMEM */
1337
1338 #endif /* _LINUX_MEMCONTROL_H */
1339