1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages, which can never be swapped out. Some
21  * of them might not even exist...
22  *
23  * The PG_private bitflag is set on pagecache pages if they contain filesystem
24  * specific data (which is normally at page->private). It can be used by
25  * private allocations for its own usage.
26  *
27  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
28  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
29  * is set before writeback starts and cleared when it finishes.
30  *
31  * PG_locked also pins a page in pagecache, and blocks truncation of the file
32  * while it is held.
33  *
34  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
35  * to become unlocked.
36  *
37  * PG_uptodate tells whether the page's contents is valid.  When a read
38  * completes, the page becomes uptodate, unless a disk I/O error happened.
39  *
40  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
41  * file-backed pagecache (see mm/vmscan.c).
42  *
43  * PG_error is set to indicate that an I/O error occurred on this page.
44  *
45  * PG_arch_1 is an architecture specific page state bit.  The generic code
46  * guarantees that this bit is cleared for a page when it first is entered into
47  * the page cache.
48  *
49  * PG_hwpoison indicates that a page got corrupted in hardware and contains
50  * data with incorrect ECC bits that triggered a machine check. Accessing is
51  * not safe since it may cause another machine check. Don't touch!
52  */
53 
54 /*
55  * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
56  * locked- and dirty-page accounting.
57  *
58  * The page flags field is split into two parts, the main flags area
59  * which extends from the low bits upwards, and the fields area which
60  * extends from the high bits downwards.
61  *
62  *  | FIELD | ... | FLAGS |
63  *  N-1           ^       0
64  *               (NR_PAGEFLAGS)
65  *
66  * The fields area is reserved for fields mapping zone, node (for NUMA) and
67  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
68  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
69  */
70 enum pageflags {
71 	PG_locked,		/* Page is locked. Don't touch. */
72 	PG_error,
73 	PG_referenced,
74 	PG_uptodate,
75 	PG_dirty,
76 	PG_lru,
77 	PG_active,
78 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
79 	PG_slab,
80 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
81 	PG_arch_1,
82 	PG_reserved,
83 	PG_private,		/* If pagecache, has fs-private data */
84 	PG_private_2,		/* If pagecache, has fs aux data */
85 	PG_writeback,		/* Page is under writeback */
86 	PG_head,		/* A head page */
87 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
88 	PG_reclaim,		/* To be reclaimed asap */
89 	PG_swapbacked,		/* Page is backed by RAM/swap */
90 	PG_unevictable,		/* Page is "unevictable"  */
91 #ifdef CONFIG_MMU
92 	PG_mlocked,		/* Page is vma mlocked */
93 #endif
94 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
95 	PG_uncached,		/* Page has been mapped as uncached */
96 #endif
97 #ifdef CONFIG_MEMORY_FAILURE
98 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
99 #endif
100 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
101 	PG_young,
102 	PG_idle,
103 #endif
104 	__NR_PAGEFLAGS,
105 
106 	/* Filesystems */
107 	PG_checked = PG_owner_priv_1,
108 
109 	/* SwapBacked */
110 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
111 
112 	/* Two page bits are conscripted by FS-Cache to maintain local caching
113 	 * state.  These bits are set on pages belonging to the netfs's inodes
114 	 * when those inodes are being locally cached.
115 	 */
116 	PG_fscache = PG_private_2,	/* page backed by cache */
117 
118 	/* XEN */
119 	/* Pinned in Xen as a read-only pagetable page. */
120 	PG_pinned = PG_owner_priv_1,
121 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
122 	PG_savepinned = PG_dirty,
123 	/* Has a grant mapping of another (foreign) domain's page. */
124 	PG_foreign = PG_owner_priv_1,
125 
126 	/* SLOB */
127 	PG_slob_free = PG_private,
128 
129 	/* Compound pages. Stored in first tail page's flags */
130 	PG_double_map = PG_private_2,
131 
132 	/* non-lru isolated movable page */
133 	PG_isolated = PG_reclaim,
134 };
135 
136 #ifndef __GENERATING_BOUNDS_H
137 
138 struct page;	/* forward declaration */
139 
compound_head(struct page * page)140 static inline struct page *compound_head(struct page *page)
141 {
142 	unsigned long head = READ_ONCE(page->compound_head);
143 
144 	if (unlikely(head & 1))
145 		return (struct page *) (head - 1);
146 	return page;
147 }
148 
PageTail(struct page * page)149 static __always_inline int PageTail(struct page *page)
150 {
151 	return READ_ONCE(page->compound_head) & 1;
152 }
153 
PageCompound(struct page * page)154 static __always_inline int PageCompound(struct page *page)
155 {
156 	return test_bit(PG_head, &page->flags) || PageTail(page);
157 }
158 
159 #define	PAGE_POISON_PATTERN	-1l
PagePoisoned(const struct page * page)160 static inline int PagePoisoned(const struct page *page)
161 {
162 	return page->flags == PAGE_POISON_PATTERN;
163 }
164 
165 /*
166  * Page flags policies wrt compound pages
167  *
168  * PF_POISONED_CHECK
169  *     check if this struct page poisoned/uninitialized
170  *
171  * PF_ANY:
172  *     the page flag is relevant for small, head and tail pages.
173  *
174  * PF_HEAD:
175  *     for compound page all operations related to the page flag applied to
176  *     head page.
177  *
178  * PF_ONLY_HEAD:
179  *     for compound page, callers only ever operate on the head page.
180  *
181  * PF_NO_TAIL:
182  *     modifications of the page flag must be done on small or head pages,
183  *     checks can be done on tail pages too.
184  *
185  * PF_NO_COMPOUND:
186  *     the page flag is not relevant for compound pages.
187  */
188 #define PF_POISONED_CHECK(page) ({					\
189 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
190 		page; })
191 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
192 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
193 #define PF_ONLY_HEAD(page, enforce) ({					\
194 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
195 		PF_POISONED_CHECK(page); })
196 #define PF_NO_TAIL(page, enforce) ({					\
197 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
198 		PF_POISONED_CHECK(compound_head(page)); })
199 #define PF_NO_COMPOUND(page, enforce) ({				\
200 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
201 		PF_POISONED_CHECK(page); })
202 
203 /*
204  * Macros to create function definitions for page flags
205  */
206 #define TESTPAGEFLAG(uname, lname, policy)				\
207 static __always_inline int Page##uname(struct page *page)		\
208 	{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
209 
210 #define SETPAGEFLAG(uname, lname, policy)				\
211 static __always_inline void SetPage##uname(struct page *page)		\
212 	{ set_bit(PG_##lname, &policy(page, 1)->flags); }
213 
214 #define CLEARPAGEFLAG(uname, lname, policy)				\
215 static __always_inline void ClearPage##uname(struct page *page)		\
216 	{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
217 
218 #define __SETPAGEFLAG(uname, lname, policy)				\
219 static __always_inline void __SetPage##uname(struct page *page)		\
220 	{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
221 
222 #define __CLEARPAGEFLAG(uname, lname, policy)				\
223 static __always_inline void __ClearPage##uname(struct page *page)	\
224 	{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
225 
226 #define TESTSETFLAG(uname, lname, policy)				\
227 static __always_inline int TestSetPage##uname(struct page *page)	\
228 	{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
229 
230 #define TESTCLEARFLAG(uname, lname, policy)				\
231 static __always_inline int TestClearPage##uname(struct page *page)	\
232 	{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
233 
234 #define PAGEFLAG(uname, lname, policy)					\
235 	TESTPAGEFLAG(uname, lname, policy)				\
236 	SETPAGEFLAG(uname, lname, policy)				\
237 	CLEARPAGEFLAG(uname, lname, policy)
238 
239 #define __PAGEFLAG(uname, lname, policy)				\
240 	TESTPAGEFLAG(uname, lname, policy)				\
241 	__SETPAGEFLAG(uname, lname, policy)				\
242 	__CLEARPAGEFLAG(uname, lname, policy)
243 
244 #define TESTSCFLAG(uname, lname, policy)				\
245 	TESTSETFLAG(uname, lname, policy)				\
246 	TESTCLEARFLAG(uname, lname, policy)
247 
248 #define TESTPAGEFLAG_FALSE(uname)					\
249 static inline int Page##uname(const struct page *page) { return 0; }
250 
251 #define SETPAGEFLAG_NOOP(uname)						\
252 static inline void SetPage##uname(struct page *page) {  }
253 
254 #define CLEARPAGEFLAG_NOOP(uname)					\
255 static inline void ClearPage##uname(struct page *page) {  }
256 
257 #define __CLEARPAGEFLAG_NOOP(uname)					\
258 static inline void __ClearPage##uname(struct page *page) {  }
259 
260 #define TESTSETFLAG_FALSE(uname)					\
261 static inline int TestSetPage##uname(struct page *page) { return 0; }
262 
263 #define TESTCLEARFLAG_FALSE(uname)					\
264 static inline int TestClearPage##uname(struct page *page) { return 0; }
265 
266 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
267 	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
268 
269 #define TESTSCFLAG_FALSE(uname)						\
270 	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
271 
272 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
273 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
274 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
275 PAGEFLAG(Referenced, referenced, PF_HEAD)
276 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
277 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
278 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
279 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
280 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
281 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
282 	TESTCLEARFLAG(Active, active, PF_HEAD)
283 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
284 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
285 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
286 
287 /* Xen */
288 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
289 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
290 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
291 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
292 
PAGEFLAG(Reserved,reserved,PF_NO_COMPOUND)293 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
294 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
295 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
296 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
297 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
298 
299 /*
300  * Private page markings that may be used by the filesystem that owns the page
301  * for its own purposes.
302  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
303  */
304 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
305 	__CLEARPAGEFLAG(Private, private, PF_ANY)
306 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
307 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
308 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
309 
310 /*
311  * Only test-and-set exist for PG_writeback.  The unconditional operators are
312  * risky: they bypass page accounting.
313  */
314 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
315 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
316 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
317 
318 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
319 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
320 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
321 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
322 	TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
323 
324 #ifdef CONFIG_HIGHMEM
325 /*
326  * Must use a macro here due to header dependency issues. page_zone() is not
327  * available at this point.
328  */
329 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
330 #else
331 PAGEFLAG_FALSE(HighMem)
332 #endif
333 
334 #ifdef CONFIG_SWAP
335 static __always_inline int PageSwapCache(struct page *page)
336 {
337 #ifdef CONFIG_THP_SWAP
338 	page = compound_head(page);
339 #endif
340 	return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
341 
342 }
343 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
344 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
345 #else
346 PAGEFLAG_FALSE(SwapCache)
347 #endif
348 
349 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
350 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
351 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
352 
353 #ifdef CONFIG_MMU
354 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
355 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
356 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
357 #else
358 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
359 	TESTSCFLAG_FALSE(Mlocked)
360 #endif
361 
362 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
363 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
364 #else
365 PAGEFLAG_FALSE(Uncached)
366 #endif
367 
368 #ifdef CONFIG_MEMORY_FAILURE
369 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
370 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
371 #define __PG_HWPOISON (1UL << PG_hwpoison)
372 extern bool set_hwpoison_free_buddy_page(struct page *page);
373 #else
374 PAGEFLAG_FALSE(HWPoison)
375 static inline bool set_hwpoison_free_buddy_page(struct page *page)
376 {
377 	return 0;
378 }
379 #define __PG_HWPOISON 0
380 #endif
381 
382 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)383 TESTPAGEFLAG(Young, young, PF_ANY)
384 SETPAGEFLAG(Young, young, PF_ANY)
385 TESTCLEARFLAG(Young, young, PF_ANY)
386 PAGEFLAG(Idle, idle, PF_ANY)
387 #endif
388 
389 /*
390  * On an anonymous page mapped into a user virtual memory area,
391  * page->mapping points to its anon_vma, not to a struct address_space;
392  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
393  *
394  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
395  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
396  * bit; and then page->mapping points, not to an anon_vma, but to a private
397  * structure which KSM associates with that merged page.  See ksm.h.
398  *
399  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
400  * page and then page->mapping points a struct address_space.
401  *
402  * Please note that, confusingly, "page_mapping" refers to the inode
403  * address_space which maps the page from disk; whereas "page_mapped"
404  * refers to user virtual address space into which the page is mapped.
405  */
406 #define PAGE_MAPPING_ANON	0x1
407 #define PAGE_MAPPING_MOVABLE	0x2
408 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
409 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
410 
411 static __always_inline int PageMappingFlags(struct page *page)
412 {
413 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
414 }
415 
PageAnon(struct page * page)416 static __always_inline int PageAnon(struct page *page)
417 {
418 	page = compound_head(page);
419 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
420 }
421 
__PageMovable(struct page * page)422 static __always_inline int __PageMovable(struct page *page)
423 {
424 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
425 				PAGE_MAPPING_MOVABLE;
426 }
427 
428 #ifdef CONFIG_KSM
429 /*
430  * A KSM page is one of those write-protected "shared pages" or "merged pages"
431  * which KSM maps into multiple mms, wherever identical anonymous page content
432  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
433  * anon_vma, but to that page's node of the stable tree.
434  */
PageKsm(struct page * page)435 static __always_inline int PageKsm(struct page *page)
436 {
437 	page = compound_head(page);
438 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
439 				PAGE_MAPPING_KSM;
440 }
441 #else
442 TESTPAGEFLAG_FALSE(Ksm)
443 #endif
444 
445 u64 stable_page_flags(struct page *page);
446 
PageUptodate(struct page * page)447 static inline int PageUptodate(struct page *page)
448 {
449 	int ret;
450 	page = compound_head(page);
451 	ret = test_bit(PG_uptodate, &(page)->flags);
452 	/*
453 	 * Must ensure that the data we read out of the page is loaded
454 	 * _after_ we've loaded page->flags to check for PageUptodate.
455 	 * We can skip the barrier if the page is not uptodate, because
456 	 * we wouldn't be reading anything from it.
457 	 *
458 	 * See SetPageUptodate() for the other side of the story.
459 	 */
460 	if (ret)
461 		smp_rmb();
462 
463 	return ret;
464 }
465 
__SetPageUptodate(struct page * page)466 static __always_inline void __SetPageUptodate(struct page *page)
467 {
468 	VM_BUG_ON_PAGE(PageTail(page), page);
469 	smp_wmb();
470 	__set_bit(PG_uptodate, &page->flags);
471 }
472 
SetPageUptodate(struct page * page)473 static __always_inline void SetPageUptodate(struct page *page)
474 {
475 	VM_BUG_ON_PAGE(PageTail(page), page);
476 	/*
477 	 * Memory barrier must be issued before setting the PG_uptodate bit,
478 	 * so that all previous stores issued in order to bring the page
479 	 * uptodate are actually visible before PageUptodate becomes true.
480 	 */
481 	smp_wmb();
482 	set_bit(PG_uptodate, &page->flags);
483 }
484 
485 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
486 
487 int test_clear_page_writeback(struct page *page);
488 int __test_set_page_writeback(struct page *page, bool keep_write);
489 
490 #define test_set_page_writeback(page)			\
491 	__test_set_page_writeback(page, false)
492 #define test_set_page_writeback_keepwrite(page)	\
493 	__test_set_page_writeback(page, true)
494 
set_page_writeback(struct page * page)495 static inline void set_page_writeback(struct page *page)
496 {
497 	test_set_page_writeback(page);
498 }
499 
set_page_writeback_keepwrite(struct page * page)500 static inline void set_page_writeback_keepwrite(struct page *page)
501 {
502 	test_set_page_writeback_keepwrite(page);
503 }
504 
__PAGEFLAG(Head,head,PF_ANY)505 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
506 
507 static __always_inline void set_compound_head(struct page *page, struct page *head)
508 {
509 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
510 }
511 
clear_compound_head(struct page * page)512 static __always_inline void clear_compound_head(struct page *page)
513 {
514 	WRITE_ONCE(page->compound_head, 0);
515 }
516 
517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)518 static inline void ClearPageCompound(struct page *page)
519 {
520 	BUG_ON(!PageHead(page));
521 	ClearPageHead(page);
522 }
523 #endif
524 
525 #define PG_head_mask ((1UL << PG_head))
526 
527 #ifdef CONFIG_HUGETLB_PAGE
528 int PageHuge(struct page *page);
529 int PageHeadHuge(struct page *page);
530 bool page_huge_active(struct page *page);
531 #else
532 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)533 TESTPAGEFLAG_FALSE(HeadHuge)
534 
535 static inline bool page_huge_active(struct page *page)
536 {
537 	return 0;
538 }
539 #endif
540 
541 
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 /*
544  * PageHuge() only returns true for hugetlbfs pages, but not for
545  * normal or transparent huge pages.
546  *
547  * PageTransHuge() returns true for both transparent huge and
548  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
549  * called only in the core VM paths where hugetlbfs pages can't exist.
550  */
PageTransHuge(struct page * page)551 static inline int PageTransHuge(struct page *page)
552 {
553 	VM_BUG_ON_PAGE(PageTail(page), page);
554 	return PageHead(page);
555 }
556 
557 /*
558  * PageTransCompound returns true for both transparent huge pages
559  * and hugetlbfs pages, so it should only be called when it's known
560  * that hugetlbfs pages aren't involved.
561  */
PageTransCompound(struct page * page)562 static inline int PageTransCompound(struct page *page)
563 {
564 	return PageCompound(page);
565 }
566 
567 /*
568  * PageTransCompoundMap is the same as PageTransCompound, but it also
569  * guarantees the primary MMU has the entire compound page mapped
570  * through pmd_trans_huge, which in turn guarantees the secondary MMUs
571  * can also map the entire compound page. This allows the secondary
572  * MMUs to call get_user_pages() only once for each compound page and
573  * to immediately map the entire compound page with a single secondary
574  * MMU fault. If there will be a pmd split later, the secondary MMUs
575  * will get an update through the MMU notifier invalidation through
576  * split_huge_pmd().
577  *
578  * Unlike PageTransCompound, this is safe to be called only while
579  * split_huge_pmd() cannot run from under us, like if protected by the
580  * MMU notifier, otherwise it may result in page->_mapcount check false
581  * positives.
582  *
583  * We have to treat page cache THP differently since every subpage of it
584  * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
585  * mapped in the current process so comparing subpage's _mapcount to
586  * compound_mapcount to filter out PTE mapped case.
587  */
PageTransCompoundMap(struct page * page)588 static inline int PageTransCompoundMap(struct page *page)
589 {
590 	struct page *head;
591 
592 	if (!PageTransCompound(page))
593 		return 0;
594 
595 	if (PageAnon(page))
596 		return atomic_read(&page->_mapcount) < 0;
597 
598 	head = compound_head(page);
599 	/* File THP is PMD mapped and not PTE mapped */
600 	return atomic_read(&page->_mapcount) ==
601 	       atomic_read(compound_mapcount_ptr(head));
602 }
603 
604 /*
605  * PageTransTail returns true for both transparent huge pages
606  * and hugetlbfs pages, so it should only be called when it's known
607  * that hugetlbfs pages aren't involved.
608  */
PageTransTail(struct page * page)609 static inline int PageTransTail(struct page *page)
610 {
611 	return PageTail(page);
612 }
613 
614 /*
615  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
616  * as PMDs.
617  *
618  * This is required for optimization of rmap operations for THP: we can postpone
619  * per small page mapcount accounting (and its overhead from atomic operations)
620  * until the first PMD split.
621  *
622  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
623  * by one. This reference will go away with last compound_mapcount.
624  *
625  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
626  */
PageDoubleMap(struct page * page)627 static inline int PageDoubleMap(struct page *page)
628 {
629 	return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
630 }
631 
SetPageDoubleMap(struct page * page)632 static inline void SetPageDoubleMap(struct page *page)
633 {
634 	VM_BUG_ON_PAGE(!PageHead(page), page);
635 	set_bit(PG_double_map, &page[1].flags);
636 }
637 
ClearPageDoubleMap(struct page * page)638 static inline void ClearPageDoubleMap(struct page *page)
639 {
640 	VM_BUG_ON_PAGE(!PageHead(page), page);
641 	clear_bit(PG_double_map, &page[1].flags);
642 }
TestSetPageDoubleMap(struct page * page)643 static inline int TestSetPageDoubleMap(struct page *page)
644 {
645 	VM_BUG_ON_PAGE(!PageHead(page), page);
646 	return test_and_set_bit(PG_double_map, &page[1].flags);
647 }
648 
TestClearPageDoubleMap(struct page * page)649 static inline int TestClearPageDoubleMap(struct page *page)
650 {
651 	VM_BUG_ON_PAGE(!PageHead(page), page);
652 	return test_and_clear_bit(PG_double_map, &page[1].flags);
653 }
654 
655 #else
656 TESTPAGEFLAG_FALSE(TransHuge)
657 TESTPAGEFLAG_FALSE(TransCompound)
658 TESTPAGEFLAG_FALSE(TransCompoundMap)
659 TESTPAGEFLAG_FALSE(TransTail)
660 PAGEFLAG_FALSE(DoubleMap)
661 	TESTSETFLAG_FALSE(DoubleMap)
662 	TESTCLEARFLAG_FALSE(DoubleMap)
663 #endif
664 
665 /*
666  * For pages that are never mapped to userspace (and aren't PageSlab),
667  * page_type may be used.  Because it is initialised to -1, we invert the
668  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
669  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
670  * low bits so that an underflow or overflow of page_mapcount() won't be
671  * mistaken for a page type value.
672  */
673 
674 #define PAGE_TYPE_BASE	0xf0000000
675 /* Reserve		0x0000007f to catch underflows of page_mapcount */
676 #define PG_buddy	0x00000080
677 #define PG_balloon	0x00000100
678 #define PG_kmemcg	0x00000200
679 #define PG_table	0x00000400
680 
681 #define PageType(page, flag)						\
682 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
683 
684 #define PAGE_TYPE_OPS(uname, lname)					\
685 static __always_inline int Page##uname(struct page *page)		\
686 {									\
687 	return PageType(page, PG_##lname);				\
688 }									\
689 static __always_inline void __SetPage##uname(struct page *page)		\
690 {									\
691 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
692 	page->page_type &= ~PG_##lname;					\
693 }									\
694 static __always_inline void __ClearPage##uname(struct page *page)	\
695 {									\
696 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
697 	page->page_type |= PG_##lname;					\
698 }
699 
700 /*
701  * PageBuddy() indicates that the page is free and in the buddy system
702  * (see mm/page_alloc.c).
703  */
704 PAGE_TYPE_OPS(Buddy, buddy)
705 
706 /*
707  * PageBalloon() is true for pages that are on the balloon page list
708  * (see mm/balloon_compaction.c).
709  */
710 PAGE_TYPE_OPS(Balloon, balloon)
711 
712 /*
713  * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
714  * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
715  */
716 PAGE_TYPE_OPS(Kmemcg, kmemcg)
717 
718 /*
719  * Marks pages in use as page tables.
720  */
721 PAGE_TYPE_OPS(Table, table)
722 
723 extern bool is_free_buddy_page(struct page *page);
724 
725 __PAGEFLAG(Isolated, isolated, PF_ANY);
726 
727 /*
728  * If network-based swap is enabled, sl*b must keep track of whether pages
729  * were allocated from pfmemalloc reserves.
730  */
PageSlabPfmemalloc(struct page * page)731 static inline int PageSlabPfmemalloc(struct page *page)
732 {
733 	VM_BUG_ON_PAGE(!PageSlab(page), page);
734 	return PageActive(page);
735 }
736 
SetPageSlabPfmemalloc(struct page * page)737 static inline void SetPageSlabPfmemalloc(struct page *page)
738 {
739 	VM_BUG_ON_PAGE(!PageSlab(page), page);
740 	SetPageActive(page);
741 }
742 
__ClearPageSlabPfmemalloc(struct page * page)743 static inline void __ClearPageSlabPfmemalloc(struct page *page)
744 {
745 	VM_BUG_ON_PAGE(!PageSlab(page), page);
746 	__ClearPageActive(page);
747 }
748 
ClearPageSlabPfmemalloc(struct page * page)749 static inline void ClearPageSlabPfmemalloc(struct page *page)
750 {
751 	VM_BUG_ON_PAGE(!PageSlab(page), page);
752 	ClearPageActive(page);
753 }
754 
755 #ifdef CONFIG_MMU
756 #define __PG_MLOCKED		(1UL << PG_mlocked)
757 #else
758 #define __PG_MLOCKED		0
759 #endif
760 
761 /*
762  * Flags checked when a page is freed.  Pages being freed should not have
763  * these flags set.  It they are, there is a problem.
764  */
765 #define PAGE_FLAGS_CHECK_AT_FREE				\
766 	(1UL << PG_lru		| 1UL << PG_locked	|	\
767 	 1UL << PG_private	| 1UL << PG_private_2	|	\
768 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
769 	 1UL << PG_slab		| 1UL << PG_active 	|	\
770 	 1UL << PG_unevictable	| __PG_MLOCKED)
771 
772 /*
773  * Flags checked when a page is prepped for return by the page allocator.
774  * Pages being prepped should not have these flags set.  It they are set,
775  * there has been a kernel bug or struct page corruption.
776  *
777  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
778  * alloc-free cycle to prevent from reusing the page.
779  */
780 #define PAGE_FLAGS_CHECK_AT_PREP	\
781 	(((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
782 
783 #define PAGE_FLAGS_PRIVATE				\
784 	(1UL << PG_private | 1UL << PG_private_2)
785 /**
786  * page_has_private - Determine if page has private stuff
787  * @page: The page to be checked
788  *
789  * Determine if a page has private stuff, indicating that release routines
790  * should be invoked upon it.
791  */
page_has_private(struct page * page)792 static inline int page_has_private(struct page *page)
793 {
794 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
795 }
796 
797 #undef PF_ANY
798 #undef PF_HEAD
799 #undef PF_ONLY_HEAD
800 #undef PF_NO_TAIL
801 #undef PF_NO_COMPOUND
802 #endif /* !__GENERATING_BOUNDS_H */
803 
804 #endif	/* PAGE_FLAGS_H */
805