1 /*
2 * SuperH On-Chip RTC Support
3 *
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
7 *
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
9 *
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
12 *
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
16 */
17 #include <linux/module.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/kernel.h>
20 #include <linux/bcd.h>
21 #include <linux/rtc.h>
22 #include <linux/init.h>
23 #include <linux/platform_device.h>
24 #include <linux/seq_file.h>
25 #include <linux/interrupt.h>
26 #include <linux/spinlock.h>
27 #include <linux/io.h>
28 #include <linux/log2.h>
29 #include <linux/clk.h>
30 #include <linux/slab.h>
31 #ifdef CONFIG_SUPERH
32 #include <asm/rtc.h>
33 #else
34 /* Default values for RZ/A RTC */
35 #define rtc_reg_size sizeof(u16)
36 #define RTC_BIT_INVERTED 0 /* no chip bugs */
37 #define RTC_CAP_4_DIGIT_YEAR (1 << 0)
38 #define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR
39 #endif
40
41 #define DRV_NAME "sh-rtc"
42
43 #define RTC_REG(r) ((r) * rtc_reg_size)
44
45 #define R64CNT RTC_REG(0)
46
47 #define RSECCNT RTC_REG(1) /* RTC sec */
48 #define RMINCNT RTC_REG(2) /* RTC min */
49 #define RHRCNT RTC_REG(3) /* RTC hour */
50 #define RWKCNT RTC_REG(4) /* RTC week */
51 #define RDAYCNT RTC_REG(5) /* RTC day */
52 #define RMONCNT RTC_REG(6) /* RTC month */
53 #define RYRCNT RTC_REG(7) /* RTC year */
54 #define RSECAR RTC_REG(8) /* ALARM sec */
55 #define RMINAR RTC_REG(9) /* ALARM min */
56 #define RHRAR RTC_REG(10) /* ALARM hour */
57 #define RWKAR RTC_REG(11) /* ALARM week */
58 #define RDAYAR RTC_REG(12) /* ALARM day */
59 #define RMONAR RTC_REG(13) /* ALARM month */
60 #define RCR1 RTC_REG(14) /* Control */
61 #define RCR2 RTC_REG(15) /* Control */
62
63 /*
64 * Note on RYRAR and RCR3: Up until this point most of the register
65 * definitions are consistent across all of the available parts. However,
66 * the placement of the optional RYRAR and RCR3 (the RYRAR control
67 * register used to control RYRCNT/RYRAR compare) varies considerably
68 * across various parts, occasionally being mapped in to a completely
69 * unrelated address space. For proper RYRAR support a separate resource
70 * would have to be handed off, but as this is purely optional in
71 * practice, we simply opt not to support it, thereby keeping the code
72 * quite a bit more simplified.
73 */
74
75 /* ALARM Bits - or with BCD encoded value */
76 #define AR_ENB 0x80 /* Enable for alarm cmp */
77
78 /* Period Bits */
79 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
80 #define PF_COUNT 0x200 /* Half periodic counter */
81 #define PF_OXS 0x400 /* Periodic One x Second */
82 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
83 #define PF_MASK 0xf00
84
85 /* RCR1 Bits */
86 #define RCR1_CF 0x80 /* Carry Flag */
87 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
88 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
89 #define RCR1_AF 0x01 /* Alarm Flag */
90
91 /* RCR2 Bits */
92 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
93 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
94 #define RCR2_RTCEN 0x08 /* ENable RTC */
95 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
96 #define RCR2_RESET 0x02 /* Reset bit */
97 #define RCR2_START 0x01 /* Start bit */
98
99 struct sh_rtc {
100 void __iomem *regbase;
101 unsigned long regsize;
102 struct resource *res;
103 int alarm_irq;
104 int periodic_irq;
105 int carry_irq;
106 struct clk *clk;
107 struct rtc_device *rtc_dev;
108 spinlock_t lock;
109 unsigned long capabilities; /* See asm/rtc.h for cap bits */
110 unsigned short periodic_freq;
111 };
112
__sh_rtc_interrupt(struct sh_rtc * rtc)113 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
114 {
115 unsigned int tmp, pending;
116
117 tmp = readb(rtc->regbase + RCR1);
118 pending = tmp & RCR1_CF;
119 tmp &= ~RCR1_CF;
120 writeb(tmp, rtc->regbase + RCR1);
121
122 /* Users have requested One x Second IRQ */
123 if (pending && rtc->periodic_freq & PF_OXS)
124 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
125
126 return pending;
127 }
128
__sh_rtc_alarm(struct sh_rtc * rtc)129 static int __sh_rtc_alarm(struct sh_rtc *rtc)
130 {
131 unsigned int tmp, pending;
132
133 tmp = readb(rtc->regbase + RCR1);
134 pending = tmp & RCR1_AF;
135 tmp &= ~(RCR1_AF | RCR1_AIE);
136 writeb(tmp, rtc->regbase + RCR1);
137
138 if (pending)
139 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
140
141 return pending;
142 }
143
__sh_rtc_periodic(struct sh_rtc * rtc)144 static int __sh_rtc_periodic(struct sh_rtc *rtc)
145 {
146 unsigned int tmp, pending;
147
148 tmp = readb(rtc->regbase + RCR2);
149 pending = tmp & RCR2_PEF;
150 tmp &= ~RCR2_PEF;
151 writeb(tmp, rtc->regbase + RCR2);
152
153 if (!pending)
154 return 0;
155
156 /* Half period enabled than one skipped and the next notified */
157 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
158 rtc->periodic_freq &= ~PF_COUNT;
159 else {
160 if (rtc->periodic_freq & PF_HP)
161 rtc->periodic_freq |= PF_COUNT;
162 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
163 }
164
165 return pending;
166 }
167
sh_rtc_interrupt(int irq,void * dev_id)168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
169 {
170 struct sh_rtc *rtc = dev_id;
171 int ret;
172
173 spin_lock(&rtc->lock);
174 ret = __sh_rtc_interrupt(rtc);
175 spin_unlock(&rtc->lock);
176
177 return IRQ_RETVAL(ret);
178 }
179
sh_rtc_alarm(int irq,void * dev_id)180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
181 {
182 struct sh_rtc *rtc = dev_id;
183 int ret;
184
185 spin_lock(&rtc->lock);
186 ret = __sh_rtc_alarm(rtc);
187 spin_unlock(&rtc->lock);
188
189 return IRQ_RETVAL(ret);
190 }
191
sh_rtc_periodic(int irq,void * dev_id)192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
193 {
194 struct sh_rtc *rtc = dev_id;
195 int ret;
196
197 spin_lock(&rtc->lock);
198 ret = __sh_rtc_periodic(rtc);
199 spin_unlock(&rtc->lock);
200
201 return IRQ_RETVAL(ret);
202 }
203
sh_rtc_shared(int irq,void * dev_id)204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
205 {
206 struct sh_rtc *rtc = dev_id;
207 int ret;
208
209 spin_lock(&rtc->lock);
210 ret = __sh_rtc_interrupt(rtc);
211 ret |= __sh_rtc_alarm(rtc);
212 ret |= __sh_rtc_periodic(rtc);
213 spin_unlock(&rtc->lock);
214
215 return IRQ_RETVAL(ret);
216 }
217
sh_rtc_setaie(struct device * dev,unsigned int enable)218 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
219 {
220 struct sh_rtc *rtc = dev_get_drvdata(dev);
221 unsigned int tmp;
222
223 spin_lock_irq(&rtc->lock);
224
225 tmp = readb(rtc->regbase + RCR1);
226
227 if (enable)
228 tmp |= RCR1_AIE;
229 else
230 tmp &= ~RCR1_AIE;
231
232 writeb(tmp, rtc->regbase + RCR1);
233
234 spin_unlock_irq(&rtc->lock);
235 }
236
sh_rtc_proc(struct device * dev,struct seq_file * seq)237 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
238 {
239 struct sh_rtc *rtc = dev_get_drvdata(dev);
240 unsigned int tmp;
241
242 tmp = readb(rtc->regbase + RCR1);
243 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
244
245 tmp = readb(rtc->regbase + RCR2);
246 seq_printf(seq, "periodic_IRQ\t: %s\n",
247 (tmp & RCR2_PESMASK) ? "yes" : "no");
248
249 return 0;
250 }
251
sh_rtc_setcie(struct device * dev,unsigned int enable)252 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
253 {
254 struct sh_rtc *rtc = dev_get_drvdata(dev);
255 unsigned int tmp;
256
257 spin_lock_irq(&rtc->lock);
258
259 tmp = readb(rtc->regbase + RCR1);
260
261 if (!enable)
262 tmp &= ~RCR1_CIE;
263 else
264 tmp |= RCR1_CIE;
265
266 writeb(tmp, rtc->regbase + RCR1);
267
268 spin_unlock_irq(&rtc->lock);
269 }
270
sh_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)271 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
272 {
273 sh_rtc_setaie(dev, enabled);
274 return 0;
275 }
276
sh_rtc_read_time(struct device * dev,struct rtc_time * tm)277 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
278 {
279 struct sh_rtc *rtc = dev_get_drvdata(dev);
280 unsigned int sec128, sec2, yr, yr100, cf_bit;
281
282 do {
283 unsigned int tmp;
284
285 spin_lock_irq(&rtc->lock);
286
287 tmp = readb(rtc->regbase + RCR1);
288 tmp &= ~RCR1_CF; /* Clear CF-bit */
289 tmp |= RCR1_CIE;
290 writeb(tmp, rtc->regbase + RCR1);
291
292 sec128 = readb(rtc->regbase + R64CNT);
293
294 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
295 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
296 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
297 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
298 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
299 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
300
301 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
302 yr = readw(rtc->regbase + RYRCNT);
303 yr100 = bcd2bin(yr >> 8);
304 yr &= 0xff;
305 } else {
306 yr = readb(rtc->regbase + RYRCNT);
307 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
308 }
309
310 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
311
312 sec2 = readb(rtc->regbase + R64CNT);
313 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
314
315 spin_unlock_irq(&rtc->lock);
316 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
317
318 #if RTC_BIT_INVERTED != 0
319 if ((sec128 & RTC_BIT_INVERTED))
320 tm->tm_sec--;
321 #endif
322
323 /* only keep the carry interrupt enabled if UIE is on */
324 if (!(rtc->periodic_freq & PF_OXS))
325 sh_rtc_setcie(dev, 0);
326
327 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
328 "mday=%d, mon=%d, year=%d, wday=%d\n",
329 __func__,
330 tm->tm_sec, tm->tm_min, tm->tm_hour,
331 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
332
333 return 0;
334 }
335
sh_rtc_set_time(struct device * dev,struct rtc_time * tm)336 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
337 {
338 struct sh_rtc *rtc = dev_get_drvdata(dev);
339 unsigned int tmp;
340 int year;
341
342 spin_lock_irq(&rtc->lock);
343
344 /* Reset pre-scaler & stop RTC */
345 tmp = readb(rtc->regbase + RCR2);
346 tmp |= RCR2_RESET;
347 tmp &= ~RCR2_START;
348 writeb(tmp, rtc->regbase + RCR2);
349
350 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
351 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
352 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
353 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
354 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
355 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
356
357 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
358 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
359 bin2bcd(tm->tm_year % 100);
360 writew(year, rtc->regbase + RYRCNT);
361 } else {
362 year = tm->tm_year % 100;
363 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
364 }
365
366 /* Start RTC */
367 tmp = readb(rtc->regbase + RCR2);
368 tmp &= ~RCR2_RESET;
369 tmp |= RCR2_RTCEN | RCR2_START;
370 writeb(tmp, rtc->regbase + RCR2);
371
372 spin_unlock_irq(&rtc->lock);
373
374 return 0;
375 }
376
sh_rtc_read_alarm_value(struct sh_rtc * rtc,int reg_off)377 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
378 {
379 unsigned int byte;
380 int value = -1; /* return -1 for ignored values */
381
382 byte = readb(rtc->regbase + reg_off);
383 if (byte & AR_ENB) {
384 byte &= ~AR_ENB; /* strip the enable bit */
385 value = bcd2bin(byte);
386 }
387
388 return value;
389 }
390
sh_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * wkalrm)391 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
392 {
393 struct sh_rtc *rtc = dev_get_drvdata(dev);
394 struct rtc_time *tm = &wkalrm->time;
395
396 spin_lock_irq(&rtc->lock);
397
398 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
399 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
400 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
401 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
402 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
403 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
404 if (tm->tm_mon > 0)
405 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
406
407 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
408
409 spin_unlock_irq(&rtc->lock);
410
411 return 0;
412 }
413
sh_rtc_write_alarm_value(struct sh_rtc * rtc,int value,int reg_off)414 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
415 int value, int reg_off)
416 {
417 /* < 0 for a value that is ignored */
418 if (value < 0)
419 writeb(0, rtc->regbase + reg_off);
420 else
421 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
422 }
423
sh_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * wkalrm)424 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
425 {
426 struct sh_rtc *rtc = dev_get_drvdata(dev);
427 unsigned int rcr1;
428 struct rtc_time *tm = &wkalrm->time;
429 int mon;
430
431 spin_lock_irq(&rtc->lock);
432
433 /* disable alarm interrupt and clear the alarm flag */
434 rcr1 = readb(rtc->regbase + RCR1);
435 rcr1 &= ~(RCR1_AF | RCR1_AIE);
436 writeb(rcr1, rtc->regbase + RCR1);
437
438 /* set alarm time */
439 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
440 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
441 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
442 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
443 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
444 mon = tm->tm_mon;
445 if (mon >= 0)
446 mon += 1;
447 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
448
449 if (wkalrm->enabled) {
450 rcr1 |= RCR1_AIE;
451 writeb(rcr1, rtc->regbase + RCR1);
452 }
453
454 spin_unlock_irq(&rtc->lock);
455
456 return 0;
457 }
458
459 static const struct rtc_class_ops sh_rtc_ops = {
460 .read_time = sh_rtc_read_time,
461 .set_time = sh_rtc_set_time,
462 .read_alarm = sh_rtc_read_alarm,
463 .set_alarm = sh_rtc_set_alarm,
464 .proc = sh_rtc_proc,
465 .alarm_irq_enable = sh_rtc_alarm_irq_enable,
466 };
467
sh_rtc_probe(struct platform_device * pdev)468 static int __init sh_rtc_probe(struct platform_device *pdev)
469 {
470 struct sh_rtc *rtc;
471 struct resource *res;
472 struct rtc_time r;
473 char clk_name[6];
474 int clk_id, ret;
475
476 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
477 if (unlikely(!rtc))
478 return -ENOMEM;
479
480 spin_lock_init(&rtc->lock);
481
482 /* get periodic/carry/alarm irqs */
483 ret = platform_get_irq(pdev, 0);
484 if (unlikely(ret <= 0)) {
485 dev_err(&pdev->dev, "No IRQ resource\n");
486 return -ENOENT;
487 }
488
489 rtc->periodic_irq = ret;
490 rtc->carry_irq = platform_get_irq(pdev, 1);
491 rtc->alarm_irq = platform_get_irq(pdev, 2);
492
493 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
494 if (!res)
495 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
496 if (unlikely(res == NULL)) {
497 dev_err(&pdev->dev, "No IO resource\n");
498 return -ENOENT;
499 }
500
501 rtc->regsize = resource_size(res);
502
503 rtc->res = devm_request_mem_region(&pdev->dev, res->start,
504 rtc->regsize, pdev->name);
505 if (unlikely(!rtc->res))
506 return -EBUSY;
507
508 rtc->regbase = devm_ioremap_nocache(&pdev->dev, rtc->res->start,
509 rtc->regsize);
510 if (unlikely(!rtc->regbase))
511 return -EINVAL;
512
513 if (!pdev->dev.of_node) {
514 clk_id = pdev->id;
515 /* With a single device, the clock id is still "rtc0" */
516 if (clk_id < 0)
517 clk_id = 0;
518
519 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
520 } else
521 snprintf(clk_name, sizeof(clk_name), "fck");
522
523 rtc->clk = devm_clk_get(&pdev->dev, clk_name);
524 if (IS_ERR(rtc->clk)) {
525 /*
526 * No error handling for rtc->clk intentionally, not all
527 * platforms will have a unique clock for the RTC, and
528 * the clk API can handle the struct clk pointer being
529 * NULL.
530 */
531 rtc->clk = NULL;
532 }
533
534 clk_enable(rtc->clk);
535
536 rtc->capabilities = RTC_DEF_CAPABILITIES;
537
538 #ifdef CONFIG_SUPERH
539 if (dev_get_platdata(&pdev->dev)) {
540 struct sh_rtc_platform_info *pinfo =
541 dev_get_platdata(&pdev->dev);
542
543 /*
544 * Some CPUs have special capabilities in addition to the
545 * default set. Add those in here.
546 */
547 rtc->capabilities |= pinfo->capabilities;
548 }
549 #endif
550
551 if (rtc->carry_irq <= 0) {
552 /* register shared periodic/carry/alarm irq */
553 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
554 sh_rtc_shared, 0, "sh-rtc", rtc);
555 if (unlikely(ret)) {
556 dev_err(&pdev->dev,
557 "request IRQ failed with %d, IRQ %d\n", ret,
558 rtc->periodic_irq);
559 goto err_unmap;
560 }
561 } else {
562 /* register periodic/carry/alarm irqs */
563 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
564 sh_rtc_periodic, 0, "sh-rtc period", rtc);
565 if (unlikely(ret)) {
566 dev_err(&pdev->dev,
567 "request period IRQ failed with %d, IRQ %d\n",
568 ret, rtc->periodic_irq);
569 goto err_unmap;
570 }
571
572 ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
573 sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
574 if (unlikely(ret)) {
575 dev_err(&pdev->dev,
576 "request carry IRQ failed with %d, IRQ %d\n",
577 ret, rtc->carry_irq);
578 goto err_unmap;
579 }
580
581 ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
582 sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
583 if (unlikely(ret)) {
584 dev_err(&pdev->dev,
585 "request alarm IRQ failed with %d, IRQ %d\n",
586 ret, rtc->alarm_irq);
587 goto err_unmap;
588 }
589 }
590
591 platform_set_drvdata(pdev, rtc);
592
593 /* everything disabled by default */
594 sh_rtc_setaie(&pdev->dev, 0);
595 sh_rtc_setcie(&pdev->dev, 0);
596
597 rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "sh",
598 &sh_rtc_ops, THIS_MODULE);
599 if (IS_ERR(rtc->rtc_dev)) {
600 ret = PTR_ERR(rtc->rtc_dev);
601 goto err_unmap;
602 }
603
604 rtc->rtc_dev->max_user_freq = 256;
605
606 /* reset rtc to epoch 0 if time is invalid */
607 if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
608 rtc_time_to_tm(0, &r);
609 rtc_set_time(rtc->rtc_dev, &r);
610 }
611
612 device_init_wakeup(&pdev->dev, 1);
613 return 0;
614
615 err_unmap:
616 clk_disable(rtc->clk);
617
618 return ret;
619 }
620
sh_rtc_remove(struct platform_device * pdev)621 static int __exit sh_rtc_remove(struct platform_device *pdev)
622 {
623 struct sh_rtc *rtc = platform_get_drvdata(pdev);
624
625 sh_rtc_setaie(&pdev->dev, 0);
626 sh_rtc_setcie(&pdev->dev, 0);
627
628 clk_disable(rtc->clk);
629
630 return 0;
631 }
632
sh_rtc_set_irq_wake(struct device * dev,int enabled)633 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
634 {
635 struct sh_rtc *rtc = dev_get_drvdata(dev);
636
637 irq_set_irq_wake(rtc->periodic_irq, enabled);
638
639 if (rtc->carry_irq > 0) {
640 irq_set_irq_wake(rtc->carry_irq, enabled);
641 irq_set_irq_wake(rtc->alarm_irq, enabled);
642 }
643 }
644
sh_rtc_suspend(struct device * dev)645 static int __maybe_unused sh_rtc_suspend(struct device *dev)
646 {
647 if (device_may_wakeup(dev))
648 sh_rtc_set_irq_wake(dev, 1);
649
650 return 0;
651 }
652
sh_rtc_resume(struct device * dev)653 static int __maybe_unused sh_rtc_resume(struct device *dev)
654 {
655 if (device_may_wakeup(dev))
656 sh_rtc_set_irq_wake(dev, 0);
657
658 return 0;
659 }
660
661 static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
662
663 static const struct of_device_id sh_rtc_of_match[] = {
664 { .compatible = "renesas,sh-rtc", },
665 { /* sentinel */ }
666 };
667 MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
668
669 static struct platform_driver sh_rtc_platform_driver = {
670 .driver = {
671 .name = DRV_NAME,
672 .pm = &sh_rtc_pm_ops,
673 .of_match_table = sh_rtc_of_match,
674 },
675 .remove = __exit_p(sh_rtc_remove),
676 };
677
678 module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
679
680 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
681 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
682 "Jamie Lenehan <lenehan@twibble.org>, "
683 "Angelo Castello <angelo.castello@st.com>");
684 MODULE_LICENSE("GPL");
685 MODULE_ALIAS("platform:" DRV_NAME);
686