1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/compiler.h>
38 #include <linux/atomic.h>
39 #include <linux/irqflags.h>
40 #include <linux/preempt.h>
41 #include <linux/bottom_half.h>
42 #include <linux/lockdep.h>
43 #include <asm/processor.h>
44 #include <linux/cpumask.h>
45
46 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
47 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
48 #define ulong2long(a) (*(long *)(&(a)))
49
50 /* Exported common interfaces */
51
52 #ifdef CONFIG_PREEMPT_RCU
53 void call_rcu(struct rcu_head *head, rcu_callback_t func);
54 #else /* #ifdef CONFIG_PREEMPT_RCU */
55 #define call_rcu call_rcu_sched
56 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
57
58 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
59 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
60 void synchronize_sched(void);
61 void rcu_barrier_tasks(void);
62
63 #ifdef CONFIG_PREEMPT_RCU
64
65 void __rcu_read_lock(void);
66 void __rcu_read_unlock(void);
67 void synchronize_rcu(void);
68
69 /*
70 * Defined as a macro as it is a very low level header included from
71 * areas that don't even know about current. This gives the rcu_read_lock()
72 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
73 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
74 */
75 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
76
77 #else /* #ifdef CONFIG_PREEMPT_RCU */
78
__rcu_read_lock(void)79 static inline void __rcu_read_lock(void)
80 {
81 preempt_disable();
82 }
83
__rcu_read_unlock(void)84 static inline void __rcu_read_unlock(void)
85 {
86 preempt_enable();
87 }
88
synchronize_rcu(void)89 static inline void synchronize_rcu(void)
90 {
91 synchronize_sched();
92 }
93
rcu_preempt_depth(void)94 static inline int rcu_preempt_depth(void)
95 {
96 return 0;
97 }
98
99 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
100
101 /* Internal to kernel */
102 void rcu_init(void);
103 extern int rcu_scheduler_active __read_mostly;
104 void rcu_sched_qs(void);
105 void rcu_bh_qs(void);
106 void rcu_check_callbacks(int user);
107 void rcu_report_dead(unsigned int cpu);
108 void rcutree_migrate_callbacks(int cpu);
109
110 #ifdef CONFIG_RCU_STALL_COMMON
111 void rcu_sysrq_start(void);
112 void rcu_sysrq_end(void);
113 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)114 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)115 static inline void rcu_sysrq_end(void) { }
116 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
117
118 #ifdef CONFIG_NO_HZ_FULL
119 void rcu_user_enter(void);
120 void rcu_user_exit(void);
121 #else
rcu_user_enter(void)122 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)123 static inline void rcu_user_exit(void) { }
124 #endif /* CONFIG_NO_HZ_FULL */
125
126 #ifdef CONFIG_RCU_NOCB_CPU
127 void rcu_init_nohz(void);
128 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)129 static inline void rcu_init_nohz(void) { }
130 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
131
132 /**
133 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
134 * @a: Code that RCU needs to pay attention to.
135 *
136 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
137 * in the inner idle loop, that is, between the rcu_idle_enter() and
138 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
139 * critical sections. However, things like powertop need tracepoints
140 * in the inner idle loop.
141 *
142 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
143 * will tell RCU that it needs to pay attention, invoke its argument
144 * (in this example, calling the do_something_with_RCU() function),
145 * and then tell RCU to go back to ignoring this CPU. It is permissible
146 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
147 * on the order of a million or so, even on 32-bit systems). It is
148 * not legal to block within RCU_NONIDLE(), nor is it permissible to
149 * transfer control either into or out of RCU_NONIDLE()'s statement.
150 */
151 #define RCU_NONIDLE(a) \
152 do { \
153 rcu_irq_enter_irqson(); \
154 do { a; } while (0); \
155 rcu_irq_exit_irqson(); \
156 } while (0)
157
158 /*
159 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
160 * This is a macro rather than an inline function to avoid #include hell.
161 */
162 #ifdef CONFIG_TASKS_RCU
163 #define rcu_tasks_qs(t) \
164 do { \
165 if (READ_ONCE((t)->rcu_tasks_holdout)) \
166 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
167 } while (0)
168 #define rcu_note_voluntary_context_switch(t) \
169 do { \
170 rcu_all_qs(); \
171 rcu_tasks_qs(t); \
172 } while (0)
173 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
174 void synchronize_rcu_tasks(void);
175 void exit_tasks_rcu_start(void);
176 void exit_tasks_rcu_finish(void);
177 #else /* #ifdef CONFIG_TASKS_RCU */
178 #define rcu_tasks_qs(t) do { } while (0)
179 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
180 #define call_rcu_tasks call_rcu_sched
181 #define synchronize_rcu_tasks synchronize_sched
exit_tasks_rcu_start(void)182 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)183 static inline void exit_tasks_rcu_finish(void) { }
184 #endif /* #else #ifdef CONFIG_TASKS_RCU */
185
186 /**
187 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
188 *
189 * This macro resembles cond_resched(), except that it is defined to
190 * report potential quiescent states to RCU-tasks even if the cond_resched()
191 * machinery were to be shut off, as some advocate for PREEMPT kernels.
192 */
193 #define cond_resched_tasks_rcu_qs() \
194 do { \
195 rcu_tasks_qs(current); \
196 cond_resched(); \
197 } while (0)
198
199 /*
200 * Infrastructure to implement the synchronize_() primitives in
201 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
202 */
203
204 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
205 #include <linux/rcutree.h>
206 #elif defined(CONFIG_TINY_RCU)
207 #include <linux/rcutiny.h>
208 #else
209 #error "Unknown RCU implementation specified to kernel configuration"
210 #endif
211
212 /*
213 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
214 * are needed for dynamic initialization and destruction of rcu_head
215 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
216 * dynamic initialization and destruction of statically allocated rcu_head
217 * structures. However, rcu_head structures allocated dynamically in the
218 * heap don't need any initialization.
219 */
220 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
221 void init_rcu_head(struct rcu_head *head);
222 void destroy_rcu_head(struct rcu_head *head);
223 void init_rcu_head_on_stack(struct rcu_head *head);
224 void destroy_rcu_head_on_stack(struct rcu_head *head);
225 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)226 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)227 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)228 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)229 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
230 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
231
232 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
233 bool rcu_lockdep_current_cpu_online(void);
234 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)235 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
236 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
237
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239
rcu_lock_acquire(struct lockdep_map * map)240 static inline void rcu_lock_acquire(struct lockdep_map *map)
241 {
242 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
243 }
244
rcu_lock_release(struct lockdep_map * map)245 static inline void rcu_lock_release(struct lockdep_map *map)
246 {
247 lock_release(map, 1, _THIS_IP_);
248 }
249
250 extern struct lockdep_map rcu_lock_map;
251 extern struct lockdep_map rcu_bh_lock_map;
252 extern struct lockdep_map rcu_sched_lock_map;
253 extern struct lockdep_map rcu_callback_map;
254 int debug_lockdep_rcu_enabled(void);
255 int rcu_read_lock_held(void);
256 int rcu_read_lock_bh_held(void);
257 int rcu_read_lock_sched_held(void);
258
259 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
260
261 # define rcu_lock_acquire(a) do { } while (0)
262 # define rcu_lock_release(a) do { } while (0)
263
rcu_read_lock_held(void)264 static inline int rcu_read_lock_held(void)
265 {
266 return 1;
267 }
268
rcu_read_lock_bh_held(void)269 static inline int rcu_read_lock_bh_held(void)
270 {
271 return 1;
272 }
273
rcu_read_lock_sched_held(void)274 static inline int rcu_read_lock_sched_held(void)
275 {
276 return !preemptible();
277 }
278 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
279
280 #ifdef CONFIG_PROVE_RCU
281
282 /**
283 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
284 * @c: condition to check
285 * @s: informative message
286 */
287 #define RCU_LOCKDEP_WARN(c, s) \
288 do { \
289 static bool __section(.data.unlikely) __warned; \
290 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
291 __warned = true; \
292 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
293 } \
294 } while (0)
295
296 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)297 static inline void rcu_preempt_sleep_check(void)
298 {
299 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
300 "Illegal context switch in RCU read-side critical section");
301 }
302 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)303 static inline void rcu_preempt_sleep_check(void) { }
304 #endif /* #else #ifdef CONFIG_PROVE_RCU */
305
306 #define rcu_sleep_check() \
307 do { \
308 rcu_preempt_sleep_check(); \
309 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
310 "Illegal context switch in RCU-bh read-side critical section"); \
311 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
312 "Illegal context switch in RCU-sched read-side critical section"); \
313 } while (0)
314
315 #else /* #ifdef CONFIG_PROVE_RCU */
316
317 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
318 #define rcu_sleep_check() do { } while (0)
319
320 #endif /* #else #ifdef CONFIG_PROVE_RCU */
321
322 /*
323 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
324 * and rcu_assign_pointer(). Some of these could be folded into their
325 * callers, but they are left separate in order to ease introduction of
326 * multiple flavors of pointers to match the multiple flavors of RCU
327 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
328 * the future.
329 */
330
331 #ifdef __CHECKER__
332 #define rcu_dereference_sparse(p, space) \
333 ((void)(((typeof(*p) space *)p) == p))
334 #else /* #ifdef __CHECKER__ */
335 #define rcu_dereference_sparse(p, space)
336 #endif /* #else #ifdef __CHECKER__ */
337
338 #define __rcu_access_pointer(p, space) \
339 ({ \
340 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
341 rcu_dereference_sparse(p, space); \
342 ((typeof(*p) __force __kernel *)(_________p1)); \
343 })
344 #define __rcu_dereference_check(p, c, space) \
345 ({ \
346 /* Dependency order vs. p above. */ \
347 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
348 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
349 rcu_dereference_sparse(p, space); \
350 ((typeof(*p) __force __kernel *)(________p1)); \
351 })
352 #define __rcu_dereference_protected(p, c, space) \
353 ({ \
354 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
355 rcu_dereference_sparse(p, space); \
356 ((typeof(*p) __force __kernel *)(p)); \
357 })
358 #define rcu_dereference_raw(p) \
359 ({ \
360 /* Dependency order vs. p above. */ \
361 typeof(p) ________p1 = READ_ONCE(p); \
362 ((typeof(*p) __force __kernel *)(________p1)); \
363 })
364
365 /**
366 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
367 * @v: The value to statically initialize with.
368 */
369 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
370
371 /**
372 * rcu_assign_pointer() - assign to RCU-protected pointer
373 * @p: pointer to assign to
374 * @v: value to assign (publish)
375 *
376 * Assigns the specified value to the specified RCU-protected
377 * pointer, ensuring that any concurrent RCU readers will see
378 * any prior initialization.
379 *
380 * Inserts memory barriers on architectures that require them
381 * (which is most of them), and also prevents the compiler from
382 * reordering the code that initializes the structure after the pointer
383 * assignment. More importantly, this call documents which pointers
384 * will be dereferenced by RCU read-side code.
385 *
386 * In some special cases, you may use RCU_INIT_POINTER() instead
387 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
388 * to the fact that it does not constrain either the CPU or the compiler.
389 * That said, using RCU_INIT_POINTER() when you should have used
390 * rcu_assign_pointer() is a very bad thing that results in
391 * impossible-to-diagnose memory corruption. So please be careful.
392 * See the RCU_INIT_POINTER() comment header for details.
393 *
394 * Note that rcu_assign_pointer() evaluates each of its arguments only
395 * once, appearances notwithstanding. One of the "extra" evaluations
396 * is in typeof() and the other visible only to sparse (__CHECKER__),
397 * neither of which actually execute the argument. As with most cpp
398 * macros, this execute-arguments-only-once property is important, so
399 * please be careful when making changes to rcu_assign_pointer() and the
400 * other macros that it invokes.
401 */
402 #define rcu_assign_pointer(p, v) \
403 ({ \
404 uintptr_t _r_a_p__v = (uintptr_t)(v); \
405 \
406 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
407 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
408 else \
409 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
410 _r_a_p__v; \
411 })
412
413 /**
414 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
415 * @rcu_ptr: RCU pointer, whose old value is returned
416 * @ptr: regular pointer
417 * @c: the lockdep conditions under which the dereference will take place
418 *
419 * Perform a replacement, where @rcu_ptr is an RCU-annotated
420 * pointer and @c is the lockdep argument that is passed to the
421 * rcu_dereference_protected() call used to read that pointer. The old
422 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
423 */
424 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
425 ({ \
426 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
427 rcu_assign_pointer((rcu_ptr), (ptr)); \
428 __tmp; \
429 })
430
431 /**
432 * rcu_swap_protected() - swap an RCU and a regular pointer
433 * @rcu_ptr: RCU pointer
434 * @ptr: regular pointer
435 * @c: the conditions under which the dereference will take place
436 *
437 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
438 * @c is the argument that is passed to the rcu_dereference_protected() call
439 * used to read that pointer.
440 */
441 #define rcu_swap_protected(rcu_ptr, ptr, c) do { \
442 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
443 rcu_assign_pointer((rcu_ptr), (ptr)); \
444 (ptr) = __tmp; \
445 } while (0)
446
447 /**
448 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
449 * @p: The pointer to read
450 *
451 * Return the value of the specified RCU-protected pointer, but omit the
452 * lockdep checks for being in an RCU read-side critical section. This is
453 * useful when the value of this pointer is accessed, but the pointer is
454 * not dereferenced, for example, when testing an RCU-protected pointer
455 * against NULL. Although rcu_access_pointer() may also be used in cases
456 * where update-side locks prevent the value of the pointer from changing,
457 * you should instead use rcu_dereference_protected() for this use case.
458 *
459 * It is also permissible to use rcu_access_pointer() when read-side
460 * access to the pointer was removed at least one grace period ago, as
461 * is the case in the context of the RCU callback that is freeing up
462 * the data, or after a synchronize_rcu() returns. This can be useful
463 * when tearing down multi-linked structures after a grace period
464 * has elapsed.
465 */
466 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
467
468 /**
469 * rcu_dereference_check() - rcu_dereference with debug checking
470 * @p: The pointer to read, prior to dereferencing
471 * @c: The conditions under which the dereference will take place
472 *
473 * Do an rcu_dereference(), but check that the conditions under which the
474 * dereference will take place are correct. Typically the conditions
475 * indicate the various locking conditions that should be held at that
476 * point. The check should return true if the conditions are satisfied.
477 * An implicit check for being in an RCU read-side critical section
478 * (rcu_read_lock()) is included.
479 *
480 * For example:
481 *
482 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
483 *
484 * could be used to indicate to lockdep that foo->bar may only be dereferenced
485 * if either rcu_read_lock() is held, or that the lock required to replace
486 * the bar struct at foo->bar is held.
487 *
488 * Note that the list of conditions may also include indications of when a lock
489 * need not be held, for example during initialisation or destruction of the
490 * target struct:
491 *
492 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
493 * atomic_read(&foo->usage) == 0);
494 *
495 * Inserts memory barriers on architectures that require them
496 * (currently only the Alpha), prevents the compiler from refetching
497 * (and from merging fetches), and, more importantly, documents exactly
498 * which pointers are protected by RCU and checks that the pointer is
499 * annotated as __rcu.
500 */
501 #define rcu_dereference_check(p, c) \
502 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
503
504 /**
505 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
506 * @p: The pointer to read, prior to dereferencing
507 * @c: The conditions under which the dereference will take place
508 *
509 * This is the RCU-bh counterpart to rcu_dereference_check().
510 */
511 #define rcu_dereference_bh_check(p, c) \
512 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
513
514 /**
515 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
516 * @p: The pointer to read, prior to dereferencing
517 * @c: The conditions under which the dereference will take place
518 *
519 * This is the RCU-sched counterpart to rcu_dereference_check().
520 */
521 #define rcu_dereference_sched_check(p, c) \
522 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
523 __rcu)
524
525 /*
526 * The tracing infrastructure traces RCU (we want that), but unfortunately
527 * some of the RCU checks causes tracing to lock up the system.
528 *
529 * The no-tracing version of rcu_dereference_raw() must not call
530 * rcu_read_lock_held().
531 */
532 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
533
534 /**
535 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
536 * @p: The pointer to read, prior to dereferencing
537 * @c: The conditions under which the dereference will take place
538 *
539 * Return the value of the specified RCU-protected pointer, but omit
540 * the READ_ONCE(). This is useful in cases where update-side locks
541 * prevent the value of the pointer from changing. Please note that this
542 * primitive does *not* prevent the compiler from repeating this reference
543 * or combining it with other references, so it should not be used without
544 * protection of appropriate locks.
545 *
546 * This function is only for update-side use. Using this function
547 * when protected only by rcu_read_lock() will result in infrequent
548 * but very ugly failures.
549 */
550 #define rcu_dereference_protected(p, c) \
551 __rcu_dereference_protected((p), (c), __rcu)
552
553
554 /**
555 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
556 * @p: The pointer to read, prior to dereferencing
557 *
558 * This is a simple wrapper around rcu_dereference_check().
559 */
560 #define rcu_dereference(p) rcu_dereference_check(p, 0)
561
562 /**
563 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
564 * @p: The pointer to read, prior to dereferencing
565 *
566 * Makes rcu_dereference_check() do the dirty work.
567 */
568 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
569
570 /**
571 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
572 * @p: The pointer to read, prior to dereferencing
573 *
574 * Makes rcu_dereference_check() do the dirty work.
575 */
576 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
577
578 /**
579 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
580 * @p: The pointer to hand off
581 *
582 * This is simply an identity function, but it documents where a pointer
583 * is handed off from RCU to some other synchronization mechanism, for
584 * example, reference counting or locking. In C11, it would map to
585 * kill_dependency(). It could be used as follows::
586 *
587 * rcu_read_lock();
588 * p = rcu_dereference(gp);
589 * long_lived = is_long_lived(p);
590 * if (long_lived) {
591 * if (!atomic_inc_not_zero(p->refcnt))
592 * long_lived = false;
593 * else
594 * p = rcu_pointer_handoff(p);
595 * }
596 * rcu_read_unlock();
597 */
598 #define rcu_pointer_handoff(p) (p)
599
600 /**
601 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
602 *
603 * When synchronize_rcu() is invoked on one CPU while other CPUs
604 * are within RCU read-side critical sections, then the
605 * synchronize_rcu() is guaranteed to block until after all the other
606 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
607 * on one CPU while other CPUs are within RCU read-side critical
608 * sections, invocation of the corresponding RCU callback is deferred
609 * until after the all the other CPUs exit their critical sections.
610 *
611 * Note, however, that RCU callbacks are permitted to run concurrently
612 * with new RCU read-side critical sections. One way that this can happen
613 * is via the following sequence of events: (1) CPU 0 enters an RCU
614 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
615 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
616 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
617 * callback is invoked. This is legal, because the RCU read-side critical
618 * section that was running concurrently with the call_rcu() (and which
619 * therefore might be referencing something that the corresponding RCU
620 * callback would free up) has completed before the corresponding
621 * RCU callback is invoked.
622 *
623 * RCU read-side critical sections may be nested. Any deferred actions
624 * will be deferred until the outermost RCU read-side critical section
625 * completes.
626 *
627 * You can avoid reading and understanding the next paragraph by
628 * following this rule: don't put anything in an rcu_read_lock() RCU
629 * read-side critical section that would block in a !PREEMPT kernel.
630 * But if you want the full story, read on!
631 *
632 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
633 * it is illegal to block while in an RCU read-side critical section.
634 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
635 * kernel builds, RCU read-side critical sections may be preempted,
636 * but explicit blocking is illegal. Finally, in preemptible RCU
637 * implementations in real-time (with -rt patchset) kernel builds, RCU
638 * read-side critical sections may be preempted and they may also block, but
639 * only when acquiring spinlocks that are subject to priority inheritance.
640 */
rcu_read_lock(void)641 static __always_inline void rcu_read_lock(void)
642 {
643 __rcu_read_lock();
644 __acquire(RCU);
645 rcu_lock_acquire(&rcu_lock_map);
646 RCU_LOCKDEP_WARN(!rcu_is_watching(),
647 "rcu_read_lock() used illegally while idle");
648 }
649
650 /*
651 * So where is rcu_write_lock()? It does not exist, as there is no
652 * way for writers to lock out RCU readers. This is a feature, not
653 * a bug -- this property is what provides RCU's performance benefits.
654 * Of course, writers must coordinate with each other. The normal
655 * spinlock primitives work well for this, but any other technique may be
656 * used as well. RCU does not care how the writers keep out of each
657 * others' way, as long as they do so.
658 */
659
660 /**
661 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
662 *
663 * In most situations, rcu_read_unlock() is immune from deadlock.
664 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
665 * is responsible for deboosting, which it does via rt_mutex_unlock().
666 * Unfortunately, this function acquires the scheduler's runqueue and
667 * priority-inheritance spinlocks. This means that deadlock could result
668 * if the caller of rcu_read_unlock() already holds one of these locks or
669 * any lock that is ever acquired while holding them.
670 *
671 * That said, RCU readers are never priority boosted unless they were
672 * preempted. Therefore, one way to avoid deadlock is to make sure
673 * that preemption never happens within any RCU read-side critical
674 * section whose outermost rcu_read_unlock() is called with one of
675 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
676 * a number of ways, for example, by invoking preempt_disable() before
677 * critical section's outermost rcu_read_lock().
678 *
679 * Given that the set of locks acquired by rt_mutex_unlock() might change
680 * at any time, a somewhat more future-proofed approach is to make sure
681 * that that preemption never happens within any RCU read-side critical
682 * section whose outermost rcu_read_unlock() is called with irqs disabled.
683 * This approach relies on the fact that rt_mutex_unlock() currently only
684 * acquires irq-disabled locks.
685 *
686 * The second of these two approaches is best in most situations,
687 * however, the first approach can also be useful, at least to those
688 * developers willing to keep abreast of the set of locks acquired by
689 * rt_mutex_unlock().
690 *
691 * See rcu_read_lock() for more information.
692 */
rcu_read_unlock(void)693 static inline void rcu_read_unlock(void)
694 {
695 RCU_LOCKDEP_WARN(!rcu_is_watching(),
696 "rcu_read_unlock() used illegally while idle");
697 __release(RCU);
698 __rcu_read_unlock();
699 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
700 }
701
702 /**
703 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
704 *
705 * This is equivalent of rcu_read_lock(), but to be used when updates
706 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
707 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
708 * softirq handler to be a quiescent state, a process in RCU read-side
709 * critical section must be protected by disabling softirqs. Read-side
710 * critical sections in interrupt context can use just rcu_read_lock(),
711 * though this should at least be commented to avoid confusing people
712 * reading the code.
713 *
714 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
715 * must occur in the same context, for example, it is illegal to invoke
716 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
717 * was invoked from some other task.
718 */
rcu_read_lock_bh(void)719 static inline void rcu_read_lock_bh(void)
720 {
721 local_bh_disable();
722 __acquire(RCU_BH);
723 rcu_lock_acquire(&rcu_bh_lock_map);
724 RCU_LOCKDEP_WARN(!rcu_is_watching(),
725 "rcu_read_lock_bh() used illegally while idle");
726 }
727
728 /*
729 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
730 *
731 * See rcu_read_lock_bh() for more information.
732 */
rcu_read_unlock_bh(void)733 static inline void rcu_read_unlock_bh(void)
734 {
735 RCU_LOCKDEP_WARN(!rcu_is_watching(),
736 "rcu_read_unlock_bh() used illegally while idle");
737 rcu_lock_release(&rcu_bh_lock_map);
738 __release(RCU_BH);
739 local_bh_enable();
740 }
741
742 /**
743 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
744 *
745 * This is equivalent of rcu_read_lock(), but to be used when updates
746 * are being done using call_rcu_sched() or synchronize_rcu_sched().
747 * Read-side critical sections can also be introduced by anything that
748 * disables preemption, including local_irq_disable() and friends.
749 *
750 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
751 * must occur in the same context, for example, it is illegal to invoke
752 * rcu_read_unlock_sched() from process context if the matching
753 * rcu_read_lock_sched() was invoked from an NMI handler.
754 */
rcu_read_lock_sched(void)755 static inline void rcu_read_lock_sched(void)
756 {
757 preempt_disable();
758 __acquire(RCU_SCHED);
759 rcu_lock_acquire(&rcu_sched_lock_map);
760 RCU_LOCKDEP_WARN(!rcu_is_watching(),
761 "rcu_read_lock_sched() used illegally while idle");
762 }
763
764 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)765 static inline notrace void rcu_read_lock_sched_notrace(void)
766 {
767 preempt_disable_notrace();
768 __acquire(RCU_SCHED);
769 }
770
771 /*
772 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
773 *
774 * See rcu_read_lock_sched for more information.
775 */
rcu_read_unlock_sched(void)776 static inline void rcu_read_unlock_sched(void)
777 {
778 RCU_LOCKDEP_WARN(!rcu_is_watching(),
779 "rcu_read_unlock_sched() used illegally while idle");
780 rcu_lock_release(&rcu_sched_lock_map);
781 __release(RCU_SCHED);
782 preempt_enable();
783 }
784
785 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)786 static inline notrace void rcu_read_unlock_sched_notrace(void)
787 {
788 __release(RCU_SCHED);
789 preempt_enable_notrace();
790 }
791
792 /**
793 * RCU_INIT_POINTER() - initialize an RCU protected pointer
794 * @p: The pointer to be initialized.
795 * @v: The value to initialized the pointer to.
796 *
797 * Initialize an RCU-protected pointer in special cases where readers
798 * do not need ordering constraints on the CPU or the compiler. These
799 * special cases are:
800 *
801 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
802 * 2. The caller has taken whatever steps are required to prevent
803 * RCU readers from concurrently accessing this pointer *or*
804 * 3. The referenced data structure has already been exposed to
805 * readers either at compile time or via rcu_assign_pointer() *and*
806 *
807 * a. You have not made *any* reader-visible changes to
808 * this structure since then *or*
809 * b. It is OK for readers accessing this structure from its
810 * new location to see the old state of the structure. (For
811 * example, the changes were to statistical counters or to
812 * other state where exact synchronization is not required.)
813 *
814 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
815 * result in impossible-to-diagnose memory corruption. As in the structures
816 * will look OK in crash dumps, but any concurrent RCU readers might
817 * see pre-initialized values of the referenced data structure. So
818 * please be very careful how you use RCU_INIT_POINTER()!!!
819 *
820 * If you are creating an RCU-protected linked structure that is accessed
821 * by a single external-to-structure RCU-protected pointer, then you may
822 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
823 * pointers, but you must use rcu_assign_pointer() to initialize the
824 * external-to-structure pointer *after* you have completely initialized
825 * the reader-accessible portions of the linked structure.
826 *
827 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
828 * ordering guarantees for either the CPU or the compiler.
829 */
830 #define RCU_INIT_POINTER(p, v) \
831 do { \
832 rcu_dereference_sparse(p, __rcu); \
833 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
834 } while (0)
835
836 /**
837 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
838 * @p: The pointer to be initialized.
839 * @v: The value to initialized the pointer to.
840 *
841 * GCC-style initialization for an RCU-protected pointer in a structure field.
842 */
843 #define RCU_POINTER_INITIALIZER(p, v) \
844 .p = RCU_INITIALIZER(v)
845
846 /*
847 * Does the specified offset indicate that the corresponding rcu_head
848 * structure can be handled by kfree_rcu()?
849 */
850 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
851
852 /*
853 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
854 */
855 #define __kfree_rcu(head, offset) \
856 do { \
857 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
858 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
859 } while (0)
860
861 /**
862 * kfree_rcu() - kfree an object after a grace period.
863 * @ptr: pointer to kfree
864 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
865 *
866 * Many rcu callbacks functions just call kfree() on the base structure.
867 * These functions are trivial, but their size adds up, and furthermore
868 * when they are used in a kernel module, that module must invoke the
869 * high-latency rcu_barrier() function at module-unload time.
870 *
871 * The kfree_rcu() function handles this issue. Rather than encoding a
872 * function address in the embedded rcu_head structure, kfree_rcu() instead
873 * encodes the offset of the rcu_head structure within the base structure.
874 * Because the functions are not allowed in the low-order 4096 bytes of
875 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
876 * If the offset is larger than 4095 bytes, a compile-time error will
877 * be generated in __kfree_rcu(). If this error is triggered, you can
878 * either fall back to use of call_rcu() or rearrange the structure to
879 * position the rcu_head structure into the first 4096 bytes.
880 *
881 * Note that the allowable offset might decrease in the future, for example,
882 * to allow something like kmem_cache_free_rcu().
883 *
884 * The BUILD_BUG_ON check must not involve any function calls, hence the
885 * checks are done in macros here.
886 */
887 #define kfree_rcu(ptr, rcu_head) \
888 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
889
890
891 /*
892 * Place this after a lock-acquisition primitive to guarantee that
893 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
894 * if the UNLOCK and LOCK are executed by the same CPU or if the
895 * UNLOCK and LOCK operate on the same lock variable.
896 */
897 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
898 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
899 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
900 #define smp_mb__after_unlock_lock() do { } while (0)
901 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
902
903
904 #endif /* __LINUX_RCUPDATE_H */
905