1 /*
2 * RTC driver for the Armada 38x Marvell SoCs
3 *
4 * Copyright (C) 2015 Marvell
5 *
6 * Gregory Clement <gregory.clement@free-electrons.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 */
14
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/platform_device.h>
21 #include <linux/rtc.h>
22
23 #define RTC_STATUS 0x0
24 #define RTC_STATUS_ALARM1 BIT(0)
25 #define RTC_STATUS_ALARM2 BIT(1)
26 #define RTC_IRQ1_CONF 0x4
27 #define RTC_IRQ2_CONF 0x8
28 #define RTC_IRQ_AL_EN BIT(0)
29 #define RTC_IRQ_FREQ_EN BIT(1)
30 #define RTC_IRQ_FREQ_1HZ BIT(2)
31 #define RTC_CCR 0x18
32 #define RTC_CCR_MODE BIT(15)
33 #define RTC_CONF_TEST 0x1C
34 #define RTC_NOMINAL_TIMING BIT(13)
35
36 #define RTC_TIME 0xC
37 #define RTC_ALARM1 0x10
38 #define RTC_ALARM2 0x14
39
40 /* Armada38x SoC registers */
41 #define RTC_38X_BRIDGE_TIMING_CTL 0x0
42 #define RTC_38X_PERIOD_OFFS 0
43 #define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS)
44 #define RTC_38X_READ_DELAY_OFFS 26
45 #define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS)
46
47 /* Armada 7K/8K registers */
48 #define RTC_8K_BRIDGE_TIMING_CTL0 0x0
49 #define RTC_8K_WRCLK_PERIOD_OFFS 0
50 #define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
51 #define RTC_8K_WRCLK_SETUP_OFFS 16
52 #define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
53 #define RTC_8K_BRIDGE_TIMING_CTL1 0x4
54 #define RTC_8K_READ_DELAY_OFFS 0
55 #define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS)
56
57 #define RTC_8K_ISR 0x10
58 #define RTC_8K_IMR 0x14
59 #define RTC_8K_ALARM2 BIT(0)
60
61 #define SOC_RTC_INTERRUPT 0x8
62 #define SOC_RTC_ALARM1 BIT(0)
63 #define SOC_RTC_ALARM2 BIT(1)
64 #define SOC_RTC_ALARM1_MASK BIT(2)
65 #define SOC_RTC_ALARM2_MASK BIT(3)
66
67 #define SAMPLE_NR 100
68
69 struct value_to_freq {
70 u32 value;
71 u8 freq;
72 };
73
74 struct armada38x_rtc {
75 struct rtc_device *rtc_dev;
76 void __iomem *regs;
77 void __iomem *regs_soc;
78 spinlock_t lock;
79 int irq;
80 bool initialized;
81 struct value_to_freq *val_to_freq;
82 struct armada38x_rtc_data *data;
83 };
84
85 #define ALARM1 0
86 #define ALARM2 1
87
88 #define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32))
89
90 struct armada38x_rtc_data {
91 /* Initialize the RTC-MBUS bridge timing */
92 void (*update_mbus_timing)(struct armada38x_rtc *rtc);
93 u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
94 void (*clear_isr)(struct armada38x_rtc *rtc);
95 void (*unmask_interrupt)(struct armada38x_rtc *rtc);
96 u32 alarm;
97 };
98
99 /*
100 * According to the datasheet, the OS should wait 5us after every
101 * register write to the RTC hard macro so that the required update
102 * can occur without holding off the system bus
103 * According to errata RES-3124064, Write to any RTC register
104 * may fail. As a workaround, before writing to RTC
105 * register, issue a dummy write of 0x0 twice to RTC Status
106 * register.
107 */
108
rtc_delayed_write(u32 val,struct armada38x_rtc * rtc,int offset)109 static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
110 {
111 writel(0, rtc->regs + RTC_STATUS);
112 writel(0, rtc->regs + RTC_STATUS);
113 writel(val, rtc->regs + offset);
114 udelay(5);
115 }
116
117 /* Update RTC-MBUS bridge timing parameters */
rtc_update_38x_mbus_timing_params(struct armada38x_rtc * rtc)118 static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
119 {
120 u32 reg;
121
122 reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
123 reg &= ~RTC_38X_PERIOD_MASK;
124 reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
125 reg &= ~RTC_38X_READ_DELAY_MASK;
126 reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
127 writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
128 }
129
rtc_update_8k_mbus_timing_params(struct armada38x_rtc * rtc)130 static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
131 {
132 u32 reg;
133
134 reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
135 reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
136 reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
137 reg &= ~RTC_8K_WRCLK_SETUP_MASK;
138 reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
139 writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
140
141 reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
142 reg &= ~RTC_8K_READ_DELAY_MASK;
143 reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
144 writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
145 }
146
read_rtc_register(struct armada38x_rtc * rtc,u8 rtc_reg)147 static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
148 {
149 return readl(rtc->regs + rtc_reg);
150 }
151
read_rtc_register_38x_wa(struct armada38x_rtc * rtc,u8 rtc_reg)152 static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
153 {
154 int i, index_max = 0, max = 0;
155
156 for (i = 0; i < SAMPLE_NR; i++) {
157 rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
158 rtc->val_to_freq[i].freq = 0;
159 }
160
161 for (i = 0; i < SAMPLE_NR; i++) {
162 int j = 0;
163 u32 value = rtc->val_to_freq[i].value;
164
165 while (rtc->val_to_freq[j].freq) {
166 if (rtc->val_to_freq[j].value == value) {
167 rtc->val_to_freq[j].freq++;
168 break;
169 }
170 j++;
171 }
172
173 if (!rtc->val_to_freq[j].freq) {
174 rtc->val_to_freq[j].value = value;
175 rtc->val_to_freq[j].freq = 1;
176 }
177
178 if (rtc->val_to_freq[j].freq > max) {
179 index_max = j;
180 max = rtc->val_to_freq[j].freq;
181 }
182
183 /*
184 * If a value already has half of the sample this is the most
185 * frequent one and we can stop the research right now
186 */
187 if (max > SAMPLE_NR / 2)
188 break;
189 }
190
191 return rtc->val_to_freq[index_max].value;
192 }
193
armada38x_clear_isr(struct armada38x_rtc * rtc)194 static void armada38x_clear_isr(struct armada38x_rtc *rtc)
195 {
196 u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
197
198 writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
199 }
200
armada38x_unmask_interrupt(struct armada38x_rtc * rtc)201 static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
202 {
203 u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
204
205 writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
206 }
207
armada8k_clear_isr(struct armada38x_rtc * rtc)208 static void armada8k_clear_isr(struct armada38x_rtc *rtc)
209 {
210 writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
211 }
212
armada8k_unmask_interrupt(struct armada38x_rtc * rtc)213 static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
214 {
215 writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
216 }
217
armada38x_rtc_read_time(struct device * dev,struct rtc_time * tm)218 static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
219 {
220 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
221 unsigned long time, flags;
222
223 spin_lock_irqsave(&rtc->lock, flags);
224 time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
225 spin_unlock_irqrestore(&rtc->lock, flags);
226
227 rtc_time_to_tm(time, tm);
228
229 return 0;
230 }
231
armada38x_rtc_reset(struct armada38x_rtc * rtc)232 static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
233 {
234 u32 reg;
235
236 reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
237 /* If bits [7:0] are non-zero, assume RTC was uninitialized */
238 if (reg & 0xff) {
239 rtc_delayed_write(0, rtc, RTC_CONF_TEST);
240 msleep(500); /* Oscillator startup time */
241 rtc_delayed_write(0, rtc, RTC_TIME);
242 rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
243 RTC_STATUS);
244 rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
245 }
246 rtc->initialized = true;
247 }
248
armada38x_rtc_set_time(struct device * dev,struct rtc_time * tm)249 static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
250 {
251 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
252 int ret = 0;
253 unsigned long time, flags;
254
255 ret = rtc_tm_to_time(tm, &time);
256
257 if (ret)
258 goto out;
259
260 if (!rtc->initialized)
261 armada38x_rtc_reset(rtc);
262
263 spin_lock_irqsave(&rtc->lock, flags);
264 rtc_delayed_write(time, rtc, RTC_TIME);
265 spin_unlock_irqrestore(&rtc->lock, flags);
266
267 out:
268 return ret;
269 }
270
armada38x_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)271 static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
272 {
273 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
274 unsigned long time, flags;
275 u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
276 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
277 u32 val;
278
279 spin_lock_irqsave(&rtc->lock, flags);
280
281 time = rtc->data->read_rtc_reg(rtc, reg);
282 val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
283
284 spin_unlock_irqrestore(&rtc->lock, flags);
285
286 alrm->enabled = val ? 1 : 0;
287 rtc_time_to_tm(time, &alrm->time);
288
289 return 0;
290 }
291
armada38x_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)292 static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
293 {
294 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
295 u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
296 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
297 unsigned long time, flags;
298 int ret = 0;
299
300 ret = rtc_tm_to_time(&alrm->time, &time);
301
302 if (ret)
303 goto out;
304
305 spin_lock_irqsave(&rtc->lock, flags);
306
307 rtc_delayed_write(time, rtc, reg);
308
309 if (alrm->enabled) {
310 rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
311 rtc->data->unmask_interrupt(rtc);
312 }
313
314 spin_unlock_irqrestore(&rtc->lock, flags);
315
316 out:
317 return ret;
318 }
319
armada38x_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)320 static int armada38x_rtc_alarm_irq_enable(struct device *dev,
321 unsigned int enabled)
322 {
323 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
324 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
325 unsigned long flags;
326
327 spin_lock_irqsave(&rtc->lock, flags);
328
329 if (enabled)
330 rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
331 else
332 rtc_delayed_write(0, rtc, reg_irq);
333
334 spin_unlock_irqrestore(&rtc->lock, flags);
335
336 return 0;
337 }
338
armada38x_rtc_alarm_irq(int irq,void * data)339 static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
340 {
341 struct armada38x_rtc *rtc = data;
342 u32 val;
343 int event = RTC_IRQF | RTC_AF;
344 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
345
346 dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
347
348 spin_lock(&rtc->lock);
349
350 rtc->data->clear_isr(rtc);
351 val = rtc->data->read_rtc_reg(rtc, reg_irq);
352 /* disable all the interrupts for alarm*/
353 rtc_delayed_write(0, rtc, reg_irq);
354 /* Ack the event */
355 rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
356
357 spin_unlock(&rtc->lock);
358
359 if (val & RTC_IRQ_FREQ_EN) {
360 if (val & RTC_IRQ_FREQ_1HZ)
361 event |= RTC_UF;
362 else
363 event |= RTC_PF;
364 }
365
366 rtc_update_irq(rtc->rtc_dev, 1, event);
367
368 return IRQ_HANDLED;
369 }
370
371 /*
372 * The information given in the Armada 388 functional spec is complex.
373 * They give two different formulas for calculating the offset value,
374 * but when considering "Offset" as an 8-bit signed integer, they both
375 * reduce down to (we shall rename "Offset" as "val" here):
376 *
377 * val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768
378 *
379 * Converting to time, f = 1/t:
380 * val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768
381 *
382 * => t_measured / t_ideal = val * resolution + 1
383 *
384 * "offset" in the RTC interface is defined as:
385 * t = t0 * (1 + offset * 1e-9)
386 * where t is the desired period, t0 is the measured period with a zero
387 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
388 * offset = (t_ideal / t_measured - 1) / 1e-9
389 *
390 * => t_ideal / t_measured = offset * 1e-9 + 1
391 *
392 * so:
393 *
394 * offset * 1e-9 + 1 = 1 / (val * resolution + 1)
395 *
396 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
397 * offset = 1e18 / (val * R + 1e9) - 1e9
398 * val = (1e18 / (offset + 1e9) - 1e9) / R
399 * with a common transformation:
400 * f(x) = 1e18 / (x + 1e9) - 1e9
401 * offset = f(val * R)
402 * val = f(offset) / R
403 *
404 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
405 */
armada38x_ppb_convert(long ppb)406 static long armada38x_ppb_convert(long ppb)
407 {
408 long div = ppb + 1000000000L;
409
410 return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
411 }
412
armada38x_rtc_read_offset(struct device * dev,long * offset)413 static int armada38x_rtc_read_offset(struct device *dev, long *offset)
414 {
415 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
416 unsigned long ccr, flags;
417 long ppb_cor;
418
419 spin_lock_irqsave(&rtc->lock, flags);
420 ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
421 spin_unlock_irqrestore(&rtc->lock, flags);
422
423 ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
424 /* ppb_cor + 1000000000L can never be zero */
425 *offset = armada38x_ppb_convert(ppb_cor);
426
427 return 0;
428 }
429
armada38x_rtc_set_offset(struct device * dev,long offset)430 static int armada38x_rtc_set_offset(struct device *dev, long offset)
431 {
432 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
433 unsigned long ccr = 0;
434 long ppb_cor, off;
435
436 /*
437 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
438 * need to clamp the input. This equates to -484270 .. 488558.
439 * Not only is this to stop out of range "off" but also to
440 * avoid the division by zero in armada38x_ppb_convert().
441 */
442 offset = clamp(offset, -484270L, 488558L);
443
444 ppb_cor = armada38x_ppb_convert(offset);
445
446 /*
447 * Use low update mode where possible, which gives a better
448 * resolution of correction.
449 */
450 off = DIV_ROUND_CLOSEST(ppb_cor, 954);
451 if (off > 127 || off < -128) {
452 ccr = RTC_CCR_MODE;
453 off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
454 }
455
456 /*
457 * Armada 388 requires a bit pattern in bits 14..8 depending on
458 * the sign bit: { 0, ~S, S, S, S, S, S }
459 */
460 ccr |= (off & 0x3fff) ^ 0x2000;
461 rtc_delayed_write(ccr, rtc, RTC_CCR);
462
463 return 0;
464 }
465
466 static const struct rtc_class_ops armada38x_rtc_ops = {
467 .read_time = armada38x_rtc_read_time,
468 .set_time = armada38x_rtc_set_time,
469 .read_alarm = armada38x_rtc_read_alarm,
470 .set_alarm = armada38x_rtc_set_alarm,
471 .alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
472 .read_offset = armada38x_rtc_read_offset,
473 .set_offset = armada38x_rtc_set_offset,
474 };
475
476 static const struct rtc_class_ops armada38x_rtc_ops_noirq = {
477 .read_time = armada38x_rtc_read_time,
478 .set_time = armada38x_rtc_set_time,
479 .read_alarm = armada38x_rtc_read_alarm,
480 .read_offset = armada38x_rtc_read_offset,
481 .set_offset = armada38x_rtc_set_offset,
482 };
483
484 static const struct armada38x_rtc_data armada38x_data = {
485 .update_mbus_timing = rtc_update_38x_mbus_timing_params,
486 .read_rtc_reg = read_rtc_register_38x_wa,
487 .clear_isr = armada38x_clear_isr,
488 .unmask_interrupt = armada38x_unmask_interrupt,
489 .alarm = ALARM1,
490 };
491
492 static const struct armada38x_rtc_data armada8k_data = {
493 .update_mbus_timing = rtc_update_8k_mbus_timing_params,
494 .read_rtc_reg = read_rtc_register,
495 .clear_isr = armada8k_clear_isr,
496 .unmask_interrupt = armada8k_unmask_interrupt,
497 .alarm = ALARM2,
498 };
499
500 #ifdef CONFIG_OF
501 static const struct of_device_id armada38x_rtc_of_match_table[] = {
502 {
503 .compatible = "marvell,armada-380-rtc",
504 .data = &armada38x_data,
505 },
506 {
507 .compatible = "marvell,armada-8k-rtc",
508 .data = &armada8k_data,
509 },
510 {}
511 };
512 MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
513 #endif
514
armada38x_rtc_probe(struct platform_device * pdev)515 static __init int armada38x_rtc_probe(struct platform_device *pdev)
516 {
517 struct resource *res;
518 struct armada38x_rtc *rtc;
519 const struct of_device_id *match;
520 int ret;
521
522 match = of_match_device(armada38x_rtc_of_match_table, &pdev->dev);
523 if (!match)
524 return -ENODEV;
525
526 rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
527 GFP_KERNEL);
528 if (!rtc)
529 return -ENOMEM;
530
531 rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
532 sizeof(struct value_to_freq), GFP_KERNEL);
533 if (!rtc->val_to_freq)
534 return -ENOMEM;
535
536 spin_lock_init(&rtc->lock);
537
538 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
539 rtc->regs = devm_ioremap_resource(&pdev->dev, res);
540 if (IS_ERR(rtc->regs))
541 return PTR_ERR(rtc->regs);
542 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
543 rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
544 if (IS_ERR(rtc->regs_soc))
545 return PTR_ERR(rtc->regs_soc);
546
547 rtc->irq = platform_get_irq(pdev, 0);
548
549 if (rtc->irq < 0) {
550 dev_err(&pdev->dev, "no irq\n");
551 return rtc->irq;
552 }
553
554 rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
555 if (IS_ERR(rtc->rtc_dev))
556 return PTR_ERR(rtc->rtc_dev);
557
558 if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
559 0, pdev->name, rtc) < 0) {
560 dev_warn(&pdev->dev, "Interrupt not available.\n");
561 rtc->irq = -1;
562 }
563 platform_set_drvdata(pdev, rtc);
564
565 if (rtc->irq != -1) {
566 device_init_wakeup(&pdev->dev, 1);
567 rtc->rtc_dev->ops = &armada38x_rtc_ops;
568 } else {
569 /*
570 * If there is no interrupt available then we can't
571 * use the alarm
572 */
573 rtc->rtc_dev->ops = &armada38x_rtc_ops_noirq;
574 }
575 rtc->data = (struct armada38x_rtc_data *)match->data;
576
577 /* Update RTC-MBUS bridge timing parameters */
578 rtc->data->update_mbus_timing(rtc);
579
580 ret = rtc_register_device(rtc->rtc_dev);
581 if (ret)
582 dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
583
584 return ret;
585 }
586
587 #ifdef CONFIG_PM_SLEEP
armada38x_rtc_suspend(struct device * dev)588 static int armada38x_rtc_suspend(struct device *dev)
589 {
590 if (device_may_wakeup(dev)) {
591 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
592
593 return enable_irq_wake(rtc->irq);
594 }
595
596 return 0;
597 }
598
armada38x_rtc_resume(struct device * dev)599 static int armada38x_rtc_resume(struct device *dev)
600 {
601 if (device_may_wakeup(dev)) {
602 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
603
604 /* Update RTC-MBUS bridge timing parameters */
605 rtc->data->update_mbus_timing(rtc);
606
607 return disable_irq_wake(rtc->irq);
608 }
609
610 return 0;
611 }
612 #endif
613
614 static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
615 armada38x_rtc_suspend, armada38x_rtc_resume);
616
617 static struct platform_driver armada38x_rtc_driver = {
618 .driver = {
619 .name = "armada38x-rtc",
620 .pm = &armada38x_rtc_pm_ops,
621 .of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
622 },
623 };
624
625 module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
626
627 MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
628 MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
629 MODULE_LICENSE("GPL");
630