1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4 
5 
6 #include <stdarg.h>
7 #include <linux/linkage.h>
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/compiler.h>
11 #include <linux/bitops.h>
12 #include <linux/log2.h>
13 #include <linux/typecheck.h>
14 #include <linux/printk.h>
15 #include <linux/build_bug.h>
16 #include <asm/byteorder.h>
17 #include <uapi/linux/kernel.h>
18 
19 #define USHRT_MAX	((u16)(~0U))
20 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
21 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
22 #define INT_MAX		((int)(~0U>>1))
23 #define INT_MIN		(-INT_MAX - 1)
24 #define UINT_MAX	(~0U)
25 #define LONG_MAX	((long)(~0UL>>1))
26 #define LONG_MIN	(-LONG_MAX - 1)
27 #define ULONG_MAX	(~0UL)
28 #define LLONG_MAX	((long long)(~0ULL>>1))
29 #define LLONG_MIN	(-LLONG_MAX - 1)
30 #define ULLONG_MAX	(~0ULL)
31 #define SIZE_MAX	(~(size_t)0)
32 #define PHYS_ADDR_MAX	(~(phys_addr_t)0)
33 
34 #define U8_MAX		((u8)~0U)
35 #define S8_MAX		((s8)(U8_MAX>>1))
36 #define S8_MIN		((s8)(-S8_MAX - 1))
37 #define U16_MAX		((u16)~0U)
38 #define S16_MAX		((s16)(U16_MAX>>1))
39 #define S16_MIN		((s16)(-S16_MAX - 1))
40 #define U32_MAX		((u32)~0U)
41 #define S32_MAX		((s32)(U32_MAX>>1))
42 #define S32_MIN		((s32)(-S32_MAX - 1))
43 #define U64_MAX		((u64)~0ULL)
44 #define S64_MAX		((s64)(U64_MAX>>1))
45 #define S64_MIN		((s64)(-S64_MAX - 1))
46 
47 #define STACK_MAGIC	0xdeadbeef
48 
49 /**
50  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
51  * @x: value to repeat
52  *
53  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
54  */
55 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
56 
57 /* @a is a power of 2 value */
58 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
59 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
60 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
61 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
62 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
63 
64 /* generic data direction definitions */
65 #define READ			0
66 #define WRITE			1
67 
68 /**
69  * ARRAY_SIZE - get the number of elements in array @arr
70  * @arr: array to be sized
71  */
72 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
73 
74 #define u64_to_user_ptr(x) (		\
75 {					\
76 	typecheck(u64, (x));		\
77 	(void __user *)(uintptr_t)(x);	\
78 }					\
79 )
80 
81 /*
82  * This looks more complex than it should be. But we need to
83  * get the type for the ~ right in round_down (it needs to be
84  * as wide as the result!), and we want to evaluate the macro
85  * arguments just once each.
86  */
87 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
88 /**
89  * round_up - round up to next specified power of 2
90  * @x: the value to round
91  * @y: multiple to round up to (must be a power of 2)
92  *
93  * Rounds @x up to next multiple of @y (which must be a power of 2).
94  * To perform arbitrary rounding up, use roundup() below.
95  */
96 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
97 /**
98  * round_down - round down to next specified power of 2
99  * @x: the value to round
100  * @y: multiple to round down to (must be a power of 2)
101  *
102  * Rounds @x down to next multiple of @y (which must be a power of 2).
103  * To perform arbitrary rounding down, use rounddown() below.
104  */
105 #define round_down(x, y) ((x) & ~__round_mask(x, y))
106 
107 /**
108  * FIELD_SIZEOF - get the size of a struct's field
109  * @t: the target struct
110  * @f: the target struct's field
111  * Return: the size of @f in the struct definition without having a
112  * declared instance of @t.
113  */
114 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
115 
116 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
117 
118 #define DIV_ROUND_DOWN_ULL(ll, d) \
119 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
120 
121 #define DIV_ROUND_UP_ULL(ll, d) \
122 	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
123 
124 #if BITS_PER_LONG == 32
125 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
126 #else
127 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
128 #endif
129 
130 /**
131  * roundup - round up to the next specified multiple
132  * @x: the value to up
133  * @y: multiple to round up to
134  *
135  * Rounds @x up to next multiple of @y. If @y will always be a power
136  * of 2, consider using the faster round_up().
137  *
138  * The `const' here prevents gcc-3.3 from calling __divdi3
139  */
140 #define roundup(x, y) (					\
141 {							\
142 	const typeof(y) __y = y;			\
143 	(((x) + (__y - 1)) / __y) * __y;		\
144 }							\
145 )
146 /**
147  * rounddown - round down to next specified multiple
148  * @x: the value to round
149  * @y: multiple to round down to
150  *
151  * Rounds @x down to next multiple of @y. If @y will always be a power
152  * of 2, consider using the faster round_down().
153  */
154 #define rounddown(x, y) (				\
155 {							\
156 	typeof(x) __x = (x);				\
157 	__x - (__x % (y));				\
158 }							\
159 )
160 
161 /*
162  * Divide positive or negative dividend by positive or negative divisor
163  * and round to closest integer. Result is undefined for negative
164  * divisors if the dividend variable type is unsigned and for negative
165  * dividends if the divisor variable type is unsigned.
166  */
167 #define DIV_ROUND_CLOSEST(x, divisor)(			\
168 {							\
169 	typeof(x) __x = x;				\
170 	typeof(divisor) __d = divisor;			\
171 	(((typeof(x))-1) > 0 ||				\
172 	 ((typeof(divisor))-1) > 0 ||			\
173 	 (((__x) > 0) == ((__d) > 0))) ?		\
174 		(((__x) + ((__d) / 2)) / (__d)) :	\
175 		(((__x) - ((__d) / 2)) / (__d));	\
176 }							\
177 )
178 /*
179  * Same as above but for u64 dividends. divisor must be a 32-bit
180  * number.
181  */
182 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
183 {							\
184 	typeof(divisor) __d = divisor;			\
185 	unsigned long long _tmp = (x) + (__d) / 2;	\
186 	do_div(_tmp, __d);				\
187 	_tmp;						\
188 }							\
189 )
190 
191 /*
192  * Multiplies an integer by a fraction, while avoiding unnecessary
193  * overflow or loss of precision.
194  */
195 #define mult_frac(x, numer, denom)(			\
196 {							\
197 	typeof(x) quot = (x) / (denom);			\
198 	typeof(x) rem  = (x) % (denom);			\
199 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
200 }							\
201 )
202 
203 
204 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
205 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
206 
207 #ifdef CONFIG_LBDAF
208 # include <asm/div64.h>
209 # define sector_div(a, b) do_div(a, b)
210 #else
211 # define sector_div(n, b)( \
212 { \
213 	int _res; \
214 	_res = (n) % (b); \
215 	(n) /= (b); \
216 	_res; \
217 } \
218 )
219 #endif
220 
221 /**
222  * upper_32_bits - return bits 32-63 of a number
223  * @n: the number we're accessing
224  *
225  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
226  * the "right shift count >= width of type" warning when that quantity is
227  * 32-bits.
228  */
229 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
230 
231 /**
232  * lower_32_bits - return bits 0-31 of a number
233  * @n: the number we're accessing
234  */
235 #define lower_32_bits(n) ((u32)(n))
236 
237 struct completion;
238 struct pt_regs;
239 struct user;
240 
241 #ifdef CONFIG_PREEMPT_VOLUNTARY
242 extern int _cond_resched(void);
243 # define might_resched() _cond_resched()
244 #else
245 # define might_resched() do { } while (0)
246 #endif
247 
248 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
249   void ___might_sleep(const char *file, int line, int preempt_offset);
250   void __might_sleep(const char *file, int line, int preempt_offset);
251 /**
252  * might_sleep - annotation for functions that can sleep
253  *
254  * this macro will print a stack trace if it is executed in an atomic
255  * context (spinlock, irq-handler, ...).
256  *
257  * This is a useful debugging help to be able to catch problems early and not
258  * be bitten later when the calling function happens to sleep when it is not
259  * supposed to.
260  */
261 # define might_sleep() \
262 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
263 # define sched_annotate_sleep()	(current->task_state_change = 0)
264 #else
___might_sleep(const char * file,int line,int preempt_offset)265   static inline void ___might_sleep(const char *file, int line,
266 				   int preempt_offset) { }
__might_sleep(const char * file,int line,int preempt_offset)267   static inline void __might_sleep(const char *file, int line,
268 				   int preempt_offset) { }
269 # define might_sleep() do { might_resched(); } while (0)
270 # define sched_annotate_sleep() do { } while (0)
271 #endif
272 
273 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
274 
275 /**
276  * abs - return absolute value of an argument
277  * @x: the value.  If it is unsigned type, it is converted to signed type first.
278  *     char is treated as if it was signed (regardless of whether it really is)
279  *     but the macro's return type is preserved as char.
280  *
281  * Return: an absolute value of x.
282  */
283 #define abs(x)	__abs_choose_expr(x, long long,				\
284 		__abs_choose_expr(x, long,				\
285 		__abs_choose_expr(x, int,				\
286 		__abs_choose_expr(x, short,				\
287 		__abs_choose_expr(x, char,				\
288 		__builtin_choose_expr(					\
289 			__builtin_types_compatible_p(typeof(x), char),	\
290 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
291 			((void)0)))))))
292 
293 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
294 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
295 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
296 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
297 
298 /**
299  * reciprocal_scale - "scale" a value into range [0, ep_ro)
300  * @val: value
301  * @ep_ro: right open interval endpoint
302  *
303  * Perform a "reciprocal multiplication" in order to "scale" a value into
304  * range [0, @ep_ro), where the upper interval endpoint is right-open.
305  * This is useful, e.g. for accessing a index of an array containing
306  * @ep_ro elements, for example. Think of it as sort of modulus, only that
307  * the result isn't that of modulo. ;) Note that if initial input is a
308  * small value, then result will return 0.
309  *
310  * Return: a result based on @val in interval [0, @ep_ro).
311  */
reciprocal_scale(u32 val,u32 ep_ro)312 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
313 {
314 	return (u32)(((u64) val * ep_ro) >> 32);
315 }
316 
317 #if defined(CONFIG_MMU) && \
318 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
319 #define might_fault() __might_fault(__FILE__, __LINE__)
320 void __might_fault(const char *file, int line);
321 #else
might_fault(void)322 static inline void might_fault(void) { }
323 #endif
324 
325 extern struct atomic_notifier_head panic_notifier_list;
326 extern long (*panic_blink)(int state);
327 __printf(1, 2)
328 void panic(const char *fmt, ...) __noreturn __cold;
329 void nmi_panic(struct pt_regs *regs, const char *msg);
330 void check_panic_on_warn(const char *origin);
331 extern void oops_enter(void);
332 extern void oops_exit(void);
333 void print_oops_end_marker(void);
334 extern int oops_may_print(void);
335 void do_exit(long error_code) __noreturn;
336 void complete_and_exit(struct completion *, long) __noreturn;
337 
338 #ifdef CONFIG_ARCH_HAS_REFCOUNT
339 void refcount_error_report(struct pt_regs *regs, const char *err);
340 #else
refcount_error_report(struct pt_regs * regs,const char * err)341 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
342 { }
343 #endif
344 
345 /* Internal, do not use. */
346 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
347 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
348 
349 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
350 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
351 
352 /**
353  * kstrtoul - convert a string to an unsigned long
354  * @s: The start of the string. The string must be null-terminated, and may also
355  *  include a single newline before its terminating null. The first character
356  *  may also be a plus sign, but not a minus sign.
357  * @base: The number base to use. The maximum supported base is 16. If base is
358  *  given as 0, then the base of the string is automatically detected with the
359  *  conventional semantics - If it begins with 0x the number will be parsed as a
360  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
361  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
362  * @res: Where to write the result of the conversion on success.
363  *
364  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
365  * Used as a replacement for the obsolete simple_strtoull. Return code must
366  * be checked.
367 */
kstrtoul(const char * s,unsigned int base,unsigned long * res)368 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
369 {
370 	/*
371 	 * We want to shortcut function call, but
372 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
373 	 */
374 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
375 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
376 		return kstrtoull(s, base, (unsigned long long *)res);
377 	else
378 		return _kstrtoul(s, base, res);
379 }
380 
381 /**
382  * kstrtol - convert a string to a long
383  * @s: The start of the string. The string must be null-terminated, and may also
384  *  include a single newline before its terminating null. The first character
385  *  may also be a plus sign or a minus sign.
386  * @base: The number base to use. The maximum supported base is 16. If base is
387  *  given as 0, then the base of the string is automatically detected with the
388  *  conventional semantics - If it begins with 0x the number will be parsed as a
389  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
390  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
391  * @res: Where to write the result of the conversion on success.
392  *
393  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
394  * Used as a replacement for the obsolete simple_strtoull. Return code must
395  * be checked.
396  */
kstrtol(const char * s,unsigned int base,long * res)397 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
398 {
399 	/*
400 	 * We want to shortcut function call, but
401 	 * __builtin_types_compatible_p(long, long long) = 0.
402 	 */
403 	if (sizeof(long) == sizeof(long long) &&
404 	    __alignof__(long) == __alignof__(long long))
405 		return kstrtoll(s, base, (long long *)res);
406 	else
407 		return _kstrtol(s, base, res);
408 }
409 
410 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
411 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
412 
kstrtou64(const char * s,unsigned int base,u64 * res)413 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
414 {
415 	return kstrtoull(s, base, res);
416 }
417 
kstrtos64(const char * s,unsigned int base,s64 * res)418 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
419 {
420 	return kstrtoll(s, base, res);
421 }
422 
kstrtou32(const char * s,unsigned int base,u32 * res)423 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
424 {
425 	return kstrtouint(s, base, res);
426 }
427 
kstrtos32(const char * s,unsigned int base,s32 * res)428 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
429 {
430 	return kstrtoint(s, base, res);
431 }
432 
433 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
434 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
435 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
436 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
437 int __must_check kstrtobool(const char *s, bool *res);
438 
439 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
440 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
441 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
442 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
443 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
444 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
445 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
446 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
447 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
448 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
449 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
450 
kstrtou64_from_user(const char __user * s,size_t count,unsigned int base,u64 * res)451 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
452 {
453 	return kstrtoull_from_user(s, count, base, res);
454 }
455 
kstrtos64_from_user(const char __user * s,size_t count,unsigned int base,s64 * res)456 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
457 {
458 	return kstrtoll_from_user(s, count, base, res);
459 }
460 
kstrtou32_from_user(const char __user * s,size_t count,unsigned int base,u32 * res)461 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
462 {
463 	return kstrtouint_from_user(s, count, base, res);
464 }
465 
kstrtos32_from_user(const char __user * s,size_t count,unsigned int base,s32 * res)466 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
467 {
468 	return kstrtoint_from_user(s, count, base, res);
469 }
470 
471 /* Obsolete, do not use.  Use kstrto<foo> instead */
472 
473 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
474 extern long simple_strtol(const char *,char **,unsigned int);
475 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
476 extern long long simple_strtoll(const char *,char **,unsigned int);
477 
478 extern int num_to_str(char *buf, int size,
479 		      unsigned long long num, unsigned int width);
480 
481 /* lib/printf utilities */
482 
483 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
484 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
485 extern __printf(3, 4)
486 int snprintf(char *buf, size_t size, const char *fmt, ...);
487 extern __printf(3, 0)
488 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
489 extern __printf(3, 4)
490 int scnprintf(char *buf, size_t size, const char *fmt, ...);
491 extern __printf(3, 0)
492 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
493 extern __printf(2, 3) __malloc
494 char *kasprintf(gfp_t gfp, const char *fmt, ...);
495 extern __printf(2, 0) __malloc
496 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
497 extern __printf(2, 0)
498 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
499 
500 extern __scanf(2, 3)
501 int sscanf(const char *, const char *, ...);
502 extern __scanf(2, 0)
503 int vsscanf(const char *, const char *, va_list);
504 
505 extern int get_option(char **str, int *pint);
506 extern char *get_options(const char *str, int nints, int *ints);
507 extern unsigned long long memparse(const char *ptr, char **retptr);
508 extern bool parse_option_str(const char *str, const char *option);
509 extern char *next_arg(char *args, char **param, char **val);
510 
511 extern int core_kernel_text(unsigned long addr);
512 extern int init_kernel_text(unsigned long addr);
513 extern int core_kernel_data(unsigned long addr);
514 extern int __kernel_text_address(unsigned long addr);
515 extern int kernel_text_address(unsigned long addr);
516 extern int func_ptr_is_kernel_text(void *ptr);
517 
518 unsigned long int_sqrt(unsigned long);
519 
520 #if BITS_PER_LONG < 64
521 u32 int_sqrt64(u64 x);
522 #else
int_sqrt64(u64 x)523 static inline u32 int_sqrt64(u64 x)
524 {
525 	return (u32)int_sqrt(x);
526 }
527 #endif
528 
529 extern void bust_spinlocks(int yes);
530 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
531 extern int panic_timeout;
532 extern int panic_on_oops;
533 extern int panic_on_unrecovered_nmi;
534 extern int panic_on_io_nmi;
535 extern int panic_on_warn;
536 extern int sysctl_panic_on_rcu_stall;
537 extern int sysctl_panic_on_stackoverflow;
538 
539 extern bool crash_kexec_post_notifiers;
540 
541 /*
542  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
543  * holds a CPU number which is executing panic() currently. A value of
544  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
545  */
546 extern atomic_t panic_cpu;
547 #define PANIC_CPU_INVALID	-1
548 
549 /*
550  * Only to be used by arch init code. If the user over-wrote the default
551  * CONFIG_PANIC_TIMEOUT, honor it.
552  */
set_arch_panic_timeout(int timeout,int arch_default_timeout)553 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
554 {
555 	if (panic_timeout == arch_default_timeout)
556 		panic_timeout = timeout;
557 }
558 extern const char *print_tainted(void);
559 enum lockdep_ok {
560 	LOCKDEP_STILL_OK,
561 	LOCKDEP_NOW_UNRELIABLE
562 };
563 extern void add_taint(unsigned flag, enum lockdep_ok);
564 extern int test_taint(unsigned flag);
565 extern unsigned long get_taint(void);
566 extern int root_mountflags;
567 
568 extern bool early_boot_irqs_disabled;
569 
570 /*
571  * Values used for system_state. Ordering of the states must not be changed
572  * as code checks for <, <=, >, >= STATE.
573  */
574 extern enum system_states {
575 	SYSTEM_BOOTING,
576 	SYSTEM_SCHEDULING,
577 	SYSTEM_RUNNING,
578 	SYSTEM_HALT,
579 	SYSTEM_POWER_OFF,
580 	SYSTEM_RESTART,
581 	SYSTEM_SUSPEND,
582 } system_state;
583 
584 /* This cannot be an enum because some may be used in assembly source. */
585 #define TAINT_PROPRIETARY_MODULE	0
586 #define TAINT_FORCED_MODULE		1
587 #define TAINT_CPU_OUT_OF_SPEC		2
588 #define TAINT_FORCED_RMMOD		3
589 #define TAINT_MACHINE_CHECK		4
590 #define TAINT_BAD_PAGE			5
591 #define TAINT_USER			6
592 #define TAINT_DIE			7
593 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
594 #define TAINT_WARN			9
595 #define TAINT_CRAP			10
596 #define TAINT_FIRMWARE_WORKAROUND	11
597 #define TAINT_OOT_MODULE		12
598 #define TAINT_UNSIGNED_MODULE		13
599 #define TAINT_SOFTLOCKUP		14
600 #define TAINT_LIVEPATCH			15
601 #define TAINT_AUX			16
602 #define TAINT_RANDSTRUCT		17
603 #define TAINT_FLAGS_COUNT		18
604 
605 struct taint_flag {
606 	char c_true;	/* character printed when tainted */
607 	char c_false;	/* character printed when not tainted */
608 	bool module;	/* also show as a per-module taint flag */
609 };
610 
611 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
612 
613 extern const char hex_asc[];
614 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
615 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
616 
hex_byte_pack(char * buf,u8 byte)617 static inline char *hex_byte_pack(char *buf, u8 byte)
618 {
619 	*buf++ = hex_asc_hi(byte);
620 	*buf++ = hex_asc_lo(byte);
621 	return buf;
622 }
623 
624 extern const char hex_asc_upper[];
625 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
626 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
627 
hex_byte_pack_upper(char * buf,u8 byte)628 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
629 {
630 	*buf++ = hex_asc_upper_hi(byte);
631 	*buf++ = hex_asc_upper_lo(byte);
632 	return buf;
633 }
634 
635 extern int hex_to_bin(unsigned char ch);
636 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
637 extern char *bin2hex(char *dst, const void *src, size_t count);
638 
639 bool mac_pton(const char *s, u8 *mac);
640 
641 /*
642  * General tracing related utility functions - trace_printk(),
643  * tracing_on/tracing_off and tracing_start()/tracing_stop
644  *
645  * Use tracing_on/tracing_off when you want to quickly turn on or off
646  * tracing. It simply enables or disables the recording of the trace events.
647  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
648  * file, which gives a means for the kernel and userspace to interact.
649  * Place a tracing_off() in the kernel where you want tracing to end.
650  * From user space, examine the trace, and then echo 1 > tracing_on
651  * to continue tracing.
652  *
653  * tracing_stop/tracing_start has slightly more overhead. It is used
654  * by things like suspend to ram where disabling the recording of the
655  * trace is not enough, but tracing must actually stop because things
656  * like calling smp_processor_id() may crash the system.
657  *
658  * Most likely, you want to use tracing_on/tracing_off.
659  */
660 
661 enum ftrace_dump_mode {
662 	DUMP_NONE,
663 	DUMP_ALL,
664 	DUMP_ORIG,
665 };
666 
667 #ifdef CONFIG_TRACING
668 void tracing_on(void);
669 void tracing_off(void);
670 int tracing_is_on(void);
671 void tracing_snapshot(void);
672 void tracing_snapshot_alloc(void);
673 
674 extern void tracing_start(void);
675 extern void tracing_stop(void);
676 
677 static inline __printf(1, 2)
____trace_printk_check_format(const char * fmt,...)678 void ____trace_printk_check_format(const char *fmt, ...)
679 {
680 }
681 #define __trace_printk_check_format(fmt, args...)			\
682 do {									\
683 	if (0)								\
684 		____trace_printk_check_format(fmt, ##args);		\
685 } while (0)
686 
687 /**
688  * trace_printk - printf formatting in the ftrace buffer
689  * @fmt: the printf format for printing
690  *
691  * Note: __trace_printk is an internal function for trace_printk() and
692  *       the @ip is passed in via the trace_printk() macro.
693  *
694  * This function allows a kernel developer to debug fast path sections
695  * that printk is not appropriate for. By scattering in various
696  * printk like tracing in the code, a developer can quickly see
697  * where problems are occurring.
698  *
699  * This is intended as a debugging tool for the developer only.
700  * Please refrain from leaving trace_printks scattered around in
701  * your code. (Extra memory is used for special buffers that are
702  * allocated when trace_printk() is used.)
703  *
704  * A little optimization trick is done here. If there's only one
705  * argument, there's no need to scan the string for printf formats.
706  * The trace_puts() will suffice. But how can we take advantage of
707  * using trace_puts() when trace_printk() has only one argument?
708  * By stringifying the args and checking the size we can tell
709  * whether or not there are args. __stringify((__VA_ARGS__)) will
710  * turn into "()\0" with a size of 3 when there are no args, anything
711  * else will be bigger. All we need to do is define a string to this,
712  * and then take its size and compare to 3. If it's bigger, use
713  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
714  * let gcc optimize the rest.
715  */
716 
717 #define trace_printk(fmt, ...)				\
718 do {							\
719 	char _______STR[] = __stringify((__VA_ARGS__));	\
720 	if (sizeof(_______STR) > 3)			\
721 		do_trace_printk(fmt, ##__VA_ARGS__);	\
722 	else						\
723 		trace_puts(fmt);			\
724 } while (0)
725 
726 #define do_trace_printk(fmt, args...)					\
727 do {									\
728 	static const char *trace_printk_fmt __used			\
729 		__attribute__((section("__trace_printk_fmt"))) =	\
730 		__builtin_constant_p(fmt) ? fmt : NULL;			\
731 									\
732 	__trace_printk_check_format(fmt, ##args);			\
733 									\
734 	if (__builtin_constant_p(fmt))					\
735 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
736 	else								\
737 		__trace_printk(_THIS_IP_, fmt, ##args);			\
738 } while (0)
739 
740 extern __printf(2, 3)
741 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
742 
743 extern __printf(2, 3)
744 int __trace_printk(unsigned long ip, const char *fmt, ...);
745 
746 /**
747  * trace_puts - write a string into the ftrace buffer
748  * @str: the string to record
749  *
750  * Note: __trace_bputs is an internal function for trace_puts and
751  *       the @ip is passed in via the trace_puts macro.
752  *
753  * This is similar to trace_printk() but is made for those really fast
754  * paths that a developer wants the least amount of "Heisenbug" effects,
755  * where the processing of the print format is still too much.
756  *
757  * This function allows a kernel developer to debug fast path sections
758  * that printk is not appropriate for. By scattering in various
759  * printk like tracing in the code, a developer can quickly see
760  * where problems are occurring.
761  *
762  * This is intended as a debugging tool for the developer only.
763  * Please refrain from leaving trace_puts scattered around in
764  * your code. (Extra memory is used for special buffers that are
765  * allocated when trace_puts() is used.)
766  *
767  * Returns: 0 if nothing was written, positive # if string was.
768  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
769  */
770 
771 #define trace_puts(str) ({						\
772 	static const char *trace_printk_fmt __used			\
773 		__attribute__((section("__trace_printk_fmt"))) =	\
774 		__builtin_constant_p(str) ? str : NULL;			\
775 									\
776 	if (__builtin_constant_p(str))					\
777 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
778 	else								\
779 		__trace_puts(_THIS_IP_, str, strlen(str));		\
780 })
781 extern int __trace_bputs(unsigned long ip, const char *str);
782 extern int __trace_puts(unsigned long ip, const char *str, int size);
783 
784 extern void trace_dump_stack(int skip);
785 
786 /*
787  * The double __builtin_constant_p is because gcc will give us an error
788  * if we try to allocate the static variable to fmt if it is not a
789  * constant. Even with the outer if statement.
790  */
791 #define ftrace_vprintk(fmt, vargs)					\
792 do {									\
793 	if (__builtin_constant_p(fmt)) {				\
794 		static const char *trace_printk_fmt __used		\
795 		  __attribute__((section("__trace_printk_fmt"))) =	\
796 			__builtin_constant_p(fmt) ? fmt : NULL;		\
797 									\
798 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
799 	} else								\
800 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
801 } while (0)
802 
803 extern __printf(2, 0) int
804 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
805 
806 extern __printf(2, 0) int
807 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
808 
809 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
810 #else
tracing_start(void)811 static inline void tracing_start(void) { }
tracing_stop(void)812 static inline void tracing_stop(void) { }
trace_dump_stack(int skip)813 static inline void trace_dump_stack(int skip) { }
814 
tracing_on(void)815 static inline void tracing_on(void) { }
tracing_off(void)816 static inline void tracing_off(void) { }
tracing_is_on(void)817 static inline int tracing_is_on(void) { return 0; }
tracing_snapshot(void)818 static inline void tracing_snapshot(void) { }
tracing_snapshot_alloc(void)819 static inline void tracing_snapshot_alloc(void) { }
820 
821 static inline __printf(1, 2)
trace_printk(const char * fmt,...)822 int trace_printk(const char *fmt, ...)
823 {
824 	return 0;
825 }
826 static __printf(1, 0) inline int
ftrace_vprintk(const char * fmt,va_list ap)827 ftrace_vprintk(const char *fmt, va_list ap)
828 {
829 	return 0;
830 }
ftrace_dump(enum ftrace_dump_mode oops_dump_mode)831 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
832 #endif /* CONFIG_TRACING */
833 
834 /*
835  * min()/max()/clamp() macros must accomplish three things:
836  *
837  * - avoid multiple evaluations of the arguments (so side-effects like
838  *   "x++" happen only once) when non-constant.
839  * - perform strict type-checking (to generate warnings instead of
840  *   nasty runtime surprises). See the "unnecessary" pointer comparison
841  *   in __typecheck().
842  * - retain result as a constant expressions when called with only
843  *   constant expressions (to avoid tripping VLA warnings in stack
844  *   allocation usage).
845  */
846 #define __typecheck(x, y) \
847 		(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
848 
849 /*
850  * This returns a constant expression while determining if an argument is
851  * a constant expression, most importantly without evaluating the argument.
852  * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
853  */
854 #define __is_constexpr(x) \
855 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
856 
857 #define __no_side_effects(x, y) \
858 		(__is_constexpr(x) && __is_constexpr(y))
859 
860 #define __safe_cmp(x, y) \
861 		(__typecheck(x, y) && __no_side_effects(x, y))
862 
863 #define __cmp(x, y, op)	((x) op (y) ? (x) : (y))
864 
865 #define __cmp_once(x, y, unique_x, unique_y, op) ({	\
866 		typeof(x) unique_x = (x);		\
867 		typeof(y) unique_y = (y);		\
868 		__cmp(unique_x, unique_y, op); })
869 
870 #define __careful_cmp(x, y, op) \
871 	__builtin_choose_expr(__safe_cmp(x, y), \
872 		__cmp(x, y, op), \
873 		__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
874 
875 /**
876  * min - return minimum of two values of the same or compatible types
877  * @x: first value
878  * @y: second value
879  */
880 #define min(x, y)	__careful_cmp(x, y, <)
881 
882 /**
883  * max - return maximum of two values of the same or compatible types
884  * @x: first value
885  * @y: second value
886  */
887 #define max(x, y)	__careful_cmp(x, y, >)
888 
889 /**
890  * min3 - return minimum of three values
891  * @x: first value
892  * @y: second value
893  * @z: third value
894  */
895 #define min3(x, y, z) min((typeof(x))min(x, y), z)
896 
897 /**
898  * max3 - return maximum of three values
899  * @x: first value
900  * @y: second value
901  * @z: third value
902  */
903 #define max3(x, y, z) max((typeof(x))max(x, y), z)
904 
905 /**
906  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
907  * @x: value1
908  * @y: value2
909  */
910 #define min_not_zero(x, y) ({			\
911 	typeof(x) __x = (x);			\
912 	typeof(y) __y = (y);			\
913 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
914 
915 /**
916  * clamp - return a value clamped to a given range with strict typechecking
917  * @val: current value
918  * @lo: lowest allowable value
919  * @hi: highest allowable value
920  *
921  * This macro does strict typechecking of @lo/@hi to make sure they are of the
922  * same type as @val.  See the unnecessary pointer comparisons.
923  */
924 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
925 
926 /*
927  * ..and if you can't take the strict
928  * types, you can specify one yourself.
929  *
930  * Or not use min/max/clamp at all, of course.
931  */
932 
933 /**
934  * min_t - return minimum of two values, using the specified type
935  * @type: data type to use
936  * @x: first value
937  * @y: second value
938  */
939 #define min_t(type, x, y)	__careful_cmp((type)(x), (type)(y), <)
940 
941 /**
942  * max_t - return maximum of two values, using the specified type
943  * @type: data type to use
944  * @x: first value
945  * @y: second value
946  */
947 #define max_t(type, x, y)	__careful_cmp((type)(x), (type)(y), >)
948 
949 /**
950  * clamp_t - return a value clamped to a given range using a given type
951  * @type: the type of variable to use
952  * @val: current value
953  * @lo: minimum allowable value
954  * @hi: maximum allowable value
955  *
956  * This macro does no typechecking and uses temporary variables of type
957  * @type to make all the comparisons.
958  */
959 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
960 
961 /**
962  * clamp_val - return a value clamped to a given range using val's type
963  * @val: current value
964  * @lo: minimum allowable value
965  * @hi: maximum allowable value
966  *
967  * This macro does no typechecking and uses temporary variables of whatever
968  * type the input argument @val is.  This is useful when @val is an unsigned
969  * type and @lo and @hi are literals that will otherwise be assigned a signed
970  * integer type.
971  */
972 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
973 
974 
975 /**
976  * swap - swap values of @a and @b
977  * @a: first value
978  * @b: second value
979  */
980 #define swap(a, b) \
981 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
982 
983 /* This counts to 12. Any more, it will return 13th argument. */
984 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
985 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
986 
987 #define __CONCAT(a, b) a ## b
988 #define CONCATENATE(a, b) __CONCAT(a, b)
989 
990 /**
991  * container_of - cast a member of a structure out to the containing structure
992  * @ptr:	the pointer to the member.
993  * @type:	the type of the container struct this is embedded in.
994  * @member:	the name of the member within the struct.
995  *
996  */
997 #define container_of(ptr, type, member) ({				\
998 	void *__mptr = (void *)(ptr);					\
999 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
1000 			 !__same_type(*(ptr), void),			\
1001 			 "pointer type mismatch in container_of()");	\
1002 	((type *)(__mptr - offsetof(type, member))); })
1003 
1004 /**
1005  * container_of_safe - cast a member of a structure out to the containing structure
1006  * @ptr:	the pointer to the member.
1007  * @type:	the type of the container struct this is embedded in.
1008  * @member:	the name of the member within the struct.
1009  *
1010  * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1011  */
1012 #define container_of_safe(ptr, type, member) ({				\
1013 	void *__mptr = (void *)(ptr);					\
1014 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
1015 			 !__same_type(*(ptr), void),			\
1016 			 "pointer type mismatch in container_of()");	\
1017 	IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :			\
1018 		((type *)(__mptr - offsetof(type, member))); })
1019 
1020 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1021 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
1022 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1023 #endif
1024 
1025 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1026 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
1027 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
1028 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
1029 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
1030 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
1031 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
1032 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
1033 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
1034 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
1035 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
1036 	 (perms))
1037 #endif
1038