1 /*
2 * VMware VMCI Driver
3 *
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 */
15
16 #ifndef _VMW_VMCI_DEF_H_
17 #define _VMW_VMCI_DEF_H_
18
19 #include <linux/atomic.h>
20
21 /* Register offsets. */
22 #define VMCI_STATUS_ADDR 0x00
23 #define VMCI_CONTROL_ADDR 0x04
24 #define VMCI_ICR_ADDR 0x08
25 #define VMCI_IMR_ADDR 0x0c
26 #define VMCI_DATA_OUT_ADDR 0x10
27 #define VMCI_DATA_IN_ADDR 0x14
28 #define VMCI_CAPS_ADDR 0x18
29 #define VMCI_RESULT_LOW_ADDR 0x1c
30 #define VMCI_RESULT_HIGH_ADDR 0x20
31
32 /* Max number of devices. */
33 #define VMCI_MAX_DEVICES 1
34
35 /* Status register bits. */
36 #define VMCI_STATUS_INT_ON 0x1
37
38 /* Control register bits. */
39 #define VMCI_CONTROL_RESET 0x1
40 #define VMCI_CONTROL_INT_ENABLE 0x2
41 #define VMCI_CONTROL_INT_DISABLE 0x4
42
43 /* Capabilities register bits. */
44 #define VMCI_CAPS_HYPERCALL 0x1
45 #define VMCI_CAPS_GUESTCALL 0x2
46 #define VMCI_CAPS_DATAGRAM 0x4
47 #define VMCI_CAPS_NOTIFICATIONS 0x8
48
49 /* Interrupt Cause register bits. */
50 #define VMCI_ICR_DATAGRAM 0x1
51 #define VMCI_ICR_NOTIFICATION 0x2
52
53 /* Interrupt Mask register bits. */
54 #define VMCI_IMR_DATAGRAM 0x1
55 #define VMCI_IMR_NOTIFICATION 0x2
56
57 /* Maximum MSI/MSI-X interrupt vectors in the device. */
58 #define VMCI_MAX_INTRS 2
59
60 /*
61 * Supported interrupt vectors. There is one for each ICR value above,
62 * but here they indicate the position in the vector array/message ID.
63 */
64 enum {
65 VMCI_INTR_DATAGRAM = 0,
66 VMCI_INTR_NOTIFICATION = 1,
67 };
68
69 /*
70 * A single VMCI device has an upper limit of 128MB on the amount of
71 * memory that can be used for queue pairs. Since each queue pair
72 * consists of at least two pages, the memory limit also dictates the
73 * number of queue pairs a guest can create.
74 */
75 #define VMCI_MAX_GUEST_QP_MEMORY (128 * 1024 * 1024)
76 #define VMCI_MAX_GUEST_QP_COUNT (VMCI_MAX_GUEST_QP_MEMORY / PAGE_SIZE / 2)
77
78 /*
79 * There can be at most PAGE_SIZE doorbells since there is one doorbell
80 * per byte in the doorbell bitmap page.
81 */
82 #define VMCI_MAX_GUEST_DOORBELL_COUNT PAGE_SIZE
83
84 /*
85 * Queues with pre-mapped data pages must be small, so that we don't pin
86 * too much kernel memory (especially on vmkernel). We limit a queuepair to
87 * 32 KB, or 16 KB per queue for symmetrical pairs.
88 */
89 #define VMCI_MAX_PINNED_QP_MEMORY (32 * 1024)
90
91 /*
92 * We have a fixed set of resource IDs available in the VMX.
93 * This allows us to have a very simple implementation since we statically
94 * know how many will create datagram handles. If a new caller arrives and
95 * we have run out of slots we can manually increment the maximum size of
96 * available resource IDs.
97 *
98 * VMCI reserved hypervisor datagram resource IDs.
99 */
100 enum {
101 VMCI_RESOURCES_QUERY = 0,
102 VMCI_GET_CONTEXT_ID = 1,
103 VMCI_SET_NOTIFY_BITMAP = 2,
104 VMCI_DOORBELL_LINK = 3,
105 VMCI_DOORBELL_UNLINK = 4,
106 VMCI_DOORBELL_NOTIFY = 5,
107 /*
108 * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
109 * obsoleted by the removal of VM to VM communication.
110 */
111 VMCI_DATAGRAM_REQUEST_MAP = 6,
112 VMCI_DATAGRAM_REMOVE_MAP = 7,
113 VMCI_EVENT_SUBSCRIBE = 8,
114 VMCI_EVENT_UNSUBSCRIBE = 9,
115 VMCI_QUEUEPAIR_ALLOC = 10,
116 VMCI_QUEUEPAIR_DETACH = 11,
117
118 /*
119 * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
120 * WS 7.0/7.1 and ESX 4.1
121 */
122 VMCI_HGFS_TRANSPORT = 13,
123 VMCI_UNITY_PBRPC_REGISTER = 14,
124 VMCI_RPC_PRIVILEGED = 15,
125 VMCI_RPC_UNPRIVILEGED = 16,
126 VMCI_RESOURCE_MAX = 17,
127 };
128
129 /*
130 * struct vmci_handle - Ownership information structure
131 * @context: The VMX context ID.
132 * @resource: The resource ID (used for locating in resource hash).
133 *
134 * The vmci_handle structure is used to track resources used within
135 * vmw_vmci.
136 */
137 struct vmci_handle {
138 u32 context;
139 u32 resource;
140 };
141
142 #define vmci_make_handle(_cid, _rid) \
143 (struct vmci_handle){ .context = _cid, .resource = _rid }
144
vmci_handle_is_equal(struct vmci_handle h1,struct vmci_handle h2)145 static inline bool vmci_handle_is_equal(struct vmci_handle h1,
146 struct vmci_handle h2)
147 {
148 return h1.context == h2.context && h1.resource == h2.resource;
149 }
150
151 #define VMCI_INVALID_ID ~0
152 static const struct vmci_handle VMCI_INVALID_HANDLE = {
153 .context = VMCI_INVALID_ID,
154 .resource = VMCI_INVALID_ID
155 };
156
vmci_handle_is_invalid(struct vmci_handle h)157 static inline bool vmci_handle_is_invalid(struct vmci_handle h)
158 {
159 return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
160 }
161
162 /*
163 * The below defines can be used to send anonymous requests.
164 * This also indicates that no response is expected.
165 */
166 #define VMCI_ANON_SRC_CONTEXT_ID VMCI_INVALID_ID
167 #define VMCI_ANON_SRC_RESOURCE_ID VMCI_INVALID_ID
168 static const struct vmci_handle VMCI_ANON_SRC_HANDLE = {
169 .context = VMCI_ANON_SRC_CONTEXT_ID,
170 .resource = VMCI_ANON_SRC_RESOURCE_ID
171 };
172
173 /* The lowest 16 context ids are reserved for internal use. */
174 #define VMCI_RESERVED_CID_LIMIT ((u32) 16)
175
176 /*
177 * Hypervisor context id, used for calling into hypervisor
178 * supplied services from the VM.
179 */
180 #define VMCI_HYPERVISOR_CONTEXT_ID 0
181
182 /*
183 * Well-known context id, a logical context that contains a set of
184 * well-known services. This context ID is now obsolete.
185 */
186 #define VMCI_WELL_KNOWN_CONTEXT_ID 1
187
188 /*
189 * Context ID used by host endpoints.
190 */
191 #define VMCI_HOST_CONTEXT_ID 2
192
193 #define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) && \
194 (_cid) > VMCI_HOST_CONTEXT_ID)
195
196 /*
197 * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
198 * handles that refer to a specific context.
199 */
200 #define VMCI_CONTEXT_RESOURCE_ID 0
201
202 /*
203 * VMCI error codes.
204 */
205 enum {
206 VMCI_SUCCESS_QUEUEPAIR_ATTACH = 5,
207 VMCI_SUCCESS_QUEUEPAIR_CREATE = 4,
208 VMCI_SUCCESS_LAST_DETACH = 3,
209 VMCI_SUCCESS_ACCESS_GRANTED = 2,
210 VMCI_SUCCESS_ENTRY_DEAD = 1,
211 VMCI_SUCCESS = 0,
212 VMCI_ERROR_INVALID_RESOURCE = (-1),
213 VMCI_ERROR_INVALID_ARGS = (-2),
214 VMCI_ERROR_NO_MEM = (-3),
215 VMCI_ERROR_DATAGRAM_FAILED = (-4),
216 VMCI_ERROR_MORE_DATA = (-5),
217 VMCI_ERROR_NO_MORE_DATAGRAMS = (-6),
218 VMCI_ERROR_NO_ACCESS = (-7),
219 VMCI_ERROR_NO_HANDLE = (-8),
220 VMCI_ERROR_DUPLICATE_ENTRY = (-9),
221 VMCI_ERROR_DST_UNREACHABLE = (-10),
222 VMCI_ERROR_PAYLOAD_TOO_LARGE = (-11),
223 VMCI_ERROR_INVALID_PRIV = (-12),
224 VMCI_ERROR_GENERIC = (-13),
225 VMCI_ERROR_PAGE_ALREADY_SHARED = (-14),
226 VMCI_ERROR_CANNOT_SHARE_PAGE = (-15),
227 VMCI_ERROR_CANNOT_UNSHARE_PAGE = (-16),
228 VMCI_ERROR_NO_PROCESS = (-17),
229 VMCI_ERROR_NO_DATAGRAM = (-18),
230 VMCI_ERROR_NO_RESOURCES = (-19),
231 VMCI_ERROR_UNAVAILABLE = (-20),
232 VMCI_ERROR_NOT_FOUND = (-21),
233 VMCI_ERROR_ALREADY_EXISTS = (-22),
234 VMCI_ERROR_NOT_PAGE_ALIGNED = (-23),
235 VMCI_ERROR_INVALID_SIZE = (-24),
236 VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
237 VMCI_ERROR_TIMEOUT = (-26),
238 VMCI_ERROR_DATAGRAM_INCOMPLETE = (-27),
239 VMCI_ERROR_INCORRECT_IRQL = (-28),
240 VMCI_ERROR_EVENT_UNKNOWN = (-29),
241 VMCI_ERROR_OBSOLETE = (-30),
242 VMCI_ERROR_QUEUEPAIR_MISMATCH = (-31),
243 VMCI_ERROR_QUEUEPAIR_NOTSET = (-32),
244 VMCI_ERROR_QUEUEPAIR_NOTOWNER = (-33),
245 VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
246 VMCI_ERROR_QUEUEPAIR_NOSPACE = (-35),
247 VMCI_ERROR_QUEUEPAIR_NODATA = (-36),
248 VMCI_ERROR_BUSMEM_INVALIDATION = (-37),
249 VMCI_ERROR_MODULE_NOT_LOADED = (-38),
250 VMCI_ERROR_DEVICE_NOT_FOUND = (-39),
251 VMCI_ERROR_QUEUEPAIR_NOT_READY = (-40),
252 VMCI_ERROR_WOULD_BLOCK = (-41),
253
254 /* VMCI clients should return error code within this range */
255 VMCI_ERROR_CLIENT_MIN = (-500),
256 VMCI_ERROR_CLIENT_MAX = (-550),
257
258 /* Internal error codes. */
259 VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
260 };
261
262 /* VMCI reserved events. */
263 enum {
264 /* Only applicable to guest endpoints */
265 VMCI_EVENT_CTX_ID_UPDATE = 0,
266
267 /* Applicable to guest and host */
268 VMCI_EVENT_CTX_REMOVED = 1,
269
270 /* Only applicable to guest endpoints */
271 VMCI_EVENT_QP_RESUMED = 2,
272
273 /* Applicable to guest and host */
274 VMCI_EVENT_QP_PEER_ATTACH = 3,
275
276 /* Applicable to guest and host */
277 VMCI_EVENT_QP_PEER_DETACH = 4,
278
279 /*
280 * Applicable to VMX and vmk. On vmk,
281 * this event has the Context payload type.
282 */
283 VMCI_EVENT_MEM_ACCESS_ON = 5,
284
285 /*
286 * Applicable to VMX and vmk. Same as
287 * above for the payload type.
288 */
289 VMCI_EVENT_MEM_ACCESS_OFF = 6,
290 VMCI_EVENT_MAX = 7,
291 };
292
293 /*
294 * Of the above events, a few are reserved for use in the VMX, and
295 * other endpoints (guest and host kernel) should not use them. For
296 * the rest of the events, we allow both host and guest endpoints to
297 * subscribe to them, to maintain the same API for host and guest
298 * endpoints.
299 */
300 #define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
301 (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
302
303 #define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX && \
304 !VMCI_EVENT_VALID_VMX(_event))
305
306 /* Reserved guest datagram resource ids. */
307 #define VMCI_EVENT_HANDLER 0
308
309 /*
310 * VMCI coarse-grained privileges (per context or host
311 * process/endpoint. An entity with the restricted flag is only
312 * allowed to interact with the hypervisor and trusted entities.
313 */
314 enum {
315 VMCI_NO_PRIVILEGE_FLAGS = 0,
316 VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
317 VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
318 VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
319 VMCI_PRIVILEGE_FLAG_TRUSTED),
320 VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
321 VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
322 VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
323 };
324
325 /* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
326 #define VMCI_RESERVED_RESOURCE_ID_MAX 1023
327
328 /*
329 * Driver version.
330 *
331 * Increment major version when you make an incompatible change.
332 * Compatibility goes both ways (old driver with new executable
333 * as well as new driver with old executable).
334 */
335
336 /* Never change VMCI_VERSION_SHIFT_WIDTH */
337 #define VMCI_VERSION_SHIFT_WIDTH 16
338 #define VMCI_MAKE_VERSION(_major, _minor) \
339 ((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
340
341 #define VMCI_VERSION_MAJOR(v) ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
342 #define VMCI_VERSION_MINOR(v) ((u16) (v))
343
344 /*
345 * VMCI_VERSION is always the current version. Subsequently listed
346 * versions are ways of detecting previous versions of the connecting
347 * application (i.e., VMX).
348 *
349 * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
350 * communication.
351 *
352 * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
353 * support.
354 *
355 * VMCI_VERSION_HOSTQP: This version introduced host end point support
356 * for hosted products.
357 *
358 * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
359 * support for host end-points.
360 *
361 * VMCI_VERSION_PREVERS2: This fictional version number is intended to
362 * represent the version of a VMX which doesn't call into the driver
363 * with ioctl VERSION2 and thus doesn't establish its version with the
364 * driver.
365 */
366
367 #define VMCI_VERSION VMCI_VERSION_NOVMVM
368 #define VMCI_VERSION_NOVMVM VMCI_MAKE_VERSION(11, 0)
369 #define VMCI_VERSION_NOTIFY VMCI_MAKE_VERSION(10, 0)
370 #define VMCI_VERSION_HOSTQP VMCI_MAKE_VERSION(9, 0)
371 #define VMCI_VERSION_PREHOSTQP VMCI_MAKE_VERSION(8, 0)
372 #define VMCI_VERSION_PREVERS2 VMCI_MAKE_VERSION(1, 0)
373
374 #define VMCI_SOCKETS_MAKE_VERSION(_p) \
375 ((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
376
377 /*
378 * The VMCI IOCTLs. We use identity code 7, as noted in ioctl-number.h, and
379 * we start at sequence 9f. This gives us the same values that our shipping
380 * products use, starting at 1951, provided we leave out the direction and
381 * structure size. Note that VMMon occupies the block following us, starting
382 * at 2001.
383 */
384 #define IOCTL_VMCI_VERSION _IO(7, 0x9f) /* 1951 */
385 #define IOCTL_VMCI_INIT_CONTEXT _IO(7, 0xa0)
386 #define IOCTL_VMCI_QUEUEPAIR_SETVA _IO(7, 0xa4)
387 #define IOCTL_VMCI_NOTIFY_RESOURCE _IO(7, 0xa5)
388 #define IOCTL_VMCI_NOTIFICATIONS_RECEIVE _IO(7, 0xa6)
389 #define IOCTL_VMCI_VERSION2 _IO(7, 0xa7)
390 #define IOCTL_VMCI_QUEUEPAIR_ALLOC _IO(7, 0xa8)
391 #define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE _IO(7, 0xa9)
392 #define IOCTL_VMCI_QUEUEPAIR_DETACH _IO(7, 0xaa)
393 #define IOCTL_VMCI_DATAGRAM_SEND _IO(7, 0xab)
394 #define IOCTL_VMCI_DATAGRAM_RECEIVE _IO(7, 0xac)
395 #define IOCTL_VMCI_CTX_ADD_NOTIFICATION _IO(7, 0xaf)
396 #define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION _IO(7, 0xb0)
397 #define IOCTL_VMCI_CTX_GET_CPT_STATE _IO(7, 0xb1)
398 #define IOCTL_VMCI_CTX_SET_CPT_STATE _IO(7, 0xb2)
399 #define IOCTL_VMCI_GET_CONTEXT_ID _IO(7, 0xb3)
400 #define IOCTL_VMCI_SOCKETS_VERSION _IO(7, 0xb4)
401 #define IOCTL_VMCI_SOCKETS_GET_AF_VALUE _IO(7, 0xb8)
402 #define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID _IO(7, 0xb9)
403 #define IOCTL_VMCI_SET_NOTIFY _IO(7, 0xcb) /* 1995 */
404 /*IOCTL_VMMON_START _IO(7, 0xd1)*/ /* 2001 */
405
406 /*
407 * struct vmci_queue_header - VMCI Queue Header information.
408 *
409 * A Queue cannot stand by itself as designed. Each Queue's header
410 * contains a pointer into itself (the producer_tail) and into its peer
411 * (consumer_head). The reason for the separation is one of
412 * accessibility: Each end-point can modify two things: where the next
413 * location to enqueue is within its produce_q (producer_tail); and
414 * where the next dequeue location is in its consume_q (consumer_head).
415 *
416 * An end-point cannot modify the pointers of its peer (guest to
417 * guest; NOTE that in the host both queue headers are mapped r/w).
418 * But, each end-point needs read access to both Queue header
419 * structures in order to determine how much space is used (or left)
420 * in the Queue. This is because for an end-point to know how full
421 * its produce_q is, it needs to use the consumer_head that points into
422 * the produce_q but -that- consumer_head is in the Queue header for
423 * that end-points consume_q.
424 *
425 * Thoroughly confused? Sorry.
426 *
427 * producer_tail: the point to enqueue new entrants. When you approach
428 * a line in a store, for example, you walk up to the tail.
429 *
430 * consumer_head: the point in the queue from which the next element is
431 * dequeued. In other words, who is next in line is he who is at the
432 * head of the line.
433 *
434 * Also, producer_tail points to an empty byte in the Queue, whereas
435 * consumer_head points to a valid byte of data (unless producer_tail ==
436 * consumer_head in which case consumer_head does not point to a valid
437 * byte of data).
438 *
439 * For a queue of buffer 'size' bytes, the tail and head pointers will be in
440 * the range [0, size-1].
441 *
442 * If produce_q_header->producer_tail == consume_q_header->consumer_head
443 * then the produce_q is empty.
444 */
445 struct vmci_queue_header {
446 /* All fields are 64bit and aligned. */
447 struct vmci_handle handle; /* Identifier. */
448 atomic64_t producer_tail; /* Offset in this queue. */
449 atomic64_t consumer_head; /* Offset in peer queue. */
450 };
451
452 /*
453 * struct vmci_datagram - Base struct for vmci datagrams.
454 * @dst: A vmci_handle that tracks the destination of the datagram.
455 * @src: A vmci_handle that tracks the source of the datagram.
456 * @payload_size: The size of the payload.
457 *
458 * vmci_datagram structs are used when sending vmci datagrams. They include
459 * the necessary source and destination information to properly route
460 * the information along with the size of the package.
461 */
462 struct vmci_datagram {
463 struct vmci_handle dst;
464 struct vmci_handle src;
465 u64 payload_size;
466 };
467
468 /*
469 * Second flag is for creating a well-known handle instead of a per context
470 * handle. Next flag is for deferring datagram delivery, so that the
471 * datagram callback is invoked in a delayed context (not interrupt context).
472 */
473 #define VMCI_FLAG_DG_NONE 0
474 #define VMCI_FLAG_WELLKNOWN_DG_HND 0x1
475 #define VMCI_FLAG_ANYCID_DG_HND 0x2
476 #define VMCI_FLAG_DG_DELAYED_CB 0x4
477
478 /*
479 * Maximum supported size of a VMCI datagram for routable datagrams.
480 * Datagrams going to the hypervisor are allowed to be larger.
481 */
482 #define VMCI_MAX_DG_SIZE (17 * 4096)
483 #define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
484 sizeof(struct vmci_datagram))
485 #define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) + \
486 sizeof(struct vmci_datagram))
487 #define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
488 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
489 #define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
490 #define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
491
492 struct vmci_event_payload_qp {
493 struct vmci_handle handle; /* queue_pair handle. */
494 u32 peer_id; /* Context id of attaching/detaching VM. */
495 u32 _pad;
496 };
497
498 /* Flags for VMCI queue_pair API. */
499 enum {
500 /* Fail alloc if QP not created by peer. */
501 VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
502
503 /* Only allow attaches from local context. */
504 VMCI_QPFLAG_LOCAL = 1 << 1,
505
506 /* Host won't block when guest is quiesced. */
507 VMCI_QPFLAG_NONBLOCK = 1 << 2,
508
509 /* Pin data pages in ESX. Used with NONBLOCK */
510 VMCI_QPFLAG_PINNED = 1 << 3,
511
512 /* Update the following flag when adding new flags. */
513 VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
514 VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
515
516 /* Convenience flags */
517 VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
518 VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
519 };
520
521 /*
522 * We allow at least 1024 more event datagrams from the hypervisor past the
523 * normally allowed datagrams pending for a given context. We define this
524 * limit on event datagrams from the hypervisor to guard against DoS attack
525 * from a malicious VM which could repeatedly attach to and detach from a queue
526 * pair, causing events to be queued at the destination VM. However, the rate
527 * at which such events can be generated is small since it requires a VM exit
528 * and handling of queue pair attach/detach call at the hypervisor. Event
529 * datagrams may be queued up at the destination VM if it has interrupts
530 * disabled or if it is not draining events for some other reason. 1024
531 * datagrams is a grossly conservative estimate of the time for which
532 * interrupts may be disabled in the destination VM, but at the same time does
533 * not exacerbate the memory pressure problem on the host by much (size of each
534 * event datagram is small).
535 */
536 #define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE \
537 (VMCI_MAX_DATAGRAM_QUEUE_SIZE + \
538 1024 * (sizeof(struct vmci_datagram) + \
539 sizeof(struct vmci_event_data_max)))
540
541 /*
542 * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
543 * hypervisor resources. Struct size is 16 bytes. All fields in struct are
544 * aligned to their natural alignment.
545 */
546 struct vmci_resource_query_hdr {
547 struct vmci_datagram hdr;
548 u32 num_resources;
549 u32 _padding;
550 };
551
552 /*
553 * Convenience struct for negotiating vectors. Must match layout of
554 * VMCIResourceQueryHdr minus the struct vmci_datagram header.
555 */
556 struct vmci_resource_query_msg {
557 u32 num_resources;
558 u32 _padding;
559 u32 resources[1];
560 };
561
562 /*
563 * The maximum number of resources that can be queried using
564 * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
565 * bits of a positive return value. Negative values are reserved for
566 * errors.
567 */
568 #define VMCI_RESOURCE_QUERY_MAX_NUM 31
569
570 /* Maximum size for the VMCI_RESOURCE_QUERY request. */
571 #define VMCI_RESOURCE_QUERY_MAX_SIZE \
572 (sizeof(struct vmci_resource_query_hdr) + \
573 sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
574
575 /*
576 * Struct used for setting the notification bitmap. All fields in
577 * struct are aligned to their natural alignment.
578 */
579 struct vmci_notify_bm_set_msg {
580 struct vmci_datagram hdr;
581 u32 bitmap_ppn;
582 u32 _pad;
583 };
584
585 /*
586 * Struct used for linking a doorbell handle with an index in the
587 * notify bitmap. All fields in struct are aligned to their natural
588 * alignment.
589 */
590 struct vmci_doorbell_link_msg {
591 struct vmci_datagram hdr;
592 struct vmci_handle handle;
593 u64 notify_idx;
594 };
595
596 /*
597 * Struct used for unlinking a doorbell handle from an index in the
598 * notify bitmap. All fields in struct are aligned to their natural
599 * alignment.
600 */
601 struct vmci_doorbell_unlink_msg {
602 struct vmci_datagram hdr;
603 struct vmci_handle handle;
604 };
605
606 /*
607 * Struct used for generating a notification on a doorbell handle. All
608 * fields in struct are aligned to their natural alignment.
609 */
610 struct vmci_doorbell_notify_msg {
611 struct vmci_datagram hdr;
612 struct vmci_handle handle;
613 };
614
615 /*
616 * This struct is used to contain data for events. Size of this struct is a
617 * multiple of 8 bytes, and all fields are aligned to their natural alignment.
618 */
619 struct vmci_event_data {
620 u32 event; /* 4 bytes. */
621 u32 _pad;
622 /* Event payload is put here. */
623 };
624
625 /*
626 * Define the different VMCI_EVENT payload data types here. All structs must
627 * be a multiple of 8 bytes, and fields must be aligned to their natural
628 * alignment.
629 */
630 struct vmci_event_payld_ctx {
631 u32 context_id; /* 4 bytes. */
632 u32 _pad;
633 };
634
635 struct vmci_event_payld_qp {
636 struct vmci_handle handle; /* queue_pair handle. */
637 u32 peer_id; /* Context id of attaching/detaching VM. */
638 u32 _pad;
639 };
640
641 /*
642 * We define the following struct to get the size of the maximum event
643 * data the hypervisor may send to the guest. If adding a new event
644 * payload type above, add it to the following struct too (inside the
645 * union).
646 */
647 struct vmci_event_data_max {
648 struct vmci_event_data event_data;
649 union {
650 struct vmci_event_payld_ctx context_payload;
651 struct vmci_event_payld_qp qp_payload;
652 } ev_data_payload;
653 };
654
655 /*
656 * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
657 * VMCI_EVENT_HANDLER messages. Struct size is 32 bytes. All fields
658 * in struct are aligned to their natural alignment.
659 */
660 struct vmci_event_msg {
661 struct vmci_datagram hdr;
662
663 /* Has event type and payload. */
664 struct vmci_event_data event_data;
665
666 /* Payload gets put here. */
667 };
668
669 /* Event with context payload. */
670 struct vmci_event_ctx {
671 struct vmci_event_msg msg;
672 struct vmci_event_payld_ctx payload;
673 };
674
675 /* Event with QP payload. */
676 struct vmci_event_qp {
677 struct vmci_event_msg msg;
678 struct vmci_event_payld_qp payload;
679 };
680
681 /*
682 * Structs used for queue_pair alloc and detach messages. We align fields of
683 * these structs to 64bit boundaries.
684 */
685 struct vmci_qp_alloc_msg {
686 struct vmci_datagram hdr;
687 struct vmci_handle handle;
688 u32 peer;
689 u32 flags;
690 u64 produce_size;
691 u64 consume_size;
692 u64 num_ppns;
693
694 /* List of PPNs placed here. */
695 };
696
697 struct vmci_qp_detach_msg {
698 struct vmci_datagram hdr;
699 struct vmci_handle handle;
700 };
701
702 /* VMCI Doorbell API. */
703 #define VMCI_FLAG_DELAYED_CB 0x01
704
705 typedef void (*vmci_callback) (void *client_data);
706
707 /*
708 * struct vmci_qp - A vmw_vmci queue pair handle.
709 *
710 * This structure is used as a handle to a queue pair created by
711 * VMCI. It is intentionally left opaque to clients.
712 */
713 struct vmci_qp;
714
715 /* Callback needed for correctly waiting on events. */
716 typedef int (*vmci_datagram_recv_cb) (void *client_data,
717 struct vmci_datagram *msg);
718
719 /* VMCI Event API. */
720 typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
721 void *client_data);
722
723 /*
724 * We use the following inline function to access the payload data
725 * associated with an event data.
726 */
727 static inline const void *
vmci_event_data_const_payload(const struct vmci_event_data * ev_data)728 vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
729 {
730 return (const char *)ev_data + sizeof(*ev_data);
731 }
732
vmci_event_data_payload(struct vmci_event_data * ev_data)733 static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
734 {
735 return (void *)vmci_event_data_const_payload(ev_data);
736 }
737
738 /*
739 * Helper to read a value from a head or tail pointer. For X86_32, the
740 * pointer is treated as a 32bit value, since the pointer value
741 * never exceeds a 32bit value in this case. Also, doing an
742 * atomic64_read on X86_32 uniprocessor systems may be implemented
743 * as a non locked cmpxchg8b, that may end up overwriting updates done
744 * by the VMCI device to the memory location. On 32bit SMP, the lock
745 * prefix will be used, so correctness isn't an issue, but using a
746 * 64bit operation still adds unnecessary overhead.
747 */
vmci_q_read_pointer(atomic64_t * var)748 static inline u64 vmci_q_read_pointer(atomic64_t *var)
749 {
750 #if defined(CONFIG_X86_32)
751 return atomic_read((atomic_t *)var);
752 #else
753 return atomic64_read(var);
754 #endif
755 }
756
757 /*
758 * Helper to set the value of a head or tail pointer. For X86_32, the
759 * pointer is treated as a 32bit value, since the pointer value
760 * never exceeds a 32bit value in this case. On 32bit SMP, using a
761 * locked cmpxchg8b adds unnecessary overhead.
762 */
vmci_q_set_pointer(atomic64_t * var,u64 new_val)763 static inline void vmci_q_set_pointer(atomic64_t *var,
764 u64 new_val)
765 {
766 #if defined(CONFIG_X86_32)
767 return atomic_set((atomic_t *)var, (u32)new_val);
768 #else
769 return atomic64_set(var, new_val);
770 #endif
771 }
772
773 /*
774 * Helper to add a given offset to a head or tail pointer. Wraps the
775 * value of the pointer around the max size of the queue.
776 */
vmci_qp_add_pointer(atomic64_t * var,size_t add,u64 size)777 static inline void vmci_qp_add_pointer(atomic64_t *var,
778 size_t add,
779 u64 size)
780 {
781 u64 new_val = vmci_q_read_pointer(var);
782
783 if (new_val >= size - add)
784 new_val -= size;
785
786 new_val += add;
787
788 vmci_q_set_pointer(var, new_val);
789 }
790
791 /*
792 * Helper routine to get the Producer Tail from the supplied queue.
793 */
794 static inline u64
vmci_q_header_producer_tail(const struct vmci_queue_header * q_header)795 vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
796 {
797 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
798 return vmci_q_read_pointer(&qh->producer_tail);
799 }
800
801 /*
802 * Helper routine to get the Consumer Head from the supplied queue.
803 */
804 static inline u64
vmci_q_header_consumer_head(const struct vmci_queue_header * q_header)805 vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
806 {
807 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
808 return vmci_q_read_pointer(&qh->consumer_head);
809 }
810
811 /*
812 * Helper routine to increment the Producer Tail. Fundamentally,
813 * vmci_qp_add_pointer() is used to manipulate the tail itself.
814 */
815 static inline void
vmci_q_header_add_producer_tail(struct vmci_queue_header * q_header,size_t add,u64 queue_size)816 vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
817 size_t add,
818 u64 queue_size)
819 {
820 vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
821 }
822
823 /*
824 * Helper routine to increment the Consumer Head. Fundamentally,
825 * vmci_qp_add_pointer() is used to manipulate the head itself.
826 */
827 static inline void
vmci_q_header_add_consumer_head(struct vmci_queue_header * q_header,size_t add,u64 queue_size)828 vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
829 size_t add,
830 u64 queue_size)
831 {
832 vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
833 }
834
835 /*
836 * Helper routine for getting the head and the tail pointer for a queue.
837 * Both the VMCIQueues are needed to get both the pointers for one queue.
838 */
839 static inline void
vmci_q_header_get_pointers(const struct vmci_queue_header * produce_q_header,const struct vmci_queue_header * consume_q_header,u64 * producer_tail,u64 * consumer_head)840 vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
841 const struct vmci_queue_header *consume_q_header,
842 u64 *producer_tail,
843 u64 *consumer_head)
844 {
845 if (producer_tail)
846 *producer_tail = vmci_q_header_producer_tail(produce_q_header);
847
848 if (consumer_head)
849 *consumer_head = vmci_q_header_consumer_head(consume_q_header);
850 }
851
vmci_q_header_init(struct vmci_queue_header * q_header,const struct vmci_handle handle)852 static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
853 const struct vmci_handle handle)
854 {
855 q_header->handle = handle;
856 atomic64_set(&q_header->producer_tail, 0);
857 atomic64_set(&q_header->consumer_head, 0);
858 }
859
860 /*
861 * Finds available free space in a produce queue to enqueue more
862 * data or reports an error if queue pair corruption is detected.
863 */
864 static s64
vmci_q_header_free_space(const struct vmci_queue_header * produce_q_header,const struct vmci_queue_header * consume_q_header,const u64 produce_q_size)865 vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
866 const struct vmci_queue_header *consume_q_header,
867 const u64 produce_q_size)
868 {
869 u64 tail;
870 u64 head;
871 u64 free_space;
872
873 tail = vmci_q_header_producer_tail(produce_q_header);
874 head = vmci_q_header_consumer_head(consume_q_header);
875
876 if (tail >= produce_q_size || head >= produce_q_size)
877 return VMCI_ERROR_INVALID_SIZE;
878
879 /*
880 * Deduct 1 to avoid tail becoming equal to head which causes
881 * ambiguity. If head and tail are equal it means that the
882 * queue is empty.
883 */
884 if (tail >= head)
885 free_space = produce_q_size - (tail - head) - 1;
886 else
887 free_space = head - tail - 1;
888
889 return free_space;
890 }
891
892 /*
893 * vmci_q_header_free_space() does all the heavy lifting of
894 * determing the number of free bytes in a Queue. This routine,
895 * then subtracts that size from the full size of the Queue so
896 * the caller knows how many bytes are ready to be dequeued.
897 * Results:
898 * On success, available data size in bytes (up to MAX_INT64).
899 * On failure, appropriate error code.
900 */
901 static inline s64
vmci_q_header_buf_ready(const struct vmci_queue_header * consume_q_header,const struct vmci_queue_header * produce_q_header,const u64 consume_q_size)902 vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
903 const struct vmci_queue_header *produce_q_header,
904 const u64 consume_q_size)
905 {
906 s64 free_space;
907
908 free_space = vmci_q_header_free_space(consume_q_header,
909 produce_q_header, consume_q_size);
910 if (free_space < VMCI_SUCCESS)
911 return free_space;
912
913 return consume_q_size - free_space - 1;
914 }
915
916
917 #endif /* _VMW_VMCI_DEF_H_ */
918