1 /*
2  * Xilinx XADC driver
3  *
4  * Copyright 2013-2014 Analog Devices Inc.
5  *  Author: Lars-Peter Clauen <lars@metafoo.de>
6  *
7  * Licensed under the GPL-2.
8  *
9  * Documentation for the parts can be found at:
10  *  - XADC hardmacro: Xilinx UG480
11  *  - ZYNQ XADC interface: Xilinx UG585
12  *  - AXI XADC interface: Xilinx PG019
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
26 
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34 
35 #include "xilinx-xadc.h"
36 
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38 
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG	0x00
41 #define XADC_ZYNQ_REG_INTSTS	0x04
42 #define XADC_ZYNQ_REG_INTMSK	0x08
43 #define XADC_ZYNQ_REG_STATUS	0x0c
44 #define XADC_ZYNQ_REG_CFIFO	0x10
45 #define XADC_ZYNQ_REG_DFIFO	0x14
46 #define XADC_ZYNQ_REG_CTL		0x18
47 
48 #define XADC_ZYNQ_CFG_ENABLE		BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
53 #define XADC_ZYNQ_CFG_WEDGE		BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE		BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x)		(x)
62 
63 #define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK	0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET	0
67 
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
72 #define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
76 #define XADC_ZYNQ_STATUS_OT		BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
78 
79 #define XADC_ZYNQ_CTL_RESET		BIT(4)
80 
81 #define XADC_ZYNQ_CMD_NOP		0x00
82 #define XADC_ZYNQ_CMD_READ		0x01
83 #define XADC_ZYNQ_CMD_WRITE		0x02
84 
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86 
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET		0x00
89 #define XADC_AXI_REG_STATUS		0x04
90 #define XADC_AXI_REG_ALARM_STATUS	0x08
91 #define XADC_AXI_REG_CONVST		0x0c
92 #define XADC_AXI_REG_XADC_RESET		0x10
93 #define XADC_AXI_REG_GIER		0x5c
94 #define XADC_AXI_REG_IPISR		0x60
95 #define XADC_AXI_REG_IPIER		0x68
96 #define XADC_AXI_ADC_REG_OFFSET		0x200
97 
98 #define XADC_AXI_RESET_MAGIC		0xa
99 #define XADC_AXI_GIER_ENABLE		BIT(31)
100 
101 #define XADC_AXI_INT_EOS		BIT(4)
102 #define XADC_AXI_INT_ALARM_MASK		0x3c0f
103 
104 #define XADC_FLAGS_BUFFERED BIT(0)
105 
106 /*
107  * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
108  * not have a hardware FIFO. Which means an interrupt is generated for each
109  * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
110  * overloaded by the interrupts that it soft-lockups. For this reason the driver
111  * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
112  * but still responsive.
113  */
114 #define XADC_MAX_SAMPLERATE 150000
115 
xadc_write_reg(struct xadc * xadc,unsigned int reg,uint32_t val)116 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
117 	uint32_t val)
118 {
119 	writel(val, xadc->base + reg);
120 }
121 
xadc_read_reg(struct xadc * xadc,unsigned int reg,uint32_t * val)122 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
123 	uint32_t *val)
124 {
125 	*val = readl(xadc->base + reg);
126 }
127 
128 /*
129  * The ZYNQ interface uses two asynchronous FIFOs for communication with the
130  * XADC. Reads and writes to the XADC register are performed by submitting a
131  * request to the command FIFO (CFIFO), once the request has been completed the
132  * result can be read from the data FIFO (DFIFO). The method currently used in
133  * this driver is to submit the request for a read/write operation, then go to
134  * sleep and wait for an interrupt that signals that a response is available in
135  * the data FIFO.
136  */
137 
xadc_zynq_write_fifo(struct xadc * xadc,uint32_t * cmd,unsigned int n)138 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
139 	unsigned int n)
140 {
141 	unsigned int i;
142 
143 	for (i = 0; i < n; i++)
144 		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
145 }
146 
xadc_zynq_drain_fifo(struct xadc * xadc)147 static void xadc_zynq_drain_fifo(struct xadc *xadc)
148 {
149 	uint32_t status, tmp;
150 
151 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
152 
153 	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
154 		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
155 		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
156 	}
157 }
158 
xadc_zynq_update_intmsk(struct xadc * xadc,unsigned int mask,unsigned int val)159 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
160 	unsigned int val)
161 {
162 	xadc->zynq_intmask &= ~mask;
163 	xadc->zynq_intmask |= val;
164 
165 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
166 		xadc->zynq_intmask | xadc->zynq_masked_alarm);
167 }
168 
xadc_zynq_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)169 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
170 	uint16_t val)
171 {
172 	uint32_t cmd[1];
173 	uint32_t tmp;
174 	int ret;
175 
176 	spin_lock_irq(&xadc->lock);
177 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
178 			XADC_ZYNQ_INT_DFIFO_GTH);
179 
180 	reinit_completion(&xadc->completion);
181 
182 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
183 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
184 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
185 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
186 	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
187 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
188 
189 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
190 	spin_unlock_irq(&xadc->lock);
191 
192 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
193 	if (ret == 0)
194 		ret = -EIO;
195 	else
196 		ret = 0;
197 
198 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
199 
200 	return ret;
201 }
202 
xadc_zynq_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)203 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
204 	uint16_t *val)
205 {
206 	uint32_t cmd[2];
207 	uint32_t resp, tmp;
208 	int ret;
209 
210 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
211 	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
212 
213 	spin_lock_irq(&xadc->lock);
214 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
215 			XADC_ZYNQ_INT_DFIFO_GTH);
216 	xadc_zynq_drain_fifo(xadc);
217 	reinit_completion(&xadc->completion);
218 
219 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
220 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
221 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
222 	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
223 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
224 
225 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
226 	spin_unlock_irq(&xadc->lock);
227 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
228 	if (ret == 0)
229 		ret = -EIO;
230 	if (ret < 0)
231 		return ret;
232 
233 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
234 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
235 
236 	*val = resp & 0xffff;
237 
238 	return 0;
239 }
240 
xadc_zynq_transform_alarm(unsigned int alarm)241 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
242 {
243 	return ((alarm & 0x80) >> 4) |
244 		((alarm & 0x78) << 1) |
245 		(alarm & 0x07);
246 }
247 
248 /*
249  * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
250  * threshold condition go way from within the interrupt handler, this means as
251  * soon as a threshold condition is present we would enter the interrupt handler
252  * again and again. To work around this we mask all active thresholds interrupts
253  * in the interrupt handler and start a timer. In this timer we poll the
254  * interrupt status and only if the interrupt is inactive we unmask it again.
255  */
xadc_zynq_unmask_worker(struct work_struct * work)256 static void xadc_zynq_unmask_worker(struct work_struct *work)
257 {
258 	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
259 	unsigned int misc_sts, unmask;
260 
261 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
262 
263 	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
264 
265 	spin_lock_irq(&xadc->lock);
266 
267 	/* Clear those bits which are not active anymore */
268 	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
269 	xadc->zynq_masked_alarm &= misc_sts;
270 
271 	/* Also clear those which are masked out anyway */
272 	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
273 
274 	/* Clear the interrupts before we unmask them */
275 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
276 
277 	xadc_zynq_update_intmsk(xadc, 0, 0);
278 
279 	spin_unlock_irq(&xadc->lock);
280 
281 	/* if still pending some alarm re-trigger the timer */
282 	if (xadc->zynq_masked_alarm) {
283 		schedule_delayed_work(&xadc->zynq_unmask_work,
284 				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
285 	}
286 
287 }
288 
xadc_zynq_interrupt_handler(int irq,void * devid)289 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
290 {
291 	struct iio_dev *indio_dev = devid;
292 	struct xadc *xadc = iio_priv(indio_dev);
293 	uint32_t status;
294 
295 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
296 
297 	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
298 
299 	if (!status)
300 		return IRQ_NONE;
301 
302 	spin_lock(&xadc->lock);
303 
304 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
305 
306 	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
307 		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
308 			XADC_ZYNQ_INT_DFIFO_GTH);
309 		complete(&xadc->completion);
310 	}
311 
312 	status &= XADC_ZYNQ_INT_ALARM_MASK;
313 	if (status) {
314 		xadc->zynq_masked_alarm |= status;
315 		/*
316 		 * mask the current event interrupt,
317 		 * unmask it when the interrupt is no more active.
318 		 */
319 		xadc_zynq_update_intmsk(xadc, 0, 0);
320 
321 		xadc_handle_events(indio_dev,
322 				xadc_zynq_transform_alarm(status));
323 
324 		/* unmask the required interrupts in timer. */
325 		schedule_delayed_work(&xadc->zynq_unmask_work,
326 				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
327 	}
328 	spin_unlock(&xadc->lock);
329 
330 	return IRQ_HANDLED;
331 }
332 
333 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
334 #define XADC_ZYNQ_IGAP_DEFAULT 20
335 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
336 
xadc_zynq_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)337 static int xadc_zynq_setup(struct platform_device *pdev,
338 	struct iio_dev *indio_dev, int irq)
339 {
340 	struct xadc *xadc = iio_priv(indio_dev);
341 	unsigned long pcap_rate;
342 	unsigned int tck_div;
343 	unsigned int div;
344 	unsigned int igap;
345 	unsigned int tck_rate;
346 	int ret;
347 
348 	/* TODO: Figure out how to make igap and tck_rate configurable */
349 	igap = XADC_ZYNQ_IGAP_DEFAULT;
350 	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
351 
352 	xadc->zynq_intmask = ~0;
353 
354 	pcap_rate = clk_get_rate(xadc->clk);
355 	if (!pcap_rate)
356 		return -EINVAL;
357 
358 	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
359 		ret = clk_set_rate(xadc->clk,
360 				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
361 		if (ret)
362 			return ret;
363 	}
364 
365 	if (tck_rate > pcap_rate / 2) {
366 		div = 2;
367 	} else {
368 		div = pcap_rate / tck_rate;
369 		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
370 			div++;
371 	}
372 
373 	if (div <= 3)
374 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
375 	else if (div <= 7)
376 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
377 	else if (div <= 15)
378 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
379 	else
380 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
381 
382 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
383 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
384 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
385 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
386 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
387 			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
388 			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
389 
390 	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
391 		ret = clk_set_rate(xadc->clk, pcap_rate);
392 		if (ret)
393 			return ret;
394 	}
395 
396 	return 0;
397 }
398 
xadc_zynq_get_dclk_rate(struct xadc * xadc)399 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
400 {
401 	unsigned int div;
402 	uint32_t val;
403 
404 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
405 
406 	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
407 	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
408 		div = 4;
409 		break;
410 	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
411 		div = 8;
412 		break;
413 	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
414 		div = 16;
415 		break;
416 	default:
417 		div = 2;
418 		break;
419 	}
420 
421 	return clk_get_rate(xadc->clk) / div;
422 }
423 
xadc_zynq_update_alarm(struct xadc * xadc,unsigned int alarm)424 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
425 {
426 	unsigned long flags;
427 	uint32_t status;
428 
429 	/* Move OT to bit 7 */
430 	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
431 
432 	spin_lock_irqsave(&xadc->lock, flags);
433 
434 	/* Clear previous interrupts if any. */
435 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
436 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
437 
438 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
439 		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
440 
441 	spin_unlock_irqrestore(&xadc->lock, flags);
442 }
443 
444 static const struct xadc_ops xadc_zynq_ops = {
445 	.read = xadc_zynq_read_adc_reg,
446 	.write = xadc_zynq_write_adc_reg,
447 	.setup = xadc_zynq_setup,
448 	.get_dclk_rate = xadc_zynq_get_dclk_rate,
449 	.interrupt_handler = xadc_zynq_interrupt_handler,
450 	.update_alarm = xadc_zynq_update_alarm,
451 };
452 
xadc_axi_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)453 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
454 	uint16_t *val)
455 {
456 	uint32_t val32;
457 
458 	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
459 	*val = val32 & 0xffff;
460 
461 	return 0;
462 }
463 
xadc_axi_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)464 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
465 	uint16_t val)
466 {
467 	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
468 
469 	return 0;
470 }
471 
xadc_axi_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)472 static int xadc_axi_setup(struct platform_device *pdev,
473 	struct iio_dev *indio_dev, int irq)
474 {
475 	struct xadc *xadc = iio_priv(indio_dev);
476 
477 	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
478 	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
479 
480 	return 0;
481 }
482 
xadc_axi_interrupt_handler(int irq,void * devid)483 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
484 {
485 	struct iio_dev *indio_dev = devid;
486 	struct xadc *xadc = iio_priv(indio_dev);
487 	uint32_t status, mask;
488 	unsigned int events;
489 
490 	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
491 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
492 	status &= mask;
493 
494 	if (!status)
495 		return IRQ_NONE;
496 
497 	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
498 		iio_trigger_poll(xadc->trigger);
499 
500 	if (status & XADC_AXI_INT_ALARM_MASK) {
501 		/*
502 		 * The order of the bits in the AXI-XADC status register does
503 		 * not match the order of the bits in the XADC alarm enable
504 		 * register. xadc_handle_events() expects the events to be in
505 		 * the same order as the XADC alarm enable register.
506 		 */
507 		events = (status & 0x000e) >> 1;
508 		events |= (status & 0x0001) << 3;
509 		events |= (status & 0x3c00) >> 6;
510 		xadc_handle_events(indio_dev, events);
511 	}
512 
513 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
514 
515 	return IRQ_HANDLED;
516 }
517 
xadc_axi_update_alarm(struct xadc * xadc,unsigned int alarm)518 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
519 {
520 	uint32_t val;
521 	unsigned long flags;
522 
523 	/*
524 	 * The order of the bits in the AXI-XADC status register does not match
525 	 * the order of the bits in the XADC alarm enable register. We get
526 	 * passed the alarm mask in the same order as in the XADC alarm enable
527 	 * register.
528 	 */
529 	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
530 			((alarm & 0xf0) << 6);
531 
532 	spin_lock_irqsave(&xadc->lock, flags);
533 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
534 	val &= ~XADC_AXI_INT_ALARM_MASK;
535 	val |= alarm;
536 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
537 	spin_unlock_irqrestore(&xadc->lock, flags);
538 }
539 
xadc_axi_get_dclk(struct xadc * xadc)540 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
541 {
542 	return clk_get_rate(xadc->clk);
543 }
544 
545 static const struct xadc_ops xadc_axi_ops = {
546 	.read = xadc_axi_read_adc_reg,
547 	.write = xadc_axi_write_adc_reg,
548 	.setup = xadc_axi_setup,
549 	.get_dclk_rate = xadc_axi_get_dclk,
550 	.update_alarm = xadc_axi_update_alarm,
551 	.interrupt_handler = xadc_axi_interrupt_handler,
552 	.flags = XADC_FLAGS_BUFFERED,
553 };
554 
_xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)555 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
556 	uint16_t mask, uint16_t val)
557 {
558 	uint16_t tmp;
559 	int ret;
560 
561 	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
562 	if (ret)
563 		return ret;
564 
565 	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
566 }
567 
xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)568 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
569 	uint16_t mask, uint16_t val)
570 {
571 	int ret;
572 
573 	mutex_lock(&xadc->mutex);
574 	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
575 	mutex_unlock(&xadc->mutex);
576 
577 	return ret;
578 }
579 
xadc_get_dclk_rate(struct xadc * xadc)580 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
581 {
582 	return xadc->ops->get_dclk_rate(xadc);
583 }
584 
xadc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * mask)585 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
586 	const unsigned long *mask)
587 {
588 	struct xadc *xadc = iio_priv(indio_dev);
589 	unsigned int n;
590 
591 	n = bitmap_weight(mask, indio_dev->masklength);
592 
593 	kfree(xadc->data);
594 	xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
595 	if (!xadc->data)
596 		return -ENOMEM;
597 
598 	return 0;
599 }
600 
xadc_scan_index_to_channel(unsigned int scan_index)601 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
602 {
603 	switch (scan_index) {
604 	case 5:
605 		return XADC_REG_VCCPINT;
606 	case 6:
607 		return XADC_REG_VCCPAUX;
608 	case 7:
609 		return XADC_REG_VCCO_DDR;
610 	case 8:
611 		return XADC_REG_TEMP;
612 	case 9:
613 		return XADC_REG_VCCINT;
614 	case 10:
615 		return XADC_REG_VCCAUX;
616 	case 11:
617 		return XADC_REG_VPVN;
618 	case 12:
619 		return XADC_REG_VREFP;
620 	case 13:
621 		return XADC_REG_VREFN;
622 	case 14:
623 		return XADC_REG_VCCBRAM;
624 	default:
625 		return XADC_REG_VAUX(scan_index - 16);
626 	}
627 }
628 
xadc_trigger_handler(int irq,void * p)629 static irqreturn_t xadc_trigger_handler(int irq, void *p)
630 {
631 	struct iio_poll_func *pf = p;
632 	struct iio_dev *indio_dev = pf->indio_dev;
633 	struct xadc *xadc = iio_priv(indio_dev);
634 	unsigned int chan;
635 	int i, j;
636 
637 	if (!xadc->data)
638 		goto out;
639 
640 	j = 0;
641 	for_each_set_bit(i, indio_dev->active_scan_mask,
642 		indio_dev->masklength) {
643 		chan = xadc_scan_index_to_channel(i);
644 		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
645 		j++;
646 	}
647 
648 	iio_push_to_buffers(indio_dev, xadc->data);
649 
650 out:
651 	iio_trigger_notify_done(indio_dev->trig);
652 
653 	return IRQ_HANDLED;
654 }
655 
xadc_trigger_set_state(struct iio_trigger * trigger,bool state)656 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
657 {
658 	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
659 	unsigned long flags;
660 	unsigned int convst;
661 	unsigned int val;
662 	int ret = 0;
663 
664 	mutex_lock(&xadc->mutex);
665 
666 	if (state) {
667 		/* Only one of the two triggers can be active at the a time. */
668 		if (xadc->trigger != NULL) {
669 			ret = -EBUSY;
670 			goto err_out;
671 		} else {
672 			xadc->trigger = trigger;
673 			if (trigger == xadc->convst_trigger)
674 				convst = XADC_CONF0_EC;
675 			else
676 				convst = 0;
677 		}
678 		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
679 					convst);
680 		if (ret)
681 			goto err_out;
682 	} else {
683 		xadc->trigger = NULL;
684 	}
685 
686 	spin_lock_irqsave(&xadc->lock, flags);
687 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
688 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
689 	if (state)
690 		val |= XADC_AXI_INT_EOS;
691 	else
692 		val &= ~XADC_AXI_INT_EOS;
693 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
694 	spin_unlock_irqrestore(&xadc->lock, flags);
695 
696 err_out:
697 	mutex_unlock(&xadc->mutex);
698 
699 	return ret;
700 }
701 
702 static const struct iio_trigger_ops xadc_trigger_ops = {
703 	.set_trigger_state = &xadc_trigger_set_state,
704 };
705 
xadc_alloc_trigger(struct iio_dev * indio_dev,const char * name)706 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
707 	const char *name)
708 {
709 	struct iio_trigger *trig;
710 	int ret;
711 
712 	trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
713 				indio_dev->id, name);
714 	if (trig == NULL)
715 		return ERR_PTR(-ENOMEM);
716 
717 	trig->dev.parent = indio_dev->dev.parent;
718 	trig->ops = &xadc_trigger_ops;
719 	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
720 
721 	ret = iio_trigger_register(trig);
722 	if (ret)
723 		goto error_free_trig;
724 
725 	return trig;
726 
727 error_free_trig:
728 	iio_trigger_free(trig);
729 	return ERR_PTR(ret);
730 }
731 
xadc_power_adc_b(struct xadc * xadc,unsigned int seq_mode)732 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
733 {
734 	uint16_t val;
735 
736 	/* Powerdown the ADC-B when it is not needed. */
737 	switch (seq_mode) {
738 	case XADC_CONF1_SEQ_SIMULTANEOUS:
739 	case XADC_CONF1_SEQ_INDEPENDENT:
740 		val = 0;
741 		break;
742 	default:
743 		val = XADC_CONF2_PD_ADC_B;
744 		break;
745 	}
746 
747 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
748 		val);
749 }
750 
xadc_get_seq_mode(struct xadc * xadc,unsigned long scan_mode)751 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
752 {
753 	unsigned int aux_scan_mode = scan_mode >> 16;
754 
755 	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
756 		return XADC_CONF1_SEQ_SIMULTANEOUS;
757 
758 	if ((aux_scan_mode & 0xff00) == 0 ||
759 		(aux_scan_mode & 0x00ff) == 0)
760 		return XADC_CONF1_SEQ_CONTINUOUS;
761 
762 	return XADC_CONF1_SEQ_SIMULTANEOUS;
763 }
764 
xadc_postdisable(struct iio_dev * indio_dev)765 static int xadc_postdisable(struct iio_dev *indio_dev)
766 {
767 	struct xadc *xadc = iio_priv(indio_dev);
768 	unsigned long scan_mask;
769 	int ret;
770 	int i;
771 
772 	scan_mask = 1; /* Run calibration as part of the sequence */
773 	for (i = 0; i < indio_dev->num_channels; i++)
774 		scan_mask |= BIT(indio_dev->channels[i].scan_index);
775 
776 	/* Enable all channels and calibration */
777 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
778 	if (ret)
779 		return ret;
780 
781 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
782 	if (ret)
783 		return ret;
784 
785 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
786 		XADC_CONF1_SEQ_CONTINUOUS);
787 	if (ret)
788 		return ret;
789 
790 	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
791 }
792 
xadc_preenable(struct iio_dev * indio_dev)793 static int xadc_preenable(struct iio_dev *indio_dev)
794 {
795 	struct xadc *xadc = iio_priv(indio_dev);
796 	unsigned long scan_mask;
797 	int seq_mode;
798 	int ret;
799 
800 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
801 		XADC_CONF1_SEQ_DEFAULT);
802 	if (ret)
803 		goto err;
804 
805 	scan_mask = *indio_dev->active_scan_mask;
806 	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
807 
808 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
809 	if (ret)
810 		goto err;
811 
812 	/*
813 	 * In simultaneous mode the upper and lower aux channels are samples at
814 	 * the same time. In this mode the upper 8 bits in the sequencer
815 	 * register are don't care and the lower 8 bits control two channels
816 	 * each. As such we must set the bit if either the channel in the lower
817 	 * group or the upper group is enabled.
818 	 */
819 	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
820 		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
821 
822 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
823 	if (ret)
824 		goto err;
825 
826 	ret = xadc_power_adc_b(xadc, seq_mode);
827 	if (ret)
828 		goto err;
829 
830 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
831 		seq_mode);
832 	if (ret)
833 		goto err;
834 
835 	return 0;
836 err:
837 	xadc_postdisable(indio_dev);
838 	return ret;
839 }
840 
841 static const struct iio_buffer_setup_ops xadc_buffer_ops = {
842 	.preenable = &xadc_preenable,
843 	.postenable = &iio_triggered_buffer_postenable,
844 	.predisable = &iio_triggered_buffer_predisable,
845 	.postdisable = &xadc_postdisable,
846 };
847 
xadc_read_samplerate(struct xadc * xadc)848 static int xadc_read_samplerate(struct xadc *xadc)
849 {
850 	unsigned int div;
851 	uint16_t val16;
852 	int ret;
853 
854 	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
855 	if (ret)
856 		return ret;
857 
858 	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
859 	if (div < 2)
860 		div = 2;
861 
862 	return xadc_get_dclk_rate(xadc) / div / 26;
863 }
864 
xadc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)865 static int xadc_read_raw(struct iio_dev *indio_dev,
866 	struct iio_chan_spec const *chan, int *val, int *val2, long info)
867 {
868 	struct xadc *xadc = iio_priv(indio_dev);
869 	uint16_t val16;
870 	int ret;
871 
872 	switch (info) {
873 	case IIO_CHAN_INFO_RAW:
874 		if (iio_buffer_enabled(indio_dev))
875 			return -EBUSY;
876 		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
877 		if (ret < 0)
878 			return ret;
879 
880 		val16 >>= 4;
881 		if (chan->scan_type.sign == 'u')
882 			*val = val16;
883 		else
884 			*val = sign_extend32(val16, 11);
885 
886 		return IIO_VAL_INT;
887 	case IIO_CHAN_INFO_SCALE:
888 		switch (chan->type) {
889 		case IIO_VOLTAGE:
890 			/* V = (val * 3.0) / 4096 */
891 			switch (chan->address) {
892 			case XADC_REG_VCCINT:
893 			case XADC_REG_VCCAUX:
894 			case XADC_REG_VREFP:
895 			case XADC_REG_VREFN:
896 			case XADC_REG_VCCBRAM:
897 			case XADC_REG_VCCPINT:
898 			case XADC_REG_VCCPAUX:
899 			case XADC_REG_VCCO_DDR:
900 				*val = 3000;
901 				break;
902 			default:
903 				*val = 1000;
904 				break;
905 			}
906 			*val2 = 12;
907 			return IIO_VAL_FRACTIONAL_LOG2;
908 		case IIO_TEMP:
909 			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
910 			*val = 503975;
911 			*val2 = 12;
912 			return IIO_VAL_FRACTIONAL_LOG2;
913 		default:
914 			return -EINVAL;
915 		}
916 	case IIO_CHAN_INFO_OFFSET:
917 		/* Only the temperature channel has an offset */
918 		*val = -((273150 << 12) / 503975);
919 		return IIO_VAL_INT;
920 	case IIO_CHAN_INFO_SAMP_FREQ:
921 		ret = xadc_read_samplerate(xadc);
922 		if (ret < 0)
923 			return ret;
924 
925 		*val = ret;
926 		return IIO_VAL_INT;
927 	default:
928 		return -EINVAL;
929 	}
930 }
931 
xadc_write_samplerate(struct xadc * xadc,int val)932 static int xadc_write_samplerate(struct xadc *xadc, int val)
933 {
934 	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
935 	unsigned int div;
936 
937 	if (!clk_rate)
938 		return -EINVAL;
939 
940 	if (val <= 0)
941 		return -EINVAL;
942 
943 	/* Max. 150 kSPS */
944 	if (val > XADC_MAX_SAMPLERATE)
945 		val = XADC_MAX_SAMPLERATE;
946 
947 	val *= 26;
948 
949 	/* Min 1MHz */
950 	if (val < 1000000)
951 		val = 1000000;
952 
953 	/*
954 	 * We want to round down, but only if we do not exceed the 150 kSPS
955 	 * limit.
956 	 */
957 	div = clk_rate / val;
958 	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
959 		div++;
960 	if (div < 2)
961 		div = 2;
962 	else if (div > 0xff)
963 		div = 0xff;
964 
965 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
966 		div << XADC_CONF2_DIV_OFFSET);
967 }
968 
xadc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)969 static int xadc_write_raw(struct iio_dev *indio_dev,
970 	struct iio_chan_spec const *chan, int val, int val2, long info)
971 {
972 	struct xadc *xadc = iio_priv(indio_dev);
973 
974 	if (info != IIO_CHAN_INFO_SAMP_FREQ)
975 		return -EINVAL;
976 
977 	return xadc_write_samplerate(xadc, val);
978 }
979 
980 static const struct iio_event_spec xadc_temp_events[] = {
981 	{
982 		.type = IIO_EV_TYPE_THRESH,
983 		.dir = IIO_EV_DIR_RISING,
984 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
985 				BIT(IIO_EV_INFO_VALUE) |
986 				BIT(IIO_EV_INFO_HYSTERESIS),
987 	},
988 };
989 
990 /* Separate values for upper and lower thresholds, but only a shared enabled */
991 static const struct iio_event_spec xadc_voltage_events[] = {
992 	{
993 		.type = IIO_EV_TYPE_THRESH,
994 		.dir = IIO_EV_DIR_RISING,
995 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
996 	}, {
997 		.type = IIO_EV_TYPE_THRESH,
998 		.dir = IIO_EV_DIR_FALLING,
999 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1000 	}, {
1001 		.type = IIO_EV_TYPE_THRESH,
1002 		.dir = IIO_EV_DIR_EITHER,
1003 		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1004 	},
1005 };
1006 
1007 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
1008 	.type = IIO_TEMP, \
1009 	.indexed = 1, \
1010 	.channel = (_chan), \
1011 	.address = (_addr), \
1012 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1013 		BIT(IIO_CHAN_INFO_SCALE) | \
1014 		BIT(IIO_CHAN_INFO_OFFSET), \
1015 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1016 	.event_spec = xadc_temp_events, \
1017 	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1018 	.scan_index = (_scan_index), \
1019 	.scan_type = { \
1020 		.sign = 'u', \
1021 		.realbits = 12, \
1022 		.storagebits = 16, \
1023 		.shift = 4, \
1024 		.endianness = IIO_CPU, \
1025 	}, \
1026 }
1027 
1028 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
1029 	.type = IIO_VOLTAGE, \
1030 	.indexed = 1, \
1031 	.channel = (_chan), \
1032 	.address = (_addr), \
1033 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1034 		BIT(IIO_CHAN_INFO_SCALE), \
1035 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1036 	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1037 	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1038 	.scan_index = (_scan_index), \
1039 	.scan_type = { \
1040 		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1041 		.realbits = 12, \
1042 		.storagebits = 16, \
1043 		.shift = 4, \
1044 		.endianness = IIO_CPU, \
1045 	}, \
1046 	.extend_name = _ext, \
1047 }
1048 
1049 static const struct iio_chan_spec xadc_channels[] = {
1050 	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1051 	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1052 	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1053 	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1054 	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1055 	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1056 	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1057 	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1058 	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1059 	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1060 	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1061 	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1062 	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1063 	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1064 	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1065 	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1066 	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1067 	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1068 	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1069 	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1070 	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1071 	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1072 	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1073 	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1074 	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1075 	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1076 };
1077 
1078 static const struct iio_info xadc_info = {
1079 	.read_raw = &xadc_read_raw,
1080 	.write_raw = &xadc_write_raw,
1081 	.read_event_config = &xadc_read_event_config,
1082 	.write_event_config = &xadc_write_event_config,
1083 	.read_event_value = &xadc_read_event_value,
1084 	.write_event_value = &xadc_write_event_value,
1085 	.update_scan_mode = &xadc_update_scan_mode,
1086 };
1087 
1088 static const struct of_device_id xadc_of_match_table[] = {
1089 	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1090 	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1091 	{ },
1092 };
1093 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1094 
xadc_parse_dt(struct iio_dev * indio_dev,struct device_node * np,unsigned int * conf)1095 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1096 	unsigned int *conf)
1097 {
1098 	struct xadc *xadc = iio_priv(indio_dev);
1099 	struct iio_chan_spec *channels, *chan;
1100 	struct device_node *chan_node, *child;
1101 	unsigned int num_channels;
1102 	const char *external_mux;
1103 	u32 ext_mux_chan;
1104 	u32 reg;
1105 	int ret;
1106 
1107 	*conf = 0;
1108 
1109 	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1110 	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1111 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1112 	else if (strcasecmp(external_mux, "single") == 0)
1113 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1114 	else if (strcasecmp(external_mux, "dual") == 0)
1115 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1116 	else
1117 		return -EINVAL;
1118 
1119 	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1120 		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1121 					&ext_mux_chan);
1122 		if (ret < 0)
1123 			return ret;
1124 
1125 		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1126 			if (ext_mux_chan == 0)
1127 				ext_mux_chan = XADC_REG_VPVN;
1128 			else if (ext_mux_chan <= 16)
1129 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1130 			else
1131 				return -EINVAL;
1132 		} else {
1133 			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1134 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1135 			else
1136 				return -EINVAL;
1137 		}
1138 
1139 		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1140 	}
1141 
1142 	channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1143 	if (!channels)
1144 		return -ENOMEM;
1145 
1146 	num_channels = 9;
1147 	chan = &channels[9];
1148 
1149 	chan_node = of_get_child_by_name(np, "xlnx,channels");
1150 	if (chan_node) {
1151 		for_each_child_of_node(chan_node, child) {
1152 			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1153 				of_node_put(child);
1154 				break;
1155 			}
1156 
1157 			ret = of_property_read_u32(child, "reg", &reg);
1158 			if (ret || reg > 16)
1159 				continue;
1160 
1161 			if (of_property_read_bool(child, "xlnx,bipolar"))
1162 				chan->scan_type.sign = 's';
1163 
1164 			if (reg == 0) {
1165 				chan->scan_index = 11;
1166 				chan->address = XADC_REG_VPVN;
1167 			} else {
1168 				chan->scan_index = 15 + reg;
1169 				chan->address = XADC_REG_VAUX(reg - 1);
1170 			}
1171 			num_channels++;
1172 			chan++;
1173 		}
1174 	}
1175 	of_node_put(chan_node);
1176 
1177 	indio_dev->num_channels = num_channels;
1178 	indio_dev->channels = krealloc(channels, sizeof(*channels) *
1179 					num_channels, GFP_KERNEL);
1180 	/* If we can't resize the channels array, just use the original */
1181 	if (!indio_dev->channels)
1182 		indio_dev->channels = channels;
1183 
1184 	return 0;
1185 }
1186 
xadc_probe(struct platform_device * pdev)1187 static int xadc_probe(struct platform_device *pdev)
1188 {
1189 	const struct of_device_id *id;
1190 	struct iio_dev *indio_dev;
1191 	unsigned int bipolar_mask;
1192 	struct resource *mem;
1193 	unsigned int conf0;
1194 	struct xadc *xadc;
1195 	int ret;
1196 	int irq;
1197 	int i;
1198 
1199 	if (!pdev->dev.of_node)
1200 		return -ENODEV;
1201 
1202 	id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1203 	if (!id)
1204 		return -EINVAL;
1205 
1206 	irq = platform_get_irq(pdev, 0);
1207 	if (irq <= 0)
1208 		return -ENXIO;
1209 
1210 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1211 	if (!indio_dev)
1212 		return -ENOMEM;
1213 
1214 	xadc = iio_priv(indio_dev);
1215 	xadc->ops = id->data;
1216 	xadc->irq = irq;
1217 	init_completion(&xadc->completion);
1218 	mutex_init(&xadc->mutex);
1219 	spin_lock_init(&xadc->lock);
1220 	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1221 
1222 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1223 	xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1224 	if (IS_ERR(xadc->base))
1225 		return PTR_ERR(xadc->base);
1226 
1227 	indio_dev->dev.parent = &pdev->dev;
1228 	indio_dev->dev.of_node = pdev->dev.of_node;
1229 	indio_dev->name = "xadc";
1230 	indio_dev->modes = INDIO_DIRECT_MODE;
1231 	indio_dev->info = &xadc_info;
1232 
1233 	ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1234 	if (ret)
1235 		goto err_device_free;
1236 
1237 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1238 		ret = iio_triggered_buffer_setup(indio_dev,
1239 			&iio_pollfunc_store_time, &xadc_trigger_handler,
1240 			&xadc_buffer_ops);
1241 		if (ret)
1242 			goto err_device_free;
1243 
1244 		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1245 		if (IS_ERR(xadc->convst_trigger)) {
1246 			ret = PTR_ERR(xadc->convst_trigger);
1247 			goto err_triggered_buffer_cleanup;
1248 		}
1249 		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1250 			"samplerate");
1251 		if (IS_ERR(xadc->samplerate_trigger)) {
1252 			ret = PTR_ERR(xadc->samplerate_trigger);
1253 			goto err_free_convst_trigger;
1254 		}
1255 	}
1256 
1257 	xadc->clk = devm_clk_get(&pdev->dev, NULL);
1258 	if (IS_ERR(xadc->clk)) {
1259 		ret = PTR_ERR(xadc->clk);
1260 		goto err_free_samplerate_trigger;
1261 	}
1262 
1263 	ret = clk_prepare_enable(xadc->clk);
1264 	if (ret)
1265 		goto err_free_samplerate_trigger;
1266 
1267 	/*
1268 	 * Make sure not to exceed the maximum samplerate since otherwise the
1269 	 * resulting interrupt storm will soft-lock the system.
1270 	 */
1271 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1272 		ret = xadc_read_samplerate(xadc);
1273 		if (ret < 0)
1274 			goto err_free_samplerate_trigger;
1275 		if (ret > XADC_MAX_SAMPLERATE) {
1276 			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1277 			if (ret < 0)
1278 				goto err_free_samplerate_trigger;
1279 		}
1280 	}
1281 
1282 	ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
1283 			dev_name(&pdev->dev), indio_dev);
1284 	if (ret)
1285 		goto err_clk_disable_unprepare;
1286 
1287 	ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1288 	if (ret)
1289 		goto err_free_irq;
1290 
1291 	for (i = 0; i < 16; i++)
1292 		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1293 			&xadc->threshold[i]);
1294 
1295 	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1296 	if (ret)
1297 		goto err_free_irq;
1298 
1299 	bipolar_mask = 0;
1300 	for (i = 0; i < indio_dev->num_channels; i++) {
1301 		if (indio_dev->channels[i].scan_type.sign == 's')
1302 			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1303 	}
1304 
1305 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1306 	if (ret)
1307 		goto err_free_irq;
1308 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1309 		bipolar_mask >> 16);
1310 	if (ret)
1311 		goto err_free_irq;
1312 
1313 	/* Disable all alarms */
1314 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1315 				  XADC_CONF1_ALARM_MASK);
1316 	if (ret)
1317 		goto err_free_irq;
1318 
1319 	/* Set thresholds to min/max */
1320 	for (i = 0; i < 16; i++) {
1321 		/*
1322 		 * Set max voltage threshold and both temperature thresholds to
1323 		 * 0xffff, min voltage threshold to 0.
1324 		 */
1325 		if (i % 8 < 4 || i == 7)
1326 			xadc->threshold[i] = 0xffff;
1327 		else
1328 			xadc->threshold[i] = 0;
1329 		xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1330 			xadc->threshold[i]);
1331 	}
1332 
1333 	/* Go to non-buffered mode */
1334 	xadc_postdisable(indio_dev);
1335 
1336 	ret = iio_device_register(indio_dev);
1337 	if (ret)
1338 		goto err_free_irq;
1339 
1340 	platform_set_drvdata(pdev, indio_dev);
1341 
1342 	return 0;
1343 
1344 err_free_irq:
1345 	free_irq(xadc->irq, indio_dev);
1346 	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1347 err_clk_disable_unprepare:
1348 	clk_disable_unprepare(xadc->clk);
1349 err_free_samplerate_trigger:
1350 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1351 		iio_trigger_free(xadc->samplerate_trigger);
1352 err_free_convst_trigger:
1353 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1354 		iio_trigger_free(xadc->convst_trigger);
1355 err_triggered_buffer_cleanup:
1356 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1357 		iio_triggered_buffer_cleanup(indio_dev);
1358 err_device_free:
1359 	kfree(indio_dev->channels);
1360 
1361 	return ret;
1362 }
1363 
xadc_remove(struct platform_device * pdev)1364 static int xadc_remove(struct platform_device *pdev)
1365 {
1366 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1367 	struct xadc *xadc = iio_priv(indio_dev);
1368 
1369 	iio_device_unregister(indio_dev);
1370 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1371 		iio_trigger_free(xadc->samplerate_trigger);
1372 		iio_trigger_free(xadc->convst_trigger);
1373 		iio_triggered_buffer_cleanup(indio_dev);
1374 	}
1375 	free_irq(xadc->irq, indio_dev);
1376 	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1377 	clk_disable_unprepare(xadc->clk);
1378 	kfree(xadc->data);
1379 	kfree(indio_dev->channels);
1380 
1381 	return 0;
1382 }
1383 
1384 static struct platform_driver xadc_driver = {
1385 	.probe = xadc_probe,
1386 	.remove = xadc_remove,
1387 	.driver = {
1388 		.name = "xadc",
1389 		.of_match_table = xadc_of_match_table,
1390 	},
1391 };
1392 module_platform_driver(xadc_driver);
1393 
1394 MODULE_LICENSE("GPL v2");
1395 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1396 MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1397