1 /*
2 * Xilinx XADC driver
3 *
4 * Copyright 2013-2014 Analog Devices Inc.
5 * Author: Lars-Peter Clauen <lars@metafoo.de>
6 *
7 * Licensed under the GPL-2.
8 *
9 * Documentation for the parts can be found at:
10 * - XADC hardmacro: Xilinx UG480
11 * - ZYNQ XADC interface: Xilinx UG585
12 * - AXI XADC interface: Xilinx PG019
13 */
14
15 #include <linux/clk.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
26
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34
35 #include "xilinx-xadc.h"
36
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG 0x00
41 #define XADC_ZYNQ_REG_INTSTS 0x04
42 #define XADC_ZYNQ_REG_INTMSK 0x08
43 #define XADC_ZYNQ_REG_STATUS 0x0c
44 #define XADC_ZYNQ_REG_CFIFO 0x10
45 #define XADC_ZYNQ_REG_DFIFO 0x14
46 #define XADC_ZYNQ_REG_CTL 0x18
47
48 #define XADC_ZYNQ_CFG_ENABLE BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
53 #define XADC_ZYNQ_CFG_WEDGE BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x) (x)
62
63 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK 0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET 0
67
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
72 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
76 #define XADC_ZYNQ_STATUS_OT BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
78
79 #define XADC_ZYNQ_CTL_RESET BIT(4)
80
81 #define XADC_ZYNQ_CMD_NOP 0x00
82 #define XADC_ZYNQ_CMD_READ 0x01
83 #define XADC_ZYNQ_CMD_WRITE 0x02
84
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET 0x00
89 #define XADC_AXI_REG_STATUS 0x04
90 #define XADC_AXI_REG_ALARM_STATUS 0x08
91 #define XADC_AXI_REG_CONVST 0x0c
92 #define XADC_AXI_REG_XADC_RESET 0x10
93 #define XADC_AXI_REG_GIER 0x5c
94 #define XADC_AXI_REG_IPISR 0x60
95 #define XADC_AXI_REG_IPIER 0x68
96 #define XADC_AXI_ADC_REG_OFFSET 0x200
97
98 #define XADC_AXI_RESET_MAGIC 0xa
99 #define XADC_AXI_GIER_ENABLE BIT(31)
100
101 #define XADC_AXI_INT_EOS BIT(4)
102 #define XADC_AXI_INT_ALARM_MASK 0x3c0f
103
104 #define XADC_FLAGS_BUFFERED BIT(0)
105
106 /*
107 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
108 * not have a hardware FIFO. Which means an interrupt is generated for each
109 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
110 * overloaded by the interrupts that it soft-lockups. For this reason the driver
111 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
112 * but still responsive.
113 */
114 #define XADC_MAX_SAMPLERATE 150000
115
xadc_write_reg(struct xadc * xadc,unsigned int reg,uint32_t val)116 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
117 uint32_t val)
118 {
119 writel(val, xadc->base + reg);
120 }
121
xadc_read_reg(struct xadc * xadc,unsigned int reg,uint32_t * val)122 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
123 uint32_t *val)
124 {
125 *val = readl(xadc->base + reg);
126 }
127
128 /*
129 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
130 * XADC. Reads and writes to the XADC register are performed by submitting a
131 * request to the command FIFO (CFIFO), once the request has been completed the
132 * result can be read from the data FIFO (DFIFO). The method currently used in
133 * this driver is to submit the request for a read/write operation, then go to
134 * sleep and wait for an interrupt that signals that a response is available in
135 * the data FIFO.
136 */
137
xadc_zynq_write_fifo(struct xadc * xadc,uint32_t * cmd,unsigned int n)138 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
139 unsigned int n)
140 {
141 unsigned int i;
142
143 for (i = 0; i < n; i++)
144 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
145 }
146
xadc_zynq_drain_fifo(struct xadc * xadc)147 static void xadc_zynq_drain_fifo(struct xadc *xadc)
148 {
149 uint32_t status, tmp;
150
151 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
152
153 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
154 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
155 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
156 }
157 }
158
xadc_zynq_update_intmsk(struct xadc * xadc,unsigned int mask,unsigned int val)159 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
160 unsigned int val)
161 {
162 xadc->zynq_intmask &= ~mask;
163 xadc->zynq_intmask |= val;
164
165 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
166 xadc->zynq_intmask | xadc->zynq_masked_alarm);
167 }
168
xadc_zynq_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)169 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
170 uint16_t val)
171 {
172 uint32_t cmd[1];
173 uint32_t tmp;
174 int ret;
175
176 spin_lock_irq(&xadc->lock);
177 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
178 XADC_ZYNQ_INT_DFIFO_GTH);
179
180 reinit_completion(&xadc->completion);
181
182 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
183 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
184 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
185 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
186 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
187 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
188
189 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
190 spin_unlock_irq(&xadc->lock);
191
192 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
193 if (ret == 0)
194 ret = -EIO;
195 else
196 ret = 0;
197
198 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
199
200 return ret;
201 }
202
xadc_zynq_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)203 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
204 uint16_t *val)
205 {
206 uint32_t cmd[2];
207 uint32_t resp, tmp;
208 int ret;
209
210 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
211 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
212
213 spin_lock_irq(&xadc->lock);
214 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
215 XADC_ZYNQ_INT_DFIFO_GTH);
216 xadc_zynq_drain_fifo(xadc);
217 reinit_completion(&xadc->completion);
218
219 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
220 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
221 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
222 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
223 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
224
225 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
226 spin_unlock_irq(&xadc->lock);
227 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
228 if (ret == 0)
229 ret = -EIO;
230 if (ret < 0)
231 return ret;
232
233 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
234 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
235
236 *val = resp & 0xffff;
237
238 return 0;
239 }
240
xadc_zynq_transform_alarm(unsigned int alarm)241 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
242 {
243 return ((alarm & 0x80) >> 4) |
244 ((alarm & 0x78) << 1) |
245 (alarm & 0x07);
246 }
247
248 /*
249 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
250 * threshold condition go way from within the interrupt handler, this means as
251 * soon as a threshold condition is present we would enter the interrupt handler
252 * again and again. To work around this we mask all active thresholds interrupts
253 * in the interrupt handler and start a timer. In this timer we poll the
254 * interrupt status and only if the interrupt is inactive we unmask it again.
255 */
xadc_zynq_unmask_worker(struct work_struct * work)256 static void xadc_zynq_unmask_worker(struct work_struct *work)
257 {
258 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
259 unsigned int misc_sts, unmask;
260
261 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
262
263 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
264
265 spin_lock_irq(&xadc->lock);
266
267 /* Clear those bits which are not active anymore */
268 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
269 xadc->zynq_masked_alarm &= misc_sts;
270
271 /* Also clear those which are masked out anyway */
272 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
273
274 /* Clear the interrupts before we unmask them */
275 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
276
277 xadc_zynq_update_intmsk(xadc, 0, 0);
278
279 spin_unlock_irq(&xadc->lock);
280
281 /* if still pending some alarm re-trigger the timer */
282 if (xadc->zynq_masked_alarm) {
283 schedule_delayed_work(&xadc->zynq_unmask_work,
284 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
285 }
286
287 }
288
xadc_zynq_interrupt_handler(int irq,void * devid)289 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
290 {
291 struct iio_dev *indio_dev = devid;
292 struct xadc *xadc = iio_priv(indio_dev);
293 uint32_t status;
294
295 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
296
297 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
298
299 if (!status)
300 return IRQ_NONE;
301
302 spin_lock(&xadc->lock);
303
304 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
305
306 if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
307 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
308 XADC_ZYNQ_INT_DFIFO_GTH);
309 complete(&xadc->completion);
310 }
311
312 status &= XADC_ZYNQ_INT_ALARM_MASK;
313 if (status) {
314 xadc->zynq_masked_alarm |= status;
315 /*
316 * mask the current event interrupt,
317 * unmask it when the interrupt is no more active.
318 */
319 xadc_zynq_update_intmsk(xadc, 0, 0);
320
321 xadc_handle_events(indio_dev,
322 xadc_zynq_transform_alarm(status));
323
324 /* unmask the required interrupts in timer. */
325 schedule_delayed_work(&xadc->zynq_unmask_work,
326 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
327 }
328 spin_unlock(&xadc->lock);
329
330 return IRQ_HANDLED;
331 }
332
333 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
334 #define XADC_ZYNQ_IGAP_DEFAULT 20
335 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
336
xadc_zynq_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)337 static int xadc_zynq_setup(struct platform_device *pdev,
338 struct iio_dev *indio_dev, int irq)
339 {
340 struct xadc *xadc = iio_priv(indio_dev);
341 unsigned long pcap_rate;
342 unsigned int tck_div;
343 unsigned int div;
344 unsigned int igap;
345 unsigned int tck_rate;
346 int ret;
347
348 /* TODO: Figure out how to make igap and tck_rate configurable */
349 igap = XADC_ZYNQ_IGAP_DEFAULT;
350 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
351
352 xadc->zynq_intmask = ~0;
353
354 pcap_rate = clk_get_rate(xadc->clk);
355 if (!pcap_rate)
356 return -EINVAL;
357
358 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
359 ret = clk_set_rate(xadc->clk,
360 (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
361 if (ret)
362 return ret;
363 }
364
365 if (tck_rate > pcap_rate / 2) {
366 div = 2;
367 } else {
368 div = pcap_rate / tck_rate;
369 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
370 div++;
371 }
372
373 if (div <= 3)
374 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
375 else if (div <= 7)
376 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
377 else if (div <= 15)
378 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
379 else
380 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
381
382 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
383 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
384 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
385 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
386 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
387 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
388 tck_div | XADC_ZYNQ_CFG_IGAP(igap));
389
390 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
391 ret = clk_set_rate(xadc->clk, pcap_rate);
392 if (ret)
393 return ret;
394 }
395
396 return 0;
397 }
398
xadc_zynq_get_dclk_rate(struct xadc * xadc)399 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
400 {
401 unsigned int div;
402 uint32_t val;
403
404 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
405
406 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
407 case XADC_ZYNQ_CFG_TCKRATE_DIV4:
408 div = 4;
409 break;
410 case XADC_ZYNQ_CFG_TCKRATE_DIV8:
411 div = 8;
412 break;
413 case XADC_ZYNQ_CFG_TCKRATE_DIV16:
414 div = 16;
415 break;
416 default:
417 div = 2;
418 break;
419 }
420
421 return clk_get_rate(xadc->clk) / div;
422 }
423
xadc_zynq_update_alarm(struct xadc * xadc,unsigned int alarm)424 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
425 {
426 unsigned long flags;
427 uint32_t status;
428
429 /* Move OT to bit 7 */
430 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
431
432 spin_lock_irqsave(&xadc->lock, flags);
433
434 /* Clear previous interrupts if any. */
435 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
436 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
437
438 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
439 ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
440
441 spin_unlock_irqrestore(&xadc->lock, flags);
442 }
443
444 static const struct xadc_ops xadc_zynq_ops = {
445 .read = xadc_zynq_read_adc_reg,
446 .write = xadc_zynq_write_adc_reg,
447 .setup = xadc_zynq_setup,
448 .get_dclk_rate = xadc_zynq_get_dclk_rate,
449 .interrupt_handler = xadc_zynq_interrupt_handler,
450 .update_alarm = xadc_zynq_update_alarm,
451 };
452
xadc_axi_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)453 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
454 uint16_t *val)
455 {
456 uint32_t val32;
457
458 xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
459 *val = val32 & 0xffff;
460
461 return 0;
462 }
463
xadc_axi_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)464 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
465 uint16_t val)
466 {
467 xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
468
469 return 0;
470 }
471
xadc_axi_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)472 static int xadc_axi_setup(struct platform_device *pdev,
473 struct iio_dev *indio_dev, int irq)
474 {
475 struct xadc *xadc = iio_priv(indio_dev);
476
477 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
478 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
479
480 return 0;
481 }
482
xadc_axi_interrupt_handler(int irq,void * devid)483 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
484 {
485 struct iio_dev *indio_dev = devid;
486 struct xadc *xadc = iio_priv(indio_dev);
487 uint32_t status, mask;
488 unsigned int events;
489
490 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
491 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
492 status &= mask;
493
494 if (!status)
495 return IRQ_NONE;
496
497 if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
498 iio_trigger_poll(xadc->trigger);
499
500 if (status & XADC_AXI_INT_ALARM_MASK) {
501 /*
502 * The order of the bits in the AXI-XADC status register does
503 * not match the order of the bits in the XADC alarm enable
504 * register. xadc_handle_events() expects the events to be in
505 * the same order as the XADC alarm enable register.
506 */
507 events = (status & 0x000e) >> 1;
508 events |= (status & 0x0001) << 3;
509 events |= (status & 0x3c00) >> 6;
510 xadc_handle_events(indio_dev, events);
511 }
512
513 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
514
515 return IRQ_HANDLED;
516 }
517
xadc_axi_update_alarm(struct xadc * xadc,unsigned int alarm)518 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
519 {
520 uint32_t val;
521 unsigned long flags;
522
523 /*
524 * The order of the bits in the AXI-XADC status register does not match
525 * the order of the bits in the XADC alarm enable register. We get
526 * passed the alarm mask in the same order as in the XADC alarm enable
527 * register.
528 */
529 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
530 ((alarm & 0xf0) << 6);
531
532 spin_lock_irqsave(&xadc->lock, flags);
533 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
534 val &= ~XADC_AXI_INT_ALARM_MASK;
535 val |= alarm;
536 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
537 spin_unlock_irqrestore(&xadc->lock, flags);
538 }
539
xadc_axi_get_dclk(struct xadc * xadc)540 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
541 {
542 return clk_get_rate(xadc->clk);
543 }
544
545 static const struct xadc_ops xadc_axi_ops = {
546 .read = xadc_axi_read_adc_reg,
547 .write = xadc_axi_write_adc_reg,
548 .setup = xadc_axi_setup,
549 .get_dclk_rate = xadc_axi_get_dclk,
550 .update_alarm = xadc_axi_update_alarm,
551 .interrupt_handler = xadc_axi_interrupt_handler,
552 .flags = XADC_FLAGS_BUFFERED,
553 };
554
_xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)555 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
556 uint16_t mask, uint16_t val)
557 {
558 uint16_t tmp;
559 int ret;
560
561 ret = _xadc_read_adc_reg(xadc, reg, &tmp);
562 if (ret)
563 return ret;
564
565 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
566 }
567
xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)568 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
569 uint16_t mask, uint16_t val)
570 {
571 int ret;
572
573 mutex_lock(&xadc->mutex);
574 ret = _xadc_update_adc_reg(xadc, reg, mask, val);
575 mutex_unlock(&xadc->mutex);
576
577 return ret;
578 }
579
xadc_get_dclk_rate(struct xadc * xadc)580 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
581 {
582 return xadc->ops->get_dclk_rate(xadc);
583 }
584
xadc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * mask)585 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
586 const unsigned long *mask)
587 {
588 struct xadc *xadc = iio_priv(indio_dev);
589 unsigned int n;
590
591 n = bitmap_weight(mask, indio_dev->masklength);
592
593 kfree(xadc->data);
594 xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
595 if (!xadc->data)
596 return -ENOMEM;
597
598 return 0;
599 }
600
xadc_scan_index_to_channel(unsigned int scan_index)601 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
602 {
603 switch (scan_index) {
604 case 5:
605 return XADC_REG_VCCPINT;
606 case 6:
607 return XADC_REG_VCCPAUX;
608 case 7:
609 return XADC_REG_VCCO_DDR;
610 case 8:
611 return XADC_REG_TEMP;
612 case 9:
613 return XADC_REG_VCCINT;
614 case 10:
615 return XADC_REG_VCCAUX;
616 case 11:
617 return XADC_REG_VPVN;
618 case 12:
619 return XADC_REG_VREFP;
620 case 13:
621 return XADC_REG_VREFN;
622 case 14:
623 return XADC_REG_VCCBRAM;
624 default:
625 return XADC_REG_VAUX(scan_index - 16);
626 }
627 }
628
xadc_trigger_handler(int irq,void * p)629 static irqreturn_t xadc_trigger_handler(int irq, void *p)
630 {
631 struct iio_poll_func *pf = p;
632 struct iio_dev *indio_dev = pf->indio_dev;
633 struct xadc *xadc = iio_priv(indio_dev);
634 unsigned int chan;
635 int i, j;
636
637 if (!xadc->data)
638 goto out;
639
640 j = 0;
641 for_each_set_bit(i, indio_dev->active_scan_mask,
642 indio_dev->masklength) {
643 chan = xadc_scan_index_to_channel(i);
644 xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
645 j++;
646 }
647
648 iio_push_to_buffers(indio_dev, xadc->data);
649
650 out:
651 iio_trigger_notify_done(indio_dev->trig);
652
653 return IRQ_HANDLED;
654 }
655
xadc_trigger_set_state(struct iio_trigger * trigger,bool state)656 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
657 {
658 struct xadc *xadc = iio_trigger_get_drvdata(trigger);
659 unsigned long flags;
660 unsigned int convst;
661 unsigned int val;
662 int ret = 0;
663
664 mutex_lock(&xadc->mutex);
665
666 if (state) {
667 /* Only one of the two triggers can be active at the a time. */
668 if (xadc->trigger != NULL) {
669 ret = -EBUSY;
670 goto err_out;
671 } else {
672 xadc->trigger = trigger;
673 if (trigger == xadc->convst_trigger)
674 convst = XADC_CONF0_EC;
675 else
676 convst = 0;
677 }
678 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
679 convst);
680 if (ret)
681 goto err_out;
682 } else {
683 xadc->trigger = NULL;
684 }
685
686 spin_lock_irqsave(&xadc->lock, flags);
687 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
688 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
689 if (state)
690 val |= XADC_AXI_INT_EOS;
691 else
692 val &= ~XADC_AXI_INT_EOS;
693 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
694 spin_unlock_irqrestore(&xadc->lock, flags);
695
696 err_out:
697 mutex_unlock(&xadc->mutex);
698
699 return ret;
700 }
701
702 static const struct iio_trigger_ops xadc_trigger_ops = {
703 .set_trigger_state = &xadc_trigger_set_state,
704 };
705
xadc_alloc_trigger(struct iio_dev * indio_dev,const char * name)706 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
707 const char *name)
708 {
709 struct iio_trigger *trig;
710 int ret;
711
712 trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
713 indio_dev->id, name);
714 if (trig == NULL)
715 return ERR_PTR(-ENOMEM);
716
717 trig->dev.parent = indio_dev->dev.parent;
718 trig->ops = &xadc_trigger_ops;
719 iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
720
721 ret = iio_trigger_register(trig);
722 if (ret)
723 goto error_free_trig;
724
725 return trig;
726
727 error_free_trig:
728 iio_trigger_free(trig);
729 return ERR_PTR(ret);
730 }
731
xadc_power_adc_b(struct xadc * xadc,unsigned int seq_mode)732 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
733 {
734 uint16_t val;
735
736 /* Powerdown the ADC-B when it is not needed. */
737 switch (seq_mode) {
738 case XADC_CONF1_SEQ_SIMULTANEOUS:
739 case XADC_CONF1_SEQ_INDEPENDENT:
740 val = 0;
741 break;
742 default:
743 val = XADC_CONF2_PD_ADC_B;
744 break;
745 }
746
747 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
748 val);
749 }
750
xadc_get_seq_mode(struct xadc * xadc,unsigned long scan_mode)751 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
752 {
753 unsigned int aux_scan_mode = scan_mode >> 16;
754
755 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
756 return XADC_CONF1_SEQ_SIMULTANEOUS;
757
758 if ((aux_scan_mode & 0xff00) == 0 ||
759 (aux_scan_mode & 0x00ff) == 0)
760 return XADC_CONF1_SEQ_CONTINUOUS;
761
762 return XADC_CONF1_SEQ_SIMULTANEOUS;
763 }
764
xadc_postdisable(struct iio_dev * indio_dev)765 static int xadc_postdisable(struct iio_dev *indio_dev)
766 {
767 struct xadc *xadc = iio_priv(indio_dev);
768 unsigned long scan_mask;
769 int ret;
770 int i;
771
772 scan_mask = 1; /* Run calibration as part of the sequence */
773 for (i = 0; i < indio_dev->num_channels; i++)
774 scan_mask |= BIT(indio_dev->channels[i].scan_index);
775
776 /* Enable all channels and calibration */
777 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
778 if (ret)
779 return ret;
780
781 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
782 if (ret)
783 return ret;
784
785 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
786 XADC_CONF1_SEQ_CONTINUOUS);
787 if (ret)
788 return ret;
789
790 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
791 }
792
xadc_preenable(struct iio_dev * indio_dev)793 static int xadc_preenable(struct iio_dev *indio_dev)
794 {
795 struct xadc *xadc = iio_priv(indio_dev);
796 unsigned long scan_mask;
797 int seq_mode;
798 int ret;
799
800 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
801 XADC_CONF1_SEQ_DEFAULT);
802 if (ret)
803 goto err;
804
805 scan_mask = *indio_dev->active_scan_mask;
806 seq_mode = xadc_get_seq_mode(xadc, scan_mask);
807
808 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
809 if (ret)
810 goto err;
811
812 /*
813 * In simultaneous mode the upper and lower aux channels are samples at
814 * the same time. In this mode the upper 8 bits in the sequencer
815 * register are don't care and the lower 8 bits control two channels
816 * each. As such we must set the bit if either the channel in the lower
817 * group or the upper group is enabled.
818 */
819 if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
820 scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
821
822 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
823 if (ret)
824 goto err;
825
826 ret = xadc_power_adc_b(xadc, seq_mode);
827 if (ret)
828 goto err;
829
830 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
831 seq_mode);
832 if (ret)
833 goto err;
834
835 return 0;
836 err:
837 xadc_postdisable(indio_dev);
838 return ret;
839 }
840
841 static const struct iio_buffer_setup_ops xadc_buffer_ops = {
842 .preenable = &xadc_preenable,
843 .postenable = &iio_triggered_buffer_postenable,
844 .predisable = &iio_triggered_buffer_predisable,
845 .postdisable = &xadc_postdisable,
846 };
847
xadc_read_samplerate(struct xadc * xadc)848 static int xadc_read_samplerate(struct xadc *xadc)
849 {
850 unsigned int div;
851 uint16_t val16;
852 int ret;
853
854 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
855 if (ret)
856 return ret;
857
858 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
859 if (div < 2)
860 div = 2;
861
862 return xadc_get_dclk_rate(xadc) / div / 26;
863 }
864
xadc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)865 static int xadc_read_raw(struct iio_dev *indio_dev,
866 struct iio_chan_spec const *chan, int *val, int *val2, long info)
867 {
868 struct xadc *xadc = iio_priv(indio_dev);
869 uint16_t val16;
870 int ret;
871
872 switch (info) {
873 case IIO_CHAN_INFO_RAW:
874 if (iio_buffer_enabled(indio_dev))
875 return -EBUSY;
876 ret = xadc_read_adc_reg(xadc, chan->address, &val16);
877 if (ret < 0)
878 return ret;
879
880 val16 >>= 4;
881 if (chan->scan_type.sign == 'u')
882 *val = val16;
883 else
884 *val = sign_extend32(val16, 11);
885
886 return IIO_VAL_INT;
887 case IIO_CHAN_INFO_SCALE:
888 switch (chan->type) {
889 case IIO_VOLTAGE:
890 /* V = (val * 3.0) / 4096 */
891 switch (chan->address) {
892 case XADC_REG_VCCINT:
893 case XADC_REG_VCCAUX:
894 case XADC_REG_VREFP:
895 case XADC_REG_VREFN:
896 case XADC_REG_VCCBRAM:
897 case XADC_REG_VCCPINT:
898 case XADC_REG_VCCPAUX:
899 case XADC_REG_VCCO_DDR:
900 *val = 3000;
901 break;
902 default:
903 *val = 1000;
904 break;
905 }
906 *val2 = 12;
907 return IIO_VAL_FRACTIONAL_LOG2;
908 case IIO_TEMP:
909 /* Temp in C = (val * 503.975) / 4096 - 273.15 */
910 *val = 503975;
911 *val2 = 12;
912 return IIO_VAL_FRACTIONAL_LOG2;
913 default:
914 return -EINVAL;
915 }
916 case IIO_CHAN_INFO_OFFSET:
917 /* Only the temperature channel has an offset */
918 *val = -((273150 << 12) / 503975);
919 return IIO_VAL_INT;
920 case IIO_CHAN_INFO_SAMP_FREQ:
921 ret = xadc_read_samplerate(xadc);
922 if (ret < 0)
923 return ret;
924
925 *val = ret;
926 return IIO_VAL_INT;
927 default:
928 return -EINVAL;
929 }
930 }
931
xadc_write_samplerate(struct xadc * xadc,int val)932 static int xadc_write_samplerate(struct xadc *xadc, int val)
933 {
934 unsigned long clk_rate = xadc_get_dclk_rate(xadc);
935 unsigned int div;
936
937 if (!clk_rate)
938 return -EINVAL;
939
940 if (val <= 0)
941 return -EINVAL;
942
943 /* Max. 150 kSPS */
944 if (val > XADC_MAX_SAMPLERATE)
945 val = XADC_MAX_SAMPLERATE;
946
947 val *= 26;
948
949 /* Min 1MHz */
950 if (val < 1000000)
951 val = 1000000;
952
953 /*
954 * We want to round down, but only if we do not exceed the 150 kSPS
955 * limit.
956 */
957 div = clk_rate / val;
958 if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
959 div++;
960 if (div < 2)
961 div = 2;
962 else if (div > 0xff)
963 div = 0xff;
964
965 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
966 div << XADC_CONF2_DIV_OFFSET);
967 }
968
xadc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)969 static int xadc_write_raw(struct iio_dev *indio_dev,
970 struct iio_chan_spec const *chan, int val, int val2, long info)
971 {
972 struct xadc *xadc = iio_priv(indio_dev);
973
974 if (info != IIO_CHAN_INFO_SAMP_FREQ)
975 return -EINVAL;
976
977 return xadc_write_samplerate(xadc, val);
978 }
979
980 static const struct iio_event_spec xadc_temp_events[] = {
981 {
982 .type = IIO_EV_TYPE_THRESH,
983 .dir = IIO_EV_DIR_RISING,
984 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
985 BIT(IIO_EV_INFO_VALUE) |
986 BIT(IIO_EV_INFO_HYSTERESIS),
987 },
988 };
989
990 /* Separate values for upper and lower thresholds, but only a shared enabled */
991 static const struct iio_event_spec xadc_voltage_events[] = {
992 {
993 .type = IIO_EV_TYPE_THRESH,
994 .dir = IIO_EV_DIR_RISING,
995 .mask_separate = BIT(IIO_EV_INFO_VALUE),
996 }, {
997 .type = IIO_EV_TYPE_THRESH,
998 .dir = IIO_EV_DIR_FALLING,
999 .mask_separate = BIT(IIO_EV_INFO_VALUE),
1000 }, {
1001 .type = IIO_EV_TYPE_THRESH,
1002 .dir = IIO_EV_DIR_EITHER,
1003 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
1004 },
1005 };
1006
1007 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
1008 .type = IIO_TEMP, \
1009 .indexed = 1, \
1010 .channel = (_chan), \
1011 .address = (_addr), \
1012 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1013 BIT(IIO_CHAN_INFO_SCALE) | \
1014 BIT(IIO_CHAN_INFO_OFFSET), \
1015 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1016 .event_spec = xadc_temp_events, \
1017 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1018 .scan_index = (_scan_index), \
1019 .scan_type = { \
1020 .sign = 'u', \
1021 .realbits = 12, \
1022 .storagebits = 16, \
1023 .shift = 4, \
1024 .endianness = IIO_CPU, \
1025 }, \
1026 }
1027
1028 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
1029 .type = IIO_VOLTAGE, \
1030 .indexed = 1, \
1031 .channel = (_chan), \
1032 .address = (_addr), \
1033 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1034 BIT(IIO_CHAN_INFO_SCALE), \
1035 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1036 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1037 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1038 .scan_index = (_scan_index), \
1039 .scan_type = { \
1040 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1041 .realbits = 12, \
1042 .storagebits = 16, \
1043 .shift = 4, \
1044 .endianness = IIO_CPU, \
1045 }, \
1046 .extend_name = _ext, \
1047 }
1048
1049 static const struct iio_chan_spec xadc_channels[] = {
1050 XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1051 XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1052 XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1053 XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1054 XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1055 XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1056 XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1057 XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1058 XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1059 XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1060 XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1061 XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1062 XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1063 XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1064 XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1065 XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1066 XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1067 XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1068 XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1069 XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1070 XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1071 XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1072 XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1073 XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1074 XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1075 XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1076 };
1077
1078 static const struct iio_info xadc_info = {
1079 .read_raw = &xadc_read_raw,
1080 .write_raw = &xadc_write_raw,
1081 .read_event_config = &xadc_read_event_config,
1082 .write_event_config = &xadc_write_event_config,
1083 .read_event_value = &xadc_read_event_value,
1084 .write_event_value = &xadc_write_event_value,
1085 .update_scan_mode = &xadc_update_scan_mode,
1086 };
1087
1088 static const struct of_device_id xadc_of_match_table[] = {
1089 { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1090 { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1091 { },
1092 };
1093 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1094
xadc_parse_dt(struct iio_dev * indio_dev,struct device_node * np,unsigned int * conf)1095 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1096 unsigned int *conf)
1097 {
1098 struct xadc *xadc = iio_priv(indio_dev);
1099 struct iio_chan_spec *channels, *chan;
1100 struct device_node *chan_node, *child;
1101 unsigned int num_channels;
1102 const char *external_mux;
1103 u32 ext_mux_chan;
1104 u32 reg;
1105 int ret;
1106
1107 *conf = 0;
1108
1109 ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1110 if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1111 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1112 else if (strcasecmp(external_mux, "single") == 0)
1113 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1114 else if (strcasecmp(external_mux, "dual") == 0)
1115 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1116 else
1117 return -EINVAL;
1118
1119 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1120 ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1121 &ext_mux_chan);
1122 if (ret < 0)
1123 return ret;
1124
1125 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1126 if (ext_mux_chan == 0)
1127 ext_mux_chan = XADC_REG_VPVN;
1128 else if (ext_mux_chan <= 16)
1129 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1130 else
1131 return -EINVAL;
1132 } else {
1133 if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1134 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1135 else
1136 return -EINVAL;
1137 }
1138
1139 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1140 }
1141
1142 channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1143 if (!channels)
1144 return -ENOMEM;
1145
1146 num_channels = 9;
1147 chan = &channels[9];
1148
1149 chan_node = of_get_child_by_name(np, "xlnx,channels");
1150 if (chan_node) {
1151 for_each_child_of_node(chan_node, child) {
1152 if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1153 of_node_put(child);
1154 break;
1155 }
1156
1157 ret = of_property_read_u32(child, "reg", ®);
1158 if (ret || reg > 16)
1159 continue;
1160
1161 if (of_property_read_bool(child, "xlnx,bipolar"))
1162 chan->scan_type.sign = 's';
1163
1164 if (reg == 0) {
1165 chan->scan_index = 11;
1166 chan->address = XADC_REG_VPVN;
1167 } else {
1168 chan->scan_index = 15 + reg;
1169 chan->address = XADC_REG_VAUX(reg - 1);
1170 }
1171 num_channels++;
1172 chan++;
1173 }
1174 }
1175 of_node_put(chan_node);
1176
1177 indio_dev->num_channels = num_channels;
1178 indio_dev->channels = krealloc(channels, sizeof(*channels) *
1179 num_channels, GFP_KERNEL);
1180 /* If we can't resize the channels array, just use the original */
1181 if (!indio_dev->channels)
1182 indio_dev->channels = channels;
1183
1184 return 0;
1185 }
1186
xadc_probe(struct platform_device * pdev)1187 static int xadc_probe(struct platform_device *pdev)
1188 {
1189 const struct of_device_id *id;
1190 struct iio_dev *indio_dev;
1191 unsigned int bipolar_mask;
1192 struct resource *mem;
1193 unsigned int conf0;
1194 struct xadc *xadc;
1195 int ret;
1196 int irq;
1197 int i;
1198
1199 if (!pdev->dev.of_node)
1200 return -ENODEV;
1201
1202 id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1203 if (!id)
1204 return -EINVAL;
1205
1206 irq = platform_get_irq(pdev, 0);
1207 if (irq <= 0)
1208 return -ENXIO;
1209
1210 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1211 if (!indio_dev)
1212 return -ENOMEM;
1213
1214 xadc = iio_priv(indio_dev);
1215 xadc->ops = id->data;
1216 xadc->irq = irq;
1217 init_completion(&xadc->completion);
1218 mutex_init(&xadc->mutex);
1219 spin_lock_init(&xadc->lock);
1220 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1221
1222 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1223 xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1224 if (IS_ERR(xadc->base))
1225 return PTR_ERR(xadc->base);
1226
1227 indio_dev->dev.parent = &pdev->dev;
1228 indio_dev->dev.of_node = pdev->dev.of_node;
1229 indio_dev->name = "xadc";
1230 indio_dev->modes = INDIO_DIRECT_MODE;
1231 indio_dev->info = &xadc_info;
1232
1233 ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1234 if (ret)
1235 goto err_device_free;
1236
1237 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1238 ret = iio_triggered_buffer_setup(indio_dev,
1239 &iio_pollfunc_store_time, &xadc_trigger_handler,
1240 &xadc_buffer_ops);
1241 if (ret)
1242 goto err_device_free;
1243
1244 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1245 if (IS_ERR(xadc->convst_trigger)) {
1246 ret = PTR_ERR(xadc->convst_trigger);
1247 goto err_triggered_buffer_cleanup;
1248 }
1249 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1250 "samplerate");
1251 if (IS_ERR(xadc->samplerate_trigger)) {
1252 ret = PTR_ERR(xadc->samplerate_trigger);
1253 goto err_free_convst_trigger;
1254 }
1255 }
1256
1257 xadc->clk = devm_clk_get(&pdev->dev, NULL);
1258 if (IS_ERR(xadc->clk)) {
1259 ret = PTR_ERR(xadc->clk);
1260 goto err_free_samplerate_trigger;
1261 }
1262
1263 ret = clk_prepare_enable(xadc->clk);
1264 if (ret)
1265 goto err_free_samplerate_trigger;
1266
1267 /*
1268 * Make sure not to exceed the maximum samplerate since otherwise the
1269 * resulting interrupt storm will soft-lock the system.
1270 */
1271 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1272 ret = xadc_read_samplerate(xadc);
1273 if (ret < 0)
1274 goto err_free_samplerate_trigger;
1275 if (ret > XADC_MAX_SAMPLERATE) {
1276 ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1277 if (ret < 0)
1278 goto err_free_samplerate_trigger;
1279 }
1280 }
1281
1282 ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
1283 dev_name(&pdev->dev), indio_dev);
1284 if (ret)
1285 goto err_clk_disable_unprepare;
1286
1287 ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1288 if (ret)
1289 goto err_free_irq;
1290
1291 for (i = 0; i < 16; i++)
1292 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1293 &xadc->threshold[i]);
1294
1295 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1296 if (ret)
1297 goto err_free_irq;
1298
1299 bipolar_mask = 0;
1300 for (i = 0; i < indio_dev->num_channels; i++) {
1301 if (indio_dev->channels[i].scan_type.sign == 's')
1302 bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1303 }
1304
1305 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1306 if (ret)
1307 goto err_free_irq;
1308 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1309 bipolar_mask >> 16);
1310 if (ret)
1311 goto err_free_irq;
1312
1313 /* Disable all alarms */
1314 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1315 XADC_CONF1_ALARM_MASK);
1316 if (ret)
1317 goto err_free_irq;
1318
1319 /* Set thresholds to min/max */
1320 for (i = 0; i < 16; i++) {
1321 /*
1322 * Set max voltage threshold and both temperature thresholds to
1323 * 0xffff, min voltage threshold to 0.
1324 */
1325 if (i % 8 < 4 || i == 7)
1326 xadc->threshold[i] = 0xffff;
1327 else
1328 xadc->threshold[i] = 0;
1329 xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1330 xadc->threshold[i]);
1331 }
1332
1333 /* Go to non-buffered mode */
1334 xadc_postdisable(indio_dev);
1335
1336 ret = iio_device_register(indio_dev);
1337 if (ret)
1338 goto err_free_irq;
1339
1340 platform_set_drvdata(pdev, indio_dev);
1341
1342 return 0;
1343
1344 err_free_irq:
1345 free_irq(xadc->irq, indio_dev);
1346 cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1347 err_clk_disable_unprepare:
1348 clk_disable_unprepare(xadc->clk);
1349 err_free_samplerate_trigger:
1350 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1351 iio_trigger_free(xadc->samplerate_trigger);
1352 err_free_convst_trigger:
1353 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1354 iio_trigger_free(xadc->convst_trigger);
1355 err_triggered_buffer_cleanup:
1356 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1357 iio_triggered_buffer_cleanup(indio_dev);
1358 err_device_free:
1359 kfree(indio_dev->channels);
1360
1361 return ret;
1362 }
1363
xadc_remove(struct platform_device * pdev)1364 static int xadc_remove(struct platform_device *pdev)
1365 {
1366 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1367 struct xadc *xadc = iio_priv(indio_dev);
1368
1369 iio_device_unregister(indio_dev);
1370 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1371 iio_trigger_free(xadc->samplerate_trigger);
1372 iio_trigger_free(xadc->convst_trigger);
1373 iio_triggered_buffer_cleanup(indio_dev);
1374 }
1375 free_irq(xadc->irq, indio_dev);
1376 cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1377 clk_disable_unprepare(xadc->clk);
1378 kfree(xadc->data);
1379 kfree(indio_dev->channels);
1380
1381 return 0;
1382 }
1383
1384 static struct platform_driver xadc_driver = {
1385 .probe = xadc_probe,
1386 .remove = xadc_remove,
1387 .driver = {
1388 .name = "xadc",
1389 .of_match_table = xadc_of_match_table,
1390 },
1391 };
1392 module_platform_driver(xadc_driver);
1393
1394 MODULE_LICENSE("GPL v2");
1395 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1396 MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1397