1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_GENERIC_PGTABLE_H
3 #define _ASM_GENERIC_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 
7 #ifndef __ASSEMBLY__
8 #ifdef CONFIG_MMU
9 
10 #include <linux/mm_types.h>
11 #include <linux/bug.h>
12 #include <linux/errno.h>
13 
14 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
15 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
16 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
17 #endif
18 
19 /*
20  * On almost all architectures and configurations, 0 can be used as the
21  * upper ceiling to free_pgtables(): on many architectures it has the same
22  * effect as using TASK_SIZE.  However, there is one configuration which
23  * must impose a more careful limit, to avoid freeing kernel pgtables.
24  */
25 #ifndef USER_PGTABLES_CEILING
26 #define USER_PGTABLES_CEILING	0UL
27 #endif
28 
29 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
30 extern int ptep_set_access_flags(struct vm_area_struct *vma,
31 				 unsigned long address, pte_t *ptep,
32 				 pte_t entry, int dirty);
33 #endif
34 
35 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
37 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
38 				 unsigned long address, pmd_t *pmdp,
39 				 pmd_t entry, int dirty);
40 extern int pudp_set_access_flags(struct vm_area_struct *vma,
41 				 unsigned long address, pud_t *pudp,
42 				 pud_t entry, int dirty);
43 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)44 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
45 					unsigned long address, pmd_t *pmdp,
46 					pmd_t entry, int dirty)
47 {
48 	BUILD_BUG();
49 	return 0;
50 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)51 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
52 					unsigned long address, pud_t *pudp,
53 					pud_t entry, int dirty)
54 {
55 	BUILD_BUG();
56 	return 0;
57 }
58 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
59 #endif
60 
61 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)62 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
63 					    unsigned long address,
64 					    pte_t *ptep)
65 {
66 	pte_t pte = *ptep;
67 	int r = 1;
68 	if (!pte_young(pte))
69 		r = 0;
70 	else
71 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
72 	return r;
73 }
74 #endif
75 
76 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
77 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)78 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
79 					    unsigned long address,
80 					    pmd_t *pmdp)
81 {
82 	pmd_t pmd = *pmdp;
83 	int r = 1;
84 	if (!pmd_young(pmd))
85 		r = 0;
86 	else
87 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
88 	return r;
89 }
90 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)91 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
92 					    unsigned long address,
93 					    pmd_t *pmdp)
94 {
95 	BUILD_BUG();
96 	return 0;
97 }
98 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
99 #endif
100 
101 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
102 int ptep_clear_flush_young(struct vm_area_struct *vma,
103 			   unsigned long address, pte_t *ptep);
104 #endif
105 
106 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
107 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
108 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
109 				  unsigned long address, pmd_t *pmdp);
110 #else
111 /*
112  * Despite relevant to THP only, this API is called from generic rmap code
113  * under PageTransHuge(), hence needs a dummy implementation for !THP
114  */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)115 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
116 					 unsigned long address, pmd_t *pmdp)
117 {
118 	BUILD_BUG();
119 	return 0;
120 }
121 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
122 #endif
123 
124 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)125 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
126 				       unsigned long address,
127 				       pte_t *ptep)
128 {
129 	pte_t pte = *ptep;
130 	pte_clear(mm, address, ptep);
131 	return pte;
132 }
133 #endif
134 
135 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
136 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)137 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
138 					    unsigned long address,
139 					    pmd_t *pmdp)
140 {
141 	pmd_t pmd = *pmdp;
142 	pmd_clear(pmdp);
143 	return pmd;
144 }
145 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
146 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)147 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
148 					    unsigned long address,
149 					    pud_t *pudp)
150 {
151 	pud_t pud = *pudp;
152 
153 	pud_clear(pudp);
154 	return pud;
155 }
156 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158 
159 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
160 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pmd_t * pmdp,int full)161 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
162 					    unsigned long address, pmd_t *pmdp,
163 					    int full)
164 {
165 	return pmdp_huge_get_and_clear(mm, address, pmdp);
166 }
167 #endif
168 
169 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pud_t * pudp,int full)170 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
171 					    unsigned long address, pud_t *pudp,
172 					    int full)
173 {
174 	return pudp_huge_get_and_clear(mm, address, pudp);
175 }
176 #endif
177 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178 
179 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)180 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
181 					    unsigned long address, pte_t *ptep,
182 					    int full)
183 {
184 	pte_t pte;
185 	pte = ptep_get_and_clear(mm, address, ptep);
186 	return pte;
187 }
188 #endif
189 
190 /*
191  * Some architectures may be able to avoid expensive synchronization
192  * primitives when modifications are made to PTE's which are already
193  * not present, or in the process of an address space destruction.
194  */
195 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)196 static inline void pte_clear_not_present_full(struct mm_struct *mm,
197 					      unsigned long address,
198 					      pte_t *ptep,
199 					      int full)
200 {
201 	pte_clear(mm, address, ptep);
202 }
203 #endif
204 
205 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
206 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
207 			      unsigned long address,
208 			      pte_t *ptep);
209 #endif
210 
211 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
212 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
213 			      unsigned long address,
214 			      pmd_t *pmdp);
215 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
216 			      unsigned long address,
217 			      pud_t *pudp);
218 #endif
219 
220 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
221 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)222 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
223 {
224 	pte_t old_pte = *ptep;
225 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
226 }
227 #endif
228 
229 #ifndef pte_savedwrite
230 #define pte_savedwrite pte_write
231 #endif
232 
233 #ifndef pte_mk_savedwrite
234 #define pte_mk_savedwrite pte_mkwrite
235 #endif
236 
237 #ifndef pte_clear_savedwrite
238 #define pte_clear_savedwrite pte_wrprotect
239 #endif
240 
241 #ifndef pmd_savedwrite
242 #define pmd_savedwrite pmd_write
243 #endif
244 
245 #ifndef pmd_mk_savedwrite
246 #define pmd_mk_savedwrite pmd_mkwrite
247 #endif
248 
249 #ifndef pmd_clear_savedwrite
250 #define pmd_clear_savedwrite pmd_wrprotect
251 #endif
252 
253 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)255 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
256 				      unsigned long address, pmd_t *pmdp)
257 {
258 	pmd_t old_pmd = *pmdp;
259 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
260 }
261 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)262 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
263 				      unsigned long address, pmd_t *pmdp)
264 {
265 	BUILD_BUG();
266 }
267 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268 #endif
269 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
270 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)271 static inline void pudp_set_wrprotect(struct mm_struct *mm,
272 				      unsigned long address, pud_t *pudp)
273 {
274 	pud_t old_pud = *pudp;
275 
276 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
277 }
278 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)279 static inline void pudp_set_wrprotect(struct mm_struct *mm,
280 				      unsigned long address, pud_t *pudp)
281 {
282 	BUILD_BUG();
283 }
284 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
285 #endif
286 
287 #ifndef pmdp_collapse_flush
288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
289 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
290 				 unsigned long address, pmd_t *pmdp);
291 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)292 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
293 					unsigned long address,
294 					pmd_t *pmdp)
295 {
296 	BUILD_BUG();
297 	return *pmdp;
298 }
299 #define pmdp_collapse_flush pmdp_collapse_flush
300 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
301 #endif
302 
303 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
304 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
305 				       pgtable_t pgtable);
306 #endif
307 
308 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
309 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
310 #endif
311 
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 /*
314  * This is an implementation of pmdp_establish() that is only suitable for an
315  * architecture that doesn't have hardware dirty/accessed bits. In this case we
316  * can't race with CPU which sets these bits and non-atomic aproach is fine.
317  */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)318 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
319 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
320 {
321 	pmd_t old_pmd = *pmdp;
322 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
323 	return old_pmd;
324 }
325 #endif
326 
327 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
328 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
329 			    pmd_t *pmdp);
330 #endif
331 
332 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)333 static inline int pte_same(pte_t pte_a, pte_t pte_b)
334 {
335 	return pte_val(pte_a) == pte_val(pte_b);
336 }
337 #endif
338 
339 #ifndef __HAVE_ARCH_PTE_UNUSED
340 /*
341  * Some architectures provide facilities to virtualization guests
342  * so that they can flag allocated pages as unused. This allows the
343  * host to transparently reclaim unused pages. This function returns
344  * whether the pte's page is unused.
345  */
pte_unused(pte_t pte)346 static inline int pte_unused(pte_t pte)
347 {
348 	return 0;
349 }
350 #endif
351 
352 #ifndef pte_access_permitted
353 #define pte_access_permitted(pte, write) \
354 	(pte_present(pte) && (!(write) || pte_write(pte)))
355 #endif
356 
357 #ifndef pmd_access_permitted
358 #define pmd_access_permitted(pmd, write) \
359 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
360 #endif
361 
362 #ifndef pud_access_permitted
363 #define pud_access_permitted(pud, write) \
364 	(pud_present(pud) && (!(write) || pud_write(pud)))
365 #endif
366 
367 #ifndef p4d_access_permitted
368 #define p4d_access_permitted(p4d, write) \
369 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
370 #endif
371 
372 #ifndef pgd_access_permitted
373 #define pgd_access_permitted(pgd, write) \
374 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
375 #endif
376 
377 #ifndef __HAVE_ARCH_PMD_SAME
378 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_same(pmd_t pmd_a,pmd_t pmd_b)379 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
380 {
381 	return pmd_val(pmd_a) == pmd_val(pmd_b);
382 }
383 
pud_same(pud_t pud_a,pud_t pud_b)384 static inline int pud_same(pud_t pud_a, pud_t pud_b)
385 {
386 	return pud_val(pud_a) == pud_val(pud_b);
387 }
388 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmd_same(pmd_t pmd_a,pmd_t pmd_b)389 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
390 {
391 	BUILD_BUG();
392 	return 0;
393 }
394 
pud_same(pud_t pud_a,pud_t pud_b)395 static inline int pud_same(pud_t pud_a, pud_t pud_b)
396 {
397 	BUILD_BUG();
398 	return 0;
399 }
400 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
401 #endif
402 
403 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
404 /*
405  * Some architectures support metadata associated with a page. When a
406  * page is being swapped out, this metadata must be saved so it can be
407  * restored when the page is swapped back in. SPARC M7 and newer
408  * processors support an ADI (Application Data Integrity) tag for the
409  * page as metadata for the page. arch_do_swap_page() can restore this
410  * metadata when a page is swapped back in.
411  */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)412 static inline void arch_do_swap_page(struct mm_struct *mm,
413 				     struct vm_area_struct *vma,
414 				     unsigned long addr,
415 				     pte_t pte, pte_t oldpte)
416 {
417 
418 }
419 #endif
420 
421 #ifndef __HAVE_ARCH_UNMAP_ONE
422 /*
423  * Some architectures support metadata associated with a page. When a
424  * page is being swapped out, this metadata must be saved so it can be
425  * restored when the page is swapped back in. SPARC M7 and newer
426  * processors support an ADI (Application Data Integrity) tag for the
427  * page as metadata for the page. arch_unmap_one() can save this
428  * metadata on a swap-out of a page.
429  */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)430 static inline int arch_unmap_one(struct mm_struct *mm,
431 				  struct vm_area_struct *vma,
432 				  unsigned long addr,
433 				  pte_t orig_pte)
434 {
435 	return 0;
436 }
437 #endif
438 
439 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
440 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
441 #endif
442 
443 #ifndef __HAVE_ARCH_MOVE_PTE
444 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
445 #endif
446 
447 #ifndef pte_accessible
448 # define pte_accessible(mm, pte)	((void)(pte), 1)
449 #endif
450 
451 #ifndef flush_tlb_fix_spurious_fault
452 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
453 #endif
454 
455 #ifndef pgprot_noncached
456 #define pgprot_noncached(prot)	(prot)
457 #endif
458 
459 #ifndef pgprot_writecombine
460 #define pgprot_writecombine pgprot_noncached
461 #endif
462 
463 #ifndef pgprot_writethrough
464 #define pgprot_writethrough pgprot_noncached
465 #endif
466 
467 #ifndef pgprot_device
468 #define pgprot_device pgprot_noncached
469 #endif
470 
471 #ifndef pgprot_modify
472 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)473 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
474 {
475 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
476 		newprot = pgprot_noncached(newprot);
477 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
478 		newprot = pgprot_writecombine(newprot);
479 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
480 		newprot = pgprot_device(newprot);
481 	return newprot;
482 }
483 #endif
484 
485 /*
486  * When walking page tables, get the address of the next boundary,
487  * or the end address of the range if that comes earlier.  Although no
488  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
489  */
490 
491 #define pgd_addr_end(addr, end)						\
492 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
493 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
494 })
495 
496 #ifndef p4d_addr_end
497 #define p4d_addr_end(addr, end)						\
498 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
499 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
500 })
501 #endif
502 
503 #ifndef pud_addr_end
504 #define pud_addr_end(addr, end)						\
505 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
506 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
507 })
508 #endif
509 
510 #ifndef pmd_addr_end
511 #define pmd_addr_end(addr, end)						\
512 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
513 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
514 })
515 #endif
516 
517 /*
518  * When walking page tables, we usually want to skip any p?d_none entries;
519  * and any p?d_bad entries - reporting the error before resetting to none.
520  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
521  */
522 void pgd_clear_bad(pgd_t *);
523 void p4d_clear_bad(p4d_t *);
524 void pud_clear_bad(pud_t *);
525 void pmd_clear_bad(pmd_t *);
526 
pgd_none_or_clear_bad(pgd_t * pgd)527 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
528 {
529 	if (pgd_none(*pgd))
530 		return 1;
531 	if (unlikely(pgd_bad(*pgd))) {
532 		pgd_clear_bad(pgd);
533 		return 1;
534 	}
535 	return 0;
536 }
537 
p4d_none_or_clear_bad(p4d_t * p4d)538 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
539 {
540 	if (p4d_none(*p4d))
541 		return 1;
542 	if (unlikely(p4d_bad(*p4d))) {
543 		p4d_clear_bad(p4d);
544 		return 1;
545 	}
546 	return 0;
547 }
548 
pud_none_or_clear_bad(pud_t * pud)549 static inline int pud_none_or_clear_bad(pud_t *pud)
550 {
551 	if (pud_none(*pud))
552 		return 1;
553 	if (unlikely(pud_bad(*pud))) {
554 		pud_clear_bad(pud);
555 		return 1;
556 	}
557 	return 0;
558 }
559 
pmd_none_or_clear_bad(pmd_t * pmd)560 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
561 {
562 	if (pmd_none(*pmd))
563 		return 1;
564 	if (unlikely(pmd_bad(*pmd))) {
565 		pmd_clear_bad(pmd);
566 		return 1;
567 	}
568 	return 0;
569 }
570 
__ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)571 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
572 					     unsigned long addr,
573 					     pte_t *ptep)
574 {
575 	/*
576 	 * Get the current pte state, but zero it out to make it
577 	 * non-present, preventing the hardware from asynchronously
578 	 * updating it.
579 	 */
580 	return ptep_get_and_clear(mm, addr, ptep);
581 }
582 
__ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)583 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
584 					     unsigned long addr,
585 					     pte_t *ptep, pte_t pte)
586 {
587 	/*
588 	 * The pte is non-present, so there's no hardware state to
589 	 * preserve.
590 	 */
591 	set_pte_at(mm, addr, ptep, pte);
592 }
593 
594 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
595 /*
596  * Start a pte protection read-modify-write transaction, which
597  * protects against asynchronous hardware modifications to the pte.
598  * The intention is not to prevent the hardware from making pte
599  * updates, but to prevent any updates it may make from being lost.
600  *
601  * This does not protect against other software modifications of the
602  * pte; the appropriate pte lock must be held over the transation.
603  *
604  * Note that this interface is intended to be batchable, meaning that
605  * ptep_modify_prot_commit may not actually update the pte, but merely
606  * queue the update to be done at some later time.  The update must be
607  * actually committed before the pte lock is released, however.
608  */
ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)609 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
610 					   unsigned long addr,
611 					   pte_t *ptep)
612 {
613 	return __ptep_modify_prot_start(mm, addr, ptep);
614 }
615 
616 /*
617  * Commit an update to a pte, leaving any hardware-controlled bits in
618  * the PTE unmodified.
619  */
ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)620 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
621 					   unsigned long addr,
622 					   pte_t *ptep, pte_t pte)
623 {
624 	__ptep_modify_prot_commit(mm, addr, ptep, pte);
625 }
626 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
627 #endif /* CONFIG_MMU */
628 
629 /*
630  * No-op macros that just return the current protection value. Defined here
631  * because these macros can be used used even if CONFIG_MMU is not defined.
632  */
633 #ifndef pgprot_encrypted
634 #define pgprot_encrypted(prot)	(prot)
635 #endif
636 
637 #ifndef pgprot_decrypted
638 #define pgprot_decrypted(prot)	(prot)
639 #endif
640 
641 /*
642  * A facility to provide lazy MMU batching.  This allows PTE updates and
643  * page invalidations to be delayed until a call to leave lazy MMU mode
644  * is issued.  Some architectures may benefit from doing this, and it is
645  * beneficial for both shadow and direct mode hypervisors, which may batch
646  * the PTE updates which happen during this window.  Note that using this
647  * interface requires that read hazards be removed from the code.  A read
648  * hazard could result in the direct mode hypervisor case, since the actual
649  * write to the page tables may not yet have taken place, so reads though
650  * a raw PTE pointer after it has been modified are not guaranteed to be
651  * up to date.  This mode can only be entered and left under the protection of
652  * the page table locks for all page tables which may be modified.  In the UP
653  * case, this is required so that preemption is disabled, and in the SMP case,
654  * it must synchronize the delayed page table writes properly on other CPUs.
655  */
656 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
657 #define arch_enter_lazy_mmu_mode()	do {} while (0)
658 #define arch_leave_lazy_mmu_mode()	do {} while (0)
659 #define arch_flush_lazy_mmu_mode()	do {} while (0)
660 #endif
661 
662 /*
663  * A facility to provide batching of the reload of page tables and
664  * other process state with the actual context switch code for
665  * paravirtualized guests.  By convention, only one of the batched
666  * update (lazy) modes (CPU, MMU) should be active at any given time,
667  * entry should never be nested, and entry and exits should always be
668  * paired.  This is for sanity of maintaining and reasoning about the
669  * kernel code.  In this case, the exit (end of the context switch) is
670  * in architecture-specific code, and so doesn't need a generic
671  * definition.
672  */
673 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
674 #define arch_start_context_switch(prev)	do {} while (0)
675 #endif
676 
677 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
678 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)679 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
680 {
681 	return pmd;
682 }
683 
pmd_swp_soft_dirty(pmd_t pmd)684 static inline int pmd_swp_soft_dirty(pmd_t pmd)
685 {
686 	return 0;
687 }
688 
pmd_swp_clear_soft_dirty(pmd_t pmd)689 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
690 {
691 	return pmd;
692 }
693 #endif
694 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)695 static inline int pte_soft_dirty(pte_t pte)
696 {
697 	return 0;
698 }
699 
pmd_soft_dirty(pmd_t pmd)700 static inline int pmd_soft_dirty(pmd_t pmd)
701 {
702 	return 0;
703 }
704 
pte_mksoft_dirty(pte_t pte)705 static inline pte_t pte_mksoft_dirty(pte_t pte)
706 {
707 	return pte;
708 }
709 
pmd_mksoft_dirty(pmd_t pmd)710 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
711 {
712 	return pmd;
713 }
714 
pte_clear_soft_dirty(pte_t pte)715 static inline pte_t pte_clear_soft_dirty(pte_t pte)
716 {
717 	return pte;
718 }
719 
pmd_clear_soft_dirty(pmd_t pmd)720 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
721 {
722 	return pmd;
723 }
724 
pte_swp_mksoft_dirty(pte_t pte)725 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
726 {
727 	return pte;
728 }
729 
pte_swp_soft_dirty(pte_t pte)730 static inline int pte_swp_soft_dirty(pte_t pte)
731 {
732 	return 0;
733 }
734 
pte_swp_clear_soft_dirty(pte_t pte)735 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
736 {
737 	return pte;
738 }
739 
pmd_swp_mksoft_dirty(pmd_t pmd)740 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
741 {
742 	return pmd;
743 }
744 
pmd_swp_soft_dirty(pmd_t pmd)745 static inline int pmd_swp_soft_dirty(pmd_t pmd)
746 {
747 	return 0;
748 }
749 
pmd_swp_clear_soft_dirty(pmd_t pmd)750 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
751 {
752 	return pmd;
753 }
754 #endif
755 
756 #ifndef __HAVE_PFNMAP_TRACKING
757 /*
758  * Interfaces that can be used by architecture code to keep track of
759  * memory type of pfn mappings specified by the remap_pfn_range,
760  * vm_insert_pfn.
761  */
762 
763 /*
764  * track_pfn_remap is called when a _new_ pfn mapping is being established
765  * by remap_pfn_range() for physical range indicated by pfn and size.
766  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)767 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
768 				  unsigned long pfn, unsigned long addr,
769 				  unsigned long size)
770 {
771 	return 0;
772 }
773 
774 /*
775  * track_pfn_insert is called when a _new_ single pfn is established
776  * by vm_insert_pfn().
777  */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)778 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
779 				    pfn_t pfn)
780 {
781 }
782 
783 /*
784  * track_pfn_copy is called when vma that is covering the pfnmap gets
785  * copied through copy_page_range().
786  */
track_pfn_copy(struct vm_area_struct * vma)787 static inline int track_pfn_copy(struct vm_area_struct *vma)
788 {
789 	return 0;
790 }
791 
792 /*
793  * untrack_pfn is called while unmapping a pfnmap for a region.
794  * untrack can be called for a specific region indicated by pfn and size or
795  * can be for the entire vma (in which case pfn, size are zero).
796  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)797 static inline void untrack_pfn(struct vm_area_struct *vma,
798 			       unsigned long pfn, unsigned long size)
799 {
800 }
801 
802 /*
803  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
804  */
untrack_pfn_moved(struct vm_area_struct * vma)805 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
806 {
807 }
808 #else
809 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
810 			   unsigned long pfn, unsigned long addr,
811 			   unsigned long size);
812 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
813 			     pfn_t pfn);
814 extern int track_pfn_copy(struct vm_area_struct *vma);
815 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
816 			unsigned long size);
817 extern void untrack_pfn_moved(struct vm_area_struct *vma);
818 #endif
819 
820 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)821 static inline int is_zero_pfn(unsigned long pfn)
822 {
823 	extern unsigned long zero_pfn;
824 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
825 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
826 }
827 
828 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
829 
830 #else
is_zero_pfn(unsigned long pfn)831 static inline int is_zero_pfn(unsigned long pfn)
832 {
833 	extern unsigned long zero_pfn;
834 	return pfn == zero_pfn;
835 }
836 
my_zero_pfn(unsigned long addr)837 static inline unsigned long my_zero_pfn(unsigned long addr)
838 {
839 	extern unsigned long zero_pfn;
840 	return zero_pfn;
841 }
842 #endif
843 
844 #ifdef CONFIG_MMU
845 
846 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)847 static inline int pmd_trans_huge(pmd_t pmd)
848 {
849 	return 0;
850 }
851 #ifndef pmd_write
pmd_write(pmd_t pmd)852 static inline int pmd_write(pmd_t pmd)
853 {
854 	BUG();
855 	return 0;
856 }
857 #endif /* pmd_write */
858 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
859 
860 #ifndef pud_write
pud_write(pud_t pud)861 static inline int pud_write(pud_t pud)
862 {
863 	BUG();
864 	return 0;
865 }
866 #endif /* pud_write */
867 
868 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
869 	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
870 	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
pud_trans_huge(pud_t pud)871 static inline int pud_trans_huge(pud_t pud)
872 {
873 	return 0;
874 }
875 #endif
876 
877 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)878 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
879 {
880 	/*
881 	 * Depend on compiler for an atomic pmd read. NOTE: this is
882 	 * only going to work, if the pmdval_t isn't larger than
883 	 * an unsigned long.
884 	 */
885 	return *pmdp;
886 }
887 #endif
888 
889 #ifndef arch_needs_pgtable_deposit
890 #define arch_needs_pgtable_deposit() (false)
891 #endif
892 /*
893  * This function is meant to be used by sites walking pagetables with
894  * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
895  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
896  * into a null pmd and the transhuge page fault can convert a null pmd
897  * into an hugepmd or into a regular pmd (if the hugepage allocation
898  * fails). While holding the mmap_sem in read mode the pmd becomes
899  * stable and stops changing under us only if it's not null and not a
900  * transhuge pmd. When those races occurs and this function makes a
901  * difference vs the standard pmd_none_or_clear_bad, the result is
902  * undefined so behaving like if the pmd was none is safe (because it
903  * can return none anyway). The compiler level barrier() is critically
904  * important to compute the two checks atomically on the same pmdval.
905  *
906  * For 32bit kernels with a 64bit large pmd_t this automatically takes
907  * care of reading the pmd atomically to avoid SMP race conditions
908  * against pmd_populate() when the mmap_sem is hold for reading by the
909  * caller (a special atomic read not done by "gcc" as in the generic
910  * version above, is also needed when THP is disabled because the page
911  * fault can populate the pmd from under us).
912  */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)913 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
914 {
915 	pmd_t pmdval = pmd_read_atomic(pmd);
916 	/*
917 	 * The barrier will stabilize the pmdval in a register or on
918 	 * the stack so that it will stop changing under the code.
919 	 *
920 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
921 	 * pmd_read_atomic is allowed to return a not atomic pmdval
922 	 * (for example pointing to an hugepage that has never been
923 	 * mapped in the pmd). The below checks will only care about
924 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
925 	 * exception of pmd_none(). So the important thing is that if
926 	 * the low part of the pmd is found null, the high part will
927 	 * be also null or the pmd_none() check below would be
928 	 * confused.
929 	 */
930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
931 	barrier();
932 #endif
933 	/*
934 	 * !pmd_present() checks for pmd migration entries
935 	 *
936 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
937 	 * But using that requires moving current function and pmd_trans_unstable()
938 	 * to linux/swapops.h to resovle dependency, which is too much code move.
939 	 *
940 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
941 	 * because !pmd_present() pages can only be under migration not swapped
942 	 * out.
943 	 *
944 	 * pmd_none() is preseved for future condition checks on pmd migration
945 	 * entries and not confusing with this function name, although it is
946 	 * redundant with !pmd_present().
947 	 */
948 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
949 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
950 		return 1;
951 	if (unlikely(pmd_bad(pmdval))) {
952 		pmd_clear_bad(pmd);
953 		return 1;
954 	}
955 	return 0;
956 }
957 
958 /*
959  * This is a noop if Transparent Hugepage Support is not built into
960  * the kernel. Otherwise it is equivalent to
961  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
962  * places that already verified the pmd is not none and they want to
963  * walk ptes while holding the mmap sem in read mode (write mode don't
964  * need this). If THP is not enabled, the pmd can't go away under the
965  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
966  * run a pmd_trans_unstable before walking the ptes after
967  * split_huge_page_pmd returns (because it may have run when the pmd
968  * become null, but then a page fault can map in a THP and not a
969  * regular page).
970  */
pmd_trans_unstable(pmd_t * pmd)971 static inline int pmd_trans_unstable(pmd_t *pmd)
972 {
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
974 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
975 #else
976 	return 0;
977 #endif
978 }
979 
980 #ifndef CONFIG_NUMA_BALANCING
981 /*
982  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
983  * the only case the kernel cares is for NUMA balancing and is only ever set
984  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
985  * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
986  * is the responsibility of the caller to distinguish between PROT_NONE
987  * protections and NUMA hinting fault protections.
988  */
pte_protnone(pte_t pte)989 static inline int pte_protnone(pte_t pte)
990 {
991 	return 0;
992 }
993 
pmd_protnone(pmd_t pmd)994 static inline int pmd_protnone(pmd_t pmd)
995 {
996 	return 0;
997 }
998 #endif /* CONFIG_NUMA_BALANCING */
999 
1000 #endif /* CONFIG_MMU */
1001 
1002 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1003 
1004 #ifndef __PAGETABLE_P4D_FOLDED
1005 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1006 int p4d_clear_huge(p4d_t *p4d);
1007 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1008 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1009 {
1010 	return 0;
1011 }
p4d_clear_huge(p4d_t * p4d)1012 static inline int p4d_clear_huge(p4d_t *p4d)
1013 {
1014 	return 0;
1015 }
1016 #endif /* !__PAGETABLE_P4D_FOLDED */
1017 
1018 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1019 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1020 int pud_clear_huge(pud_t *pud);
1021 int pmd_clear_huge(pmd_t *pmd);
1022 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1023 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1024 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1025 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1026 {
1027 	return 0;
1028 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1029 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1030 {
1031 	return 0;
1032 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1033 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1034 {
1035 	return 0;
1036 }
p4d_clear_huge(p4d_t * p4d)1037 static inline int p4d_clear_huge(p4d_t *p4d)
1038 {
1039 	return 0;
1040 }
pud_clear_huge(pud_t * pud)1041 static inline int pud_clear_huge(pud_t *pud)
1042 {
1043 	return 0;
1044 }
pmd_clear_huge(pmd_t * pmd)1045 static inline int pmd_clear_huge(pmd_t *pmd)
1046 {
1047 	return 0;
1048 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1049 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1050 {
1051 	return 0;
1052 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1053 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1054 {
1055 	return 0;
1056 }
1057 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1058 
1059 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1060 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1061 /*
1062  * ARCHes with special requirements for evicting THP backing TLB entries can
1063  * implement this. Otherwise also, it can help optimize normal TLB flush in
1064  * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1065  * entire TLB TLB if flush span is greater than a threshold, which will
1066  * likely be true for a single huge page. Thus a single thp flush will
1067  * invalidate the entire TLB which is not desitable.
1068  * e.g. see arch/arc: flush_pmd_tlb_range
1069  */
1070 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1071 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1072 #else
1073 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1074 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1075 #endif
1076 #endif
1077 
1078 struct file;
1079 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1080 			unsigned long size, pgprot_t *vma_prot);
1081 
1082 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1083 static inline void init_espfix_bsp(void) { }
1084 #endif
1085 
1086 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1087 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1088 {
1089 	return true;
1090 }
1091 
arch_has_pfn_modify_check(void)1092 static inline bool arch_has_pfn_modify_check(void)
1093 {
1094 	return false;
1095 }
1096 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1097 
1098 /*
1099  * Architecture PAGE_KERNEL_* fallbacks
1100  *
1101  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1102  * because they really don't support them, or the port needs to be updated to
1103  * reflect the required functionality. Below are a set of relatively safe
1104  * fallbacks, as best effort, which we can count on in lieu of the architectures
1105  * not defining them on their own yet.
1106  */
1107 
1108 #ifndef PAGE_KERNEL_RO
1109 # define PAGE_KERNEL_RO PAGE_KERNEL
1110 #endif
1111 
1112 #ifndef PAGE_KERNEL_EXEC
1113 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1114 #endif
1115 
1116 #endif /* !__ASSEMBLY__ */
1117 
1118 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1119 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1120 /*
1121  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1122  * with physical address space extension, but falls back to
1123  * BITS_PER_LONG otherwise.
1124  */
1125 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1126 #else
1127 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1128 #endif
1129 #endif
1130 
1131 #ifndef has_transparent_hugepage
1132 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1133 #define has_transparent_hugepage() 1
1134 #else
1135 #define has_transparent_hugepage() 0
1136 #endif
1137 #endif
1138 
1139 /*
1140  * On some architectures it depends on the mm if the p4d/pud or pmd
1141  * layer of the page table hierarchy is folded or not.
1142  */
1143 #ifndef mm_p4d_folded
1144 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1145 #endif
1146 
1147 #ifndef mm_pud_folded
1148 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1149 #endif
1150 
1151 #ifndef mm_pmd_folded
1152 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1153 #endif
1154 
1155 #endif /* _ASM_GENERIC_PGTABLE_H */
1156