1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 };
34 
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38 
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/jump_label_ratelimit.h>
53 #include <linux/atomic.h>
54 #include <linux/sysfs.h>
55 #include <linux/perf_regs.h>
56 #include <linux/workqueue.h>
57 #include <linux/cgroup.h>
58 #include <asm/local.h>
59 
60 struct perf_callchain_entry {
61 	__u64				nr;
62 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
63 };
64 
65 struct perf_callchain_entry_ctx {
66 	struct perf_callchain_entry *entry;
67 	u32			    max_stack;
68 	u32			    nr;
69 	short			    contexts;
70 	bool			    contexts_maxed;
71 };
72 
73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
74 				     unsigned long off, unsigned long len);
75 
76 struct perf_raw_frag {
77 	union {
78 		struct perf_raw_frag	*next;
79 		unsigned long		pad;
80 	};
81 	perf_copy_f			copy;
82 	void				*data;
83 	u32				size;
84 } __packed;
85 
86 struct perf_raw_record {
87 	struct perf_raw_frag		frag;
88 	u32				size;
89 };
90 
91 /*
92  * branch stack layout:
93  *  nr: number of taken branches stored in entries[]
94  *
95  * Note that nr can vary from sample to sample
96  * branches (to, from) are stored from most recent
97  * to least recent, i.e., entries[0] contains the most
98  * recent branch.
99  */
100 struct perf_branch_stack {
101 	__u64				nr;
102 	struct perf_branch_entry	entries[0];
103 };
104 
105 struct task_struct;
106 
107 /*
108  * extra PMU register associated with an event
109  */
110 struct hw_perf_event_extra {
111 	u64		config;	/* register value */
112 	unsigned int	reg;	/* register address or index */
113 	int		alloc;	/* extra register already allocated */
114 	int		idx;	/* index in shared_regs->regs[] */
115 };
116 
117 /**
118  * struct hw_perf_event - performance event hardware details:
119  */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122 	union {
123 		struct { /* hardware */
124 			u64		config;
125 			u64		last_tag;
126 			unsigned long	config_base;
127 			unsigned long	event_base;
128 			int		event_base_rdpmc;
129 			int		idx;
130 			int		last_cpu;
131 			int		flags;
132 
133 			struct hw_perf_event_extra extra_reg;
134 			struct hw_perf_event_extra branch_reg;
135 		};
136 		struct { /* software */
137 			struct hrtimer	hrtimer;
138 		};
139 		struct { /* tracepoint */
140 			/* for tp_event->class */
141 			struct list_head	tp_list;
142 		};
143 		struct { /* amd_power */
144 			u64	pwr_acc;
145 			u64	ptsc;
146 		};
147 #ifdef CONFIG_HAVE_HW_BREAKPOINT
148 		struct { /* breakpoint */
149 			/*
150 			 * Crufty hack to avoid the chicken and egg
151 			 * problem hw_breakpoint has with context
152 			 * creation and event initalization.
153 			 */
154 			struct arch_hw_breakpoint	info;
155 			struct list_head		bp_list;
156 		};
157 #endif
158 		struct { /* amd_iommu */
159 			u8	iommu_bank;
160 			u8	iommu_cntr;
161 			u16	padding;
162 			u64	conf;
163 			u64	conf1;
164 		};
165 	};
166 	/*
167 	 * If the event is a per task event, this will point to the task in
168 	 * question. See the comment in perf_event_alloc().
169 	 */
170 	struct task_struct		*target;
171 
172 	/*
173 	 * PMU would store hardware filter configuration
174 	 * here.
175 	 */
176 	void				*addr_filters;
177 
178 	/* Last sync'ed generation of filters */
179 	unsigned long			addr_filters_gen;
180 
181 /*
182  * hw_perf_event::state flags; used to track the PERF_EF_* state.
183  */
184 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
185 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
186 #define PERF_HES_ARCH		0x04
187 
188 	int				state;
189 
190 	/*
191 	 * The last observed hardware counter value, updated with a
192 	 * local64_cmpxchg() such that pmu::read() can be called nested.
193 	 */
194 	local64_t			prev_count;
195 
196 	/*
197 	 * The period to start the next sample with.
198 	 */
199 	u64				sample_period;
200 
201 	/*
202 	 * The period we started this sample with.
203 	 */
204 	u64				last_period;
205 
206 	/*
207 	 * However much is left of the current period; note that this is
208 	 * a full 64bit value and allows for generation of periods longer
209 	 * than hardware might allow.
210 	 */
211 	local64_t			period_left;
212 
213 	/*
214 	 * State for throttling the event, see __perf_event_overflow() and
215 	 * perf_adjust_freq_unthr_context().
216 	 */
217 	u64                             interrupts_seq;
218 	u64				interrupts;
219 
220 	/*
221 	 * State for freq target events, see __perf_event_overflow() and
222 	 * perf_adjust_freq_unthr_context().
223 	 */
224 	u64				freq_time_stamp;
225 	u64				freq_count_stamp;
226 #endif
227 };
228 
229 struct perf_event;
230 
231 /*
232  * Common implementation detail of pmu::{start,commit,cancel}_txn
233  */
234 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
235 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
236 
237 /**
238  * pmu::capabilities flags
239  */
240 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
241 #define PERF_PMU_CAP_NO_NMI			0x02
242 #define PERF_PMU_CAP_AUX_NO_SG			0x04
243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
244 #define PERF_PMU_CAP_EXCLUSIVE			0x10
245 #define PERF_PMU_CAP_ITRACE			0x20
246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
247 
248 /**
249  * struct pmu - generic performance monitoring unit
250  */
251 struct pmu {
252 	struct list_head		entry;
253 
254 	struct module			*module;
255 	struct device			*dev;
256 	const struct attribute_group	**attr_groups;
257 	const char			*name;
258 	int				type;
259 
260 	/*
261 	 * various common per-pmu feature flags
262 	 */
263 	int				capabilities;
264 
265 	int * __percpu			pmu_disable_count;
266 	struct perf_cpu_context * __percpu pmu_cpu_context;
267 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
268 	int				task_ctx_nr;
269 	int				hrtimer_interval_ms;
270 
271 	/* number of address filters this PMU can do */
272 	unsigned int			nr_addr_filters;
273 
274 	/*
275 	 * Fully disable/enable this PMU, can be used to protect from the PMI
276 	 * as well as for lazy/batch writing of the MSRs.
277 	 */
278 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
279 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
280 
281 	/*
282 	 * Try and initialize the event for this PMU.
283 	 *
284 	 * Returns:
285 	 *  -ENOENT	-- @event is not for this PMU
286 	 *
287 	 *  -ENODEV	-- @event is for this PMU but PMU not present
288 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
289 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
290 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
291 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
292 	 *
293 	 *  0		-- @event is for this PMU and valid
294 	 *
295 	 * Other error return values are allowed.
296 	 */
297 	int (*event_init)		(struct perf_event *event);
298 
299 	/*
300 	 * Notification that the event was mapped or unmapped.  Called
301 	 * in the context of the mapping task.
302 	 */
303 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
304 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
305 
306 	/*
307 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
308 	 * matching hw_perf_event::state flags.
309 	 */
310 #define PERF_EF_START	0x01		/* start the counter when adding    */
311 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
312 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
313 
314 	/*
315 	 * Adds/Removes a counter to/from the PMU, can be done inside a
316 	 * transaction, see the ->*_txn() methods.
317 	 *
318 	 * The add/del callbacks will reserve all hardware resources required
319 	 * to service the event, this includes any counter constraint
320 	 * scheduling etc.
321 	 *
322 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
323 	 * is on.
324 	 *
325 	 * ->add() called without PERF_EF_START should result in the same state
326 	 *  as ->add() followed by ->stop().
327 	 *
328 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
329 	 *  ->stop() that must deal with already being stopped without
330 	 *  PERF_EF_UPDATE.
331 	 */
332 	int  (*add)			(struct perf_event *event, int flags);
333 	void (*del)			(struct perf_event *event, int flags);
334 
335 	/*
336 	 * Starts/Stops a counter present on the PMU.
337 	 *
338 	 * The PMI handler should stop the counter when perf_event_overflow()
339 	 * returns !0. ->start() will be used to continue.
340 	 *
341 	 * Also used to change the sample period.
342 	 *
343 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
344 	 * is on -- will be called from NMI context with the PMU generates
345 	 * NMIs.
346 	 *
347 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
348 	 *  period/count values like ->read() would.
349 	 *
350 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
351 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
352 	 */
353 	void (*start)			(struct perf_event *event, int flags);
354 	void (*stop)			(struct perf_event *event, int flags);
355 
356 	/*
357 	 * Updates the counter value of the event.
358 	 *
359 	 * For sampling capable PMUs this will also update the software period
360 	 * hw_perf_event::period_left field.
361 	 */
362 	void (*read)			(struct perf_event *event);
363 
364 	/*
365 	 * Group events scheduling is treated as a transaction, add
366 	 * group events as a whole and perform one schedulability test.
367 	 * If the test fails, roll back the whole group
368 	 *
369 	 * Start the transaction, after this ->add() doesn't need to
370 	 * do schedulability tests.
371 	 *
372 	 * Optional.
373 	 */
374 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
375 	/*
376 	 * If ->start_txn() disabled the ->add() schedulability test
377 	 * then ->commit_txn() is required to perform one. On success
378 	 * the transaction is closed. On error the transaction is kept
379 	 * open until ->cancel_txn() is called.
380 	 *
381 	 * Optional.
382 	 */
383 	int  (*commit_txn)		(struct pmu *pmu);
384 	/*
385 	 * Will cancel the transaction, assumes ->del() is called
386 	 * for each successful ->add() during the transaction.
387 	 *
388 	 * Optional.
389 	 */
390 	void (*cancel_txn)		(struct pmu *pmu);
391 
392 	/*
393 	 * Will return the value for perf_event_mmap_page::index for this event,
394 	 * if no implementation is provided it will default to: event->hw.idx + 1.
395 	 */
396 	int (*event_idx)		(struct perf_event *event); /*optional */
397 
398 	/*
399 	 * context-switches callback
400 	 */
401 	void (*sched_task)		(struct perf_event_context *ctx,
402 					bool sched_in);
403 	/*
404 	 * PMU specific data size
405 	 */
406 	size_t				task_ctx_size;
407 
408 
409 	/*
410 	 * Set up pmu-private data structures for an AUX area
411 	 */
412 	void *(*setup_aux)		(struct perf_event *event, void **pages,
413 					 int nr_pages, bool overwrite);
414 					/* optional */
415 
416 	/*
417 	 * Free pmu-private AUX data structures
418 	 */
419 	void (*free_aux)		(void *aux); /* optional */
420 
421 	/*
422 	 * Validate address range filters: make sure the HW supports the
423 	 * requested configuration and number of filters; return 0 if the
424 	 * supplied filters are valid, -errno otherwise.
425 	 *
426 	 * Runs in the context of the ioctl()ing process and is not serialized
427 	 * with the rest of the PMU callbacks.
428 	 */
429 	int (*addr_filters_validate)	(struct list_head *filters);
430 					/* optional */
431 
432 	/*
433 	 * Synchronize address range filter configuration:
434 	 * translate hw-agnostic filters into hardware configuration in
435 	 * event::hw::addr_filters.
436 	 *
437 	 * Runs as a part of filter sync sequence that is done in ->start()
438 	 * callback by calling perf_event_addr_filters_sync().
439 	 *
440 	 * May (and should) traverse event::addr_filters::list, for which its
441 	 * caller provides necessary serialization.
442 	 */
443 	void (*addr_filters_sync)	(struct perf_event *event);
444 					/* optional */
445 
446 	/*
447 	 * Filter events for PMU-specific reasons.
448 	 */
449 	int (*filter_match)		(struct perf_event *event); /* optional */
450 
451 	/*
452 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
453 	 */
454 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
455 };
456 
457 enum perf_addr_filter_action_t {
458 	PERF_ADDR_FILTER_ACTION_STOP = 0,
459 	PERF_ADDR_FILTER_ACTION_START,
460 	PERF_ADDR_FILTER_ACTION_FILTER,
461 };
462 
463 /**
464  * struct perf_addr_filter - address range filter definition
465  * @entry:	event's filter list linkage
466  * @inode:	object file's inode for file-based filters
467  * @offset:	filter range offset
468  * @size:	filter range size (size==0 means single address trigger)
469  * @action:	filter/start/stop
470  *
471  * This is a hardware-agnostic filter configuration as specified by the user.
472  */
473 struct perf_addr_filter {
474 	struct list_head	entry;
475 	struct path		path;
476 	unsigned long		offset;
477 	unsigned long		size;
478 	enum perf_addr_filter_action_t	action;
479 };
480 
481 /**
482  * struct perf_addr_filters_head - container for address range filters
483  * @list:	list of filters for this event
484  * @lock:	spinlock that serializes accesses to the @list and event's
485  *		(and its children's) filter generations.
486  * @nr_file_filters:	number of file-based filters
487  *
488  * A child event will use parent's @list (and therefore @lock), so they are
489  * bundled together; see perf_event_addr_filters().
490  */
491 struct perf_addr_filters_head {
492 	struct list_head	list;
493 	raw_spinlock_t		lock;
494 	unsigned int		nr_file_filters;
495 };
496 
497 struct perf_addr_filter_range {
498 	unsigned long		start;
499 	unsigned long		size;
500 };
501 
502 /**
503  * enum perf_event_state - the states of an event:
504  */
505 enum perf_event_state {
506 	PERF_EVENT_STATE_DEAD		= -4,
507 	PERF_EVENT_STATE_EXIT		= -3,
508 	PERF_EVENT_STATE_ERROR		= -2,
509 	PERF_EVENT_STATE_OFF		= -1,
510 	PERF_EVENT_STATE_INACTIVE	=  0,
511 	PERF_EVENT_STATE_ACTIVE		=  1,
512 };
513 
514 struct file;
515 struct perf_sample_data;
516 
517 typedef void (*perf_overflow_handler_t)(struct perf_event *,
518 					struct perf_sample_data *,
519 					struct pt_regs *regs);
520 
521 /*
522  * Event capabilities. For event_caps and groups caps.
523  *
524  * PERF_EV_CAP_SOFTWARE: Is a software event.
525  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
526  * from any CPU in the package where it is active.
527  */
528 #define PERF_EV_CAP_SOFTWARE		BIT(0)
529 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
530 
531 #define SWEVENT_HLIST_BITS		8
532 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
533 
534 struct swevent_hlist {
535 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
536 	struct rcu_head			rcu_head;
537 };
538 
539 #define PERF_ATTACH_CONTEXT	0x01
540 #define PERF_ATTACH_GROUP	0x02
541 #define PERF_ATTACH_TASK	0x04
542 #define PERF_ATTACH_TASK_DATA	0x08
543 #define PERF_ATTACH_ITRACE	0x10
544 
545 struct perf_cgroup;
546 struct ring_buffer;
547 
548 struct pmu_event_list {
549 	raw_spinlock_t		lock;
550 	struct list_head	list;
551 };
552 
553 #define for_each_sibling_event(sibling, event)			\
554 	if ((event)->group_leader == (event))			\
555 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
556 
557 /**
558  * struct perf_event - performance event kernel representation:
559  */
560 struct perf_event {
561 #ifdef CONFIG_PERF_EVENTS
562 	/*
563 	 * entry onto perf_event_context::event_list;
564 	 *   modifications require ctx->lock
565 	 *   RCU safe iterations.
566 	 */
567 	struct list_head		event_entry;
568 
569 	/*
570 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
571 	 * either sufficies for read.
572 	 */
573 	struct list_head		sibling_list;
574 	struct list_head		active_list;
575 	/*
576 	 * Node on the pinned or flexible tree located at the event context;
577 	 */
578 	struct rb_node			group_node;
579 	u64				group_index;
580 	/*
581 	 * We need storage to track the entries in perf_pmu_migrate_context; we
582 	 * cannot use the event_entry because of RCU and we want to keep the
583 	 * group in tact which avoids us using the other two entries.
584 	 */
585 	struct list_head		migrate_entry;
586 
587 	struct hlist_node		hlist_entry;
588 	struct list_head		active_entry;
589 	int				nr_siblings;
590 
591 	/* Not serialized. Only written during event initialization. */
592 	int				event_caps;
593 	/* The cumulative AND of all event_caps for events in this group. */
594 	int				group_caps;
595 
596 	struct perf_event		*group_leader;
597 	struct pmu			*pmu;
598 	void				*pmu_private;
599 
600 	enum perf_event_state		state;
601 	unsigned int			attach_state;
602 	local64_t			count;
603 	atomic64_t			child_count;
604 
605 	/*
606 	 * These are the total time in nanoseconds that the event
607 	 * has been enabled (i.e. eligible to run, and the task has
608 	 * been scheduled in, if this is a per-task event)
609 	 * and running (scheduled onto the CPU), respectively.
610 	 */
611 	u64				total_time_enabled;
612 	u64				total_time_running;
613 	u64				tstamp;
614 
615 	/*
616 	 * timestamp shadows the actual context timing but it can
617 	 * be safely used in NMI interrupt context. It reflects the
618 	 * context time as it was when the event was last scheduled in.
619 	 *
620 	 * ctx_time already accounts for ctx->timestamp. Therefore to
621 	 * compute ctx_time for a sample, simply add perf_clock().
622 	 */
623 	u64				shadow_ctx_time;
624 
625 	struct perf_event_attr		attr;
626 	u16				header_size;
627 	u16				id_header_size;
628 	u16				read_size;
629 	struct hw_perf_event		hw;
630 
631 	struct perf_event_context	*ctx;
632 	atomic_long_t			refcount;
633 
634 	/*
635 	 * These accumulate total time (in nanoseconds) that children
636 	 * events have been enabled and running, respectively.
637 	 */
638 	atomic64_t			child_total_time_enabled;
639 	atomic64_t			child_total_time_running;
640 
641 	/*
642 	 * Protect attach/detach and child_list:
643 	 */
644 	struct mutex			child_mutex;
645 	struct list_head		child_list;
646 	struct perf_event		*parent;
647 
648 	int				oncpu;
649 	int				cpu;
650 
651 	struct list_head		owner_entry;
652 	struct task_struct		*owner;
653 
654 	/* mmap bits */
655 	struct mutex			mmap_mutex;
656 	atomic_t			mmap_count;
657 
658 	struct ring_buffer		*rb;
659 	struct list_head		rb_entry;
660 	unsigned long			rcu_batches;
661 	int				rcu_pending;
662 
663 	/* poll related */
664 	wait_queue_head_t		waitq;
665 	struct fasync_struct		*fasync;
666 
667 	/* delayed work for NMIs and such */
668 	int				pending_wakeup;
669 	int				pending_kill;
670 	int				pending_disable;
671 	struct irq_work			pending;
672 
673 	atomic_t			event_limit;
674 
675 	/* address range filters */
676 	struct perf_addr_filters_head	addr_filters;
677 	/* vma address array for file-based filders */
678 	struct perf_addr_filter_range	*addr_filter_ranges;
679 	unsigned long			addr_filters_gen;
680 
681 	void (*destroy)(struct perf_event *);
682 	struct rcu_head			rcu_head;
683 
684 	struct pid_namespace		*ns;
685 	u64				id;
686 
687 	u64				(*clock)(void);
688 	perf_overflow_handler_t		overflow_handler;
689 	void				*overflow_handler_context;
690 #ifdef CONFIG_BPF_SYSCALL
691 	perf_overflow_handler_t		orig_overflow_handler;
692 	struct bpf_prog			*prog;
693 #endif
694 
695 #ifdef CONFIG_EVENT_TRACING
696 	struct trace_event_call		*tp_event;
697 	struct event_filter		*filter;
698 #ifdef CONFIG_FUNCTION_TRACER
699 	struct ftrace_ops               ftrace_ops;
700 #endif
701 #endif
702 
703 #ifdef CONFIG_CGROUP_PERF
704 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
705 #endif
706 
707 	struct list_head		sb_list;
708 #endif /* CONFIG_PERF_EVENTS */
709 };
710 
711 
712 struct perf_event_groups {
713 	struct rb_root	tree;
714 	u64		index;
715 };
716 
717 /**
718  * struct perf_event_context - event context structure
719  *
720  * Used as a container for task events and CPU events as well:
721  */
722 struct perf_event_context {
723 	struct pmu			*pmu;
724 	/*
725 	 * Protect the states of the events in the list,
726 	 * nr_active, and the list:
727 	 */
728 	raw_spinlock_t			lock;
729 	/*
730 	 * Protect the list of events.  Locking either mutex or lock
731 	 * is sufficient to ensure the list doesn't change; to change
732 	 * the list you need to lock both the mutex and the spinlock.
733 	 */
734 	struct mutex			mutex;
735 
736 	struct list_head		active_ctx_list;
737 	struct perf_event_groups	pinned_groups;
738 	struct perf_event_groups	flexible_groups;
739 	struct list_head		event_list;
740 
741 	struct list_head		pinned_active;
742 	struct list_head		flexible_active;
743 
744 	int				nr_events;
745 	int				nr_active;
746 	int				is_active;
747 	int				nr_stat;
748 	int				nr_freq;
749 	int				rotate_disable;
750 	/*
751 	 * Set when nr_events != nr_active, except tolerant to events not
752 	 * necessary to be active due to scheduling constraints, such as cgroups.
753 	 */
754 	int				rotate_necessary;
755 	atomic_t			refcount;
756 	struct task_struct		*task;
757 
758 	/*
759 	 * Context clock, runs when context enabled.
760 	 */
761 	u64				time;
762 	u64				timestamp;
763 
764 	/*
765 	 * These fields let us detect when two contexts have both
766 	 * been cloned (inherited) from a common ancestor.
767 	 */
768 	struct perf_event_context	*parent_ctx;
769 	u64				parent_gen;
770 	u64				generation;
771 	int				pin_count;
772 #ifdef CONFIG_CGROUP_PERF
773 	int				nr_cgroups;	 /* cgroup evts */
774 #endif
775 	void				*task_ctx_data; /* pmu specific data */
776 	struct rcu_head			rcu_head;
777 };
778 
779 /*
780  * Number of contexts where an event can trigger:
781  *	task, softirq, hardirq, nmi.
782  */
783 #define PERF_NR_CONTEXTS	4
784 
785 /**
786  * struct perf_event_cpu_context - per cpu event context structure
787  */
788 struct perf_cpu_context {
789 	struct perf_event_context	ctx;
790 	struct perf_event_context	*task_ctx;
791 	int				active_oncpu;
792 	int				exclusive;
793 
794 	raw_spinlock_t			hrtimer_lock;
795 	struct hrtimer			hrtimer;
796 	ktime_t				hrtimer_interval;
797 	unsigned int			hrtimer_active;
798 
799 #ifdef CONFIG_CGROUP_PERF
800 	struct perf_cgroup		*cgrp;
801 	struct list_head		cgrp_cpuctx_entry;
802 #endif
803 
804 	struct list_head		sched_cb_entry;
805 	int				sched_cb_usage;
806 
807 	int				online;
808 };
809 
810 struct perf_output_handle {
811 	struct perf_event		*event;
812 	struct ring_buffer		*rb;
813 	unsigned long			wakeup;
814 	unsigned long			size;
815 	u64				aux_flags;
816 	union {
817 		void			*addr;
818 		unsigned long		head;
819 	};
820 	int				page;
821 };
822 
823 struct bpf_perf_event_data_kern {
824 	bpf_user_pt_regs_t *regs;
825 	struct perf_sample_data *data;
826 	struct perf_event *event;
827 };
828 
829 #ifdef CONFIG_CGROUP_PERF
830 
831 /*
832  * perf_cgroup_info keeps track of time_enabled for a cgroup.
833  * This is a per-cpu dynamically allocated data structure.
834  */
835 struct perf_cgroup_info {
836 	u64				time;
837 	u64				timestamp;
838 };
839 
840 struct perf_cgroup {
841 	struct cgroup_subsys_state	css;
842 	struct perf_cgroup_info	__percpu *info;
843 };
844 
845 /*
846  * Must ensure cgroup is pinned (css_get) before calling
847  * this function. In other words, we cannot call this function
848  * if there is no cgroup event for the current CPU context.
849  */
850 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)851 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
852 {
853 	return container_of(task_css_check(task, perf_event_cgrp_id,
854 					   ctx ? lockdep_is_held(&ctx->lock)
855 					       : true),
856 			    struct perf_cgroup, css);
857 }
858 #endif /* CONFIG_CGROUP_PERF */
859 
860 #ifdef CONFIG_PERF_EVENTS
861 
862 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
863 				   struct perf_event *event);
864 extern void perf_aux_output_end(struct perf_output_handle *handle,
865 				unsigned long size);
866 extern int perf_aux_output_skip(struct perf_output_handle *handle,
867 				unsigned long size);
868 extern void *perf_get_aux(struct perf_output_handle *handle);
869 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
870 extern void perf_event_itrace_started(struct perf_event *event);
871 
872 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
873 extern void perf_pmu_unregister(struct pmu *pmu);
874 
875 extern int perf_num_counters(void);
876 extern const char *perf_pmu_name(void);
877 extern void __perf_event_task_sched_in(struct task_struct *prev,
878 				       struct task_struct *task);
879 extern void __perf_event_task_sched_out(struct task_struct *prev,
880 					struct task_struct *next);
881 extern int perf_event_init_task(struct task_struct *child);
882 extern void perf_event_exit_task(struct task_struct *child);
883 extern void perf_event_free_task(struct task_struct *task);
884 extern void perf_event_delayed_put(struct task_struct *task);
885 extern struct file *perf_event_get(unsigned int fd);
886 extern const struct perf_event *perf_get_event(struct file *file);
887 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
888 extern void perf_event_print_debug(void);
889 extern void perf_pmu_disable(struct pmu *pmu);
890 extern void perf_pmu_enable(struct pmu *pmu);
891 extern void perf_sched_cb_dec(struct pmu *pmu);
892 extern void perf_sched_cb_inc(struct pmu *pmu);
893 extern int perf_event_task_disable(void);
894 extern int perf_event_task_enable(void);
895 extern int perf_event_refresh(struct perf_event *event, int refresh);
896 extern void perf_event_update_userpage(struct perf_event *event);
897 extern int perf_event_release_kernel(struct perf_event *event);
898 extern struct perf_event *
899 perf_event_create_kernel_counter(struct perf_event_attr *attr,
900 				int cpu,
901 				struct task_struct *task,
902 				perf_overflow_handler_t callback,
903 				void *context);
904 extern void perf_pmu_migrate_context(struct pmu *pmu,
905 				int src_cpu, int dst_cpu);
906 int perf_event_read_local(struct perf_event *event, u64 *value,
907 			  u64 *enabled, u64 *running);
908 extern u64 perf_event_read_value(struct perf_event *event,
909 				 u64 *enabled, u64 *running);
910 
911 
912 struct perf_sample_data {
913 	/*
914 	 * Fields set by perf_sample_data_init(), group so as to
915 	 * minimize the cachelines touched.
916 	 */
917 	u64				addr;
918 	struct perf_raw_record		*raw;
919 	struct perf_branch_stack	*br_stack;
920 	u64				period;
921 	u64				weight;
922 	u64				txn;
923 	union  perf_mem_data_src	data_src;
924 
925 	/*
926 	 * The other fields, optionally {set,used} by
927 	 * perf_{prepare,output}_sample().
928 	 */
929 	u64				type;
930 	u64				ip;
931 	struct {
932 		u32	pid;
933 		u32	tid;
934 	}				tid_entry;
935 	u64				time;
936 	u64				id;
937 	u64				stream_id;
938 	struct {
939 		u32	cpu;
940 		u32	reserved;
941 	}				cpu_entry;
942 	struct perf_callchain_entry	*callchain;
943 
944 	/*
945 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
946 	 * on arch details.
947 	 */
948 	struct perf_regs		regs_user;
949 	struct pt_regs			regs_user_copy;
950 
951 	struct perf_regs		regs_intr;
952 	u64				stack_user_size;
953 
954 	u64				phys_addr;
955 } ____cacheline_aligned;
956 
957 /* default value for data source */
958 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
959 		    PERF_MEM_S(LVL, NA)   |\
960 		    PERF_MEM_S(SNOOP, NA) |\
961 		    PERF_MEM_S(LOCK, NA)  |\
962 		    PERF_MEM_S(TLB, NA))
963 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)964 static inline void perf_sample_data_init(struct perf_sample_data *data,
965 					 u64 addr, u64 period)
966 {
967 	/* remaining struct members initialized in perf_prepare_sample() */
968 	data->addr = addr;
969 	data->raw  = NULL;
970 	data->br_stack = NULL;
971 	data->period = period;
972 	data->weight = 0;
973 	data->data_src.val = PERF_MEM_NA;
974 	data->txn = 0;
975 }
976 
977 extern void perf_output_sample(struct perf_output_handle *handle,
978 			       struct perf_event_header *header,
979 			       struct perf_sample_data *data,
980 			       struct perf_event *event);
981 extern void perf_prepare_sample(struct perf_event_header *header,
982 				struct perf_sample_data *data,
983 				struct perf_event *event,
984 				struct pt_regs *regs);
985 
986 extern int perf_event_overflow(struct perf_event *event,
987 				 struct perf_sample_data *data,
988 				 struct pt_regs *regs);
989 
990 extern void perf_event_output_forward(struct perf_event *event,
991 				     struct perf_sample_data *data,
992 				     struct pt_regs *regs);
993 extern void perf_event_output_backward(struct perf_event *event,
994 				       struct perf_sample_data *data,
995 				       struct pt_regs *regs);
996 extern void perf_event_output(struct perf_event *event,
997 			      struct perf_sample_data *data,
998 			      struct pt_regs *regs);
999 
1000 static inline bool
__is_default_overflow_handler(perf_overflow_handler_t overflow_handler)1001 __is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1002 {
1003 	if (likely(overflow_handler == perf_event_output_forward))
1004 		return true;
1005 	if (unlikely(overflow_handler == perf_event_output_backward))
1006 		return true;
1007 	return false;
1008 }
1009 
1010 #define is_default_overflow_handler(event) \
1011 	__is_default_overflow_handler((event)->overflow_handler)
1012 
1013 #ifdef CONFIG_BPF_SYSCALL
uses_default_overflow_handler(struct perf_event * event)1014 static inline bool uses_default_overflow_handler(struct perf_event *event)
1015 {
1016 	if (likely(is_default_overflow_handler(event)))
1017 		return true;
1018 
1019 	return __is_default_overflow_handler(event->orig_overflow_handler);
1020 }
1021 #else
1022 #define uses_default_overflow_handler(event) \
1023 	is_default_overflow_handler(event)
1024 #endif
1025 
1026 extern void
1027 perf_event_header__init_id(struct perf_event_header *header,
1028 			   struct perf_sample_data *data,
1029 			   struct perf_event *event);
1030 extern void
1031 perf_event__output_id_sample(struct perf_event *event,
1032 			     struct perf_output_handle *handle,
1033 			     struct perf_sample_data *sample);
1034 
1035 extern void
1036 perf_log_lost_samples(struct perf_event *event, u64 lost);
1037 
is_sampling_event(struct perf_event * event)1038 static inline bool is_sampling_event(struct perf_event *event)
1039 {
1040 	return event->attr.sample_period != 0;
1041 }
1042 
1043 /*
1044  * Return 1 for a software event, 0 for a hardware event
1045  */
is_software_event(struct perf_event * event)1046 static inline int is_software_event(struct perf_event *event)
1047 {
1048 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1049 }
1050 
1051 /*
1052  * Return 1 for event in sw context, 0 for event in hw context
1053  */
in_software_context(struct perf_event * event)1054 static inline int in_software_context(struct perf_event *event)
1055 {
1056 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1057 }
1058 
is_exclusive_pmu(struct pmu * pmu)1059 static inline int is_exclusive_pmu(struct pmu *pmu)
1060 {
1061 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1062 }
1063 
1064 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1065 
1066 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1067 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1068 
1069 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1070 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1071 #endif
1072 
1073 /*
1074  * Take a snapshot of the regs. Skip ip and frame pointer to
1075  * the nth caller. We only need a few of the regs:
1076  * - ip for PERF_SAMPLE_IP
1077  * - cs for user_mode() tests
1078  * - bp for callchains
1079  * - eflags, for future purposes, just in case
1080  */
perf_fetch_caller_regs(struct pt_regs * regs)1081 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1082 {
1083 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1084 }
1085 
1086 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1087 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1088 {
1089 	if (static_key_false(&perf_swevent_enabled[event_id]))
1090 		__perf_sw_event(event_id, nr, regs, addr);
1091 }
1092 
1093 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1094 
1095 /*
1096  * 'Special' version for the scheduler, it hard assumes no recursion,
1097  * which is guaranteed by us not actually scheduling inside other swevents
1098  * because those disable preemption.
1099  */
1100 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1101 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1102 {
1103 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1104 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1105 
1106 		perf_fetch_caller_regs(regs);
1107 		___perf_sw_event(event_id, nr, regs, addr);
1108 	}
1109 }
1110 
1111 extern struct static_key_false perf_sched_events;
1112 
1113 static __always_inline bool
perf_sw_migrate_enabled(void)1114 perf_sw_migrate_enabled(void)
1115 {
1116 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1117 		return true;
1118 	return false;
1119 }
1120 
perf_event_task_migrate(struct task_struct * task)1121 static inline void perf_event_task_migrate(struct task_struct *task)
1122 {
1123 	if (perf_sw_migrate_enabled())
1124 		task->sched_migrated = 1;
1125 }
1126 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1127 static inline void perf_event_task_sched_in(struct task_struct *prev,
1128 					    struct task_struct *task)
1129 {
1130 	if (static_branch_unlikely(&perf_sched_events))
1131 		__perf_event_task_sched_in(prev, task);
1132 
1133 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1134 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1135 
1136 		perf_fetch_caller_regs(regs);
1137 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1138 		task->sched_migrated = 0;
1139 	}
1140 }
1141 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1142 static inline void perf_event_task_sched_out(struct task_struct *prev,
1143 					     struct task_struct *next)
1144 {
1145 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1146 
1147 	if (static_branch_unlikely(&perf_sched_events))
1148 		__perf_event_task_sched_out(prev, next);
1149 }
1150 
1151 extern void perf_event_mmap(struct vm_area_struct *vma);
1152 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1153 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1154 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1155 
1156 extern void perf_event_exec(void);
1157 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1158 extern void perf_event_namespaces(struct task_struct *tsk);
1159 extern void perf_event_fork(struct task_struct *tsk);
1160 
1161 /* Callchains */
1162 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1163 
1164 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1165 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1166 extern struct perf_callchain_entry *
1167 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1168 		   u32 max_stack, bool crosstask, bool add_mark);
1169 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1170 extern int get_callchain_buffers(int max_stack);
1171 extern void put_callchain_buffers(void);
1172 
1173 extern int sysctl_perf_event_max_stack;
1174 extern int sysctl_perf_event_max_contexts_per_stack;
1175 
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1176 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1177 {
1178 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1179 		struct perf_callchain_entry *entry = ctx->entry;
1180 		entry->ip[entry->nr++] = ip;
1181 		++ctx->contexts;
1182 		return 0;
1183 	} else {
1184 		ctx->contexts_maxed = true;
1185 		return -1; /* no more room, stop walking the stack */
1186 	}
1187 }
1188 
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1189 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1190 {
1191 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1192 		struct perf_callchain_entry *entry = ctx->entry;
1193 		entry->ip[entry->nr++] = ip;
1194 		++ctx->nr;
1195 		return 0;
1196 	} else {
1197 		return -1; /* no more room, stop walking the stack */
1198 	}
1199 }
1200 
1201 extern int sysctl_perf_event_paranoid;
1202 extern int sysctl_perf_event_mlock;
1203 extern int sysctl_perf_event_sample_rate;
1204 extern int sysctl_perf_cpu_time_max_percent;
1205 
1206 extern void perf_sample_event_took(u64 sample_len_ns);
1207 
1208 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1209 		void __user *buffer, size_t *lenp,
1210 		loff_t *ppos);
1211 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1212 		void __user *buffer, size_t *lenp,
1213 		loff_t *ppos);
1214 
1215 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1216 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1217 
perf_paranoid_tracepoint_raw(void)1218 static inline bool perf_paranoid_tracepoint_raw(void)
1219 {
1220 	return sysctl_perf_event_paranoid > -1;
1221 }
1222 
perf_paranoid_cpu(void)1223 static inline bool perf_paranoid_cpu(void)
1224 {
1225 	return sysctl_perf_event_paranoid > 0;
1226 }
1227 
perf_paranoid_kernel(void)1228 static inline bool perf_paranoid_kernel(void)
1229 {
1230 	return sysctl_perf_event_paranoid > 1;
1231 }
1232 
1233 extern void perf_event_init(void);
1234 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1235 			  int entry_size, struct pt_regs *regs,
1236 			  struct hlist_head *head, int rctx,
1237 			  struct task_struct *task);
1238 extern void perf_bp_event(struct perf_event *event, void *data);
1239 
1240 #ifndef perf_misc_flags
1241 # define perf_misc_flags(regs) \
1242 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1243 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1244 #endif
1245 #ifndef perf_arch_bpf_user_pt_regs
1246 # define perf_arch_bpf_user_pt_regs(regs) regs
1247 #endif
1248 
has_branch_stack(struct perf_event * event)1249 static inline bool has_branch_stack(struct perf_event *event)
1250 {
1251 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1252 }
1253 
needs_branch_stack(struct perf_event * event)1254 static inline bool needs_branch_stack(struct perf_event *event)
1255 {
1256 	return event->attr.branch_sample_type != 0;
1257 }
1258 
has_aux(struct perf_event * event)1259 static inline bool has_aux(struct perf_event *event)
1260 {
1261 	return event->pmu->setup_aux;
1262 }
1263 
is_write_backward(struct perf_event * event)1264 static inline bool is_write_backward(struct perf_event *event)
1265 {
1266 	return !!event->attr.write_backward;
1267 }
1268 
has_addr_filter(struct perf_event * event)1269 static inline bool has_addr_filter(struct perf_event *event)
1270 {
1271 	return event->pmu->nr_addr_filters;
1272 }
1273 
1274 /*
1275  * An inherited event uses parent's filters
1276  */
1277 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1278 perf_event_addr_filters(struct perf_event *event)
1279 {
1280 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1281 
1282 	if (event->parent)
1283 		ifh = &event->parent->addr_filters;
1284 
1285 	return ifh;
1286 }
1287 
1288 extern void perf_event_addr_filters_sync(struct perf_event *event);
1289 
1290 extern int perf_output_begin(struct perf_output_handle *handle,
1291 			     struct perf_event *event, unsigned int size);
1292 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1293 				    struct perf_event *event,
1294 				    unsigned int size);
1295 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1296 				      struct perf_event *event,
1297 				      unsigned int size);
1298 
1299 extern void perf_output_end(struct perf_output_handle *handle);
1300 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1301 			     const void *buf, unsigned int len);
1302 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1303 				     unsigned int len);
1304 extern int perf_swevent_get_recursion_context(void);
1305 extern void perf_swevent_put_recursion_context(int rctx);
1306 extern u64 perf_swevent_set_period(struct perf_event *event);
1307 extern void perf_event_enable(struct perf_event *event);
1308 extern void perf_event_disable(struct perf_event *event);
1309 extern void perf_event_disable_local(struct perf_event *event);
1310 extern void perf_event_disable_inatomic(struct perf_event *event);
1311 extern void perf_event_task_tick(void);
1312 extern int perf_event_account_interrupt(struct perf_event *event);
1313 #else /* !CONFIG_PERF_EVENTS: */
1314 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1315 perf_aux_output_begin(struct perf_output_handle *handle,
1316 		      struct perf_event *event)				{ return NULL; }
1317 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1318 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1319 									{ }
1320 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1321 perf_aux_output_skip(struct perf_output_handle *handle,
1322 		     unsigned long size)				{ return -EINVAL; }
1323 static inline void *
perf_get_aux(struct perf_output_handle * handle)1324 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1325 static inline void
perf_event_task_migrate(struct task_struct * task)1326 perf_event_task_migrate(struct task_struct *task)			{ }
1327 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1328 perf_event_task_sched_in(struct task_struct *prev,
1329 			 struct task_struct *task)			{ }
1330 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1331 perf_event_task_sched_out(struct task_struct *prev,
1332 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child)1333 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)1334 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1335 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1336 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_get(unsigned int fd)1337 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1338 static inline const struct perf_event *perf_get_event(struct file *file)
1339 {
1340 	return ERR_PTR(-EINVAL);
1341 }
perf_event_attrs(struct perf_event * event)1342 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1343 {
1344 	return ERR_PTR(-EINVAL);
1345 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1346 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1347 					u64 *enabled, u64 *running)
1348 {
1349 	return -EINVAL;
1350 }
perf_event_print_debug(void)1351 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1352 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1353 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1354 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1355 {
1356 	return -EINVAL;
1357 }
1358 
1359 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1360 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1361 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1362 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1363 static inline void
perf_bp_event(struct perf_event * event,void * data)1364 perf_bp_event(struct perf_event *event, void *data)			{ }
1365 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1366 static inline int perf_register_guest_info_callbacks
1367 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1368 static inline int perf_unregister_guest_info_callbacks
1369 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1370 
perf_event_mmap(struct vm_area_struct * vma)1371 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
perf_event_exec(void)1372 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)1373 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_namespaces(struct task_struct * tsk)1374 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
perf_event_fork(struct task_struct * tsk)1375 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)1376 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1377 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1378 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)1379 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)1380 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1381 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)1382 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)1383 static inline void perf_event_task_tick(void)				{ }
perf_event_release_kernel(struct perf_event * event)1384 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1385 #endif
1386 
1387 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1388 extern void perf_restore_debug_store(void);
1389 #else
perf_restore_debug_store(void)1390 static inline void perf_restore_debug_store(void)			{ }
1391 #endif
1392 
perf_raw_frag_last(const struct perf_raw_frag * frag)1393 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1394 {
1395 	return frag->pad < sizeof(u64);
1396 }
1397 
1398 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1399 
1400 struct perf_pmu_events_attr {
1401 	struct device_attribute attr;
1402 	u64 id;
1403 	const char *event_str;
1404 };
1405 
1406 struct perf_pmu_events_ht_attr {
1407 	struct device_attribute			attr;
1408 	u64					id;
1409 	const char				*event_str_ht;
1410 	const char				*event_str_noht;
1411 };
1412 
1413 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1414 			      char *page);
1415 
1416 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1417 static struct perf_pmu_events_attr _var = {				\
1418 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1419 	.id   =  _id,							\
1420 };
1421 
1422 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1423 static struct perf_pmu_events_attr _var = {				    \
1424 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1425 	.id		= 0,						    \
1426 	.event_str	= _str,						    \
1427 };
1428 
1429 #define PMU_FORMAT_ATTR(_name, _format)					\
1430 static ssize_t								\
1431 _name##_show(struct device *dev,					\
1432 			       struct device_attribute *attr,		\
1433 			       char *page)				\
1434 {									\
1435 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1436 	return sprintf(page, _format "\n");				\
1437 }									\
1438 									\
1439 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1440 
1441 /* Performance counter hotplug functions */
1442 #ifdef CONFIG_PERF_EVENTS
1443 int perf_event_init_cpu(unsigned int cpu);
1444 int perf_event_exit_cpu(unsigned int cpu);
1445 #else
1446 #define perf_event_init_cpu	NULL
1447 #define perf_event_exit_cpu	NULL
1448 #endif
1449 
1450 #endif /* _LINUX_PERF_EVENT_H */
1451