1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <uapi/linux/hyperv.h>
29 
30 #include <linux/types.h>
31 #include <linux/scatterlist.h>
32 #include <linux/list.h>
33 #include <linux/timer.h>
34 #include <linux/completion.h>
35 #include <linux/device.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/interrupt.h>
38 #include <linux/reciprocal_div.h>
39 
40 #define MAX_PAGE_BUFFER_COUNT				32
41 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
42 
43 #pragma pack(push, 1)
44 
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 	u32 len;
48 	u32 offset;
49 	u64 pfn;
50 };
51 
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 	/* Length and Offset determines the # of pfns in the array */
55 	u32 len;
56 	u32 offset;
57 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59 
60 /*
61  * Multiple-page buffer array; the pfn array is variable size:
62  * The number of entries in the PFN array is determined by
63  * "len" and "offset".
64  */
65 struct hv_mpb_array {
66 	/* Length and Offset determines the # of pfns in the array */
67 	u32 len;
68 	u32 offset;
69 	u64 pfn_array[];
70 };
71 
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
74 					(sizeof(struct hv_page_buffer) * \
75 					 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
77 					 sizeof(struct hv_multipage_buffer))
78 
79 
80 #pragma pack(pop)
81 
82 struct hv_ring_buffer {
83 	/* Offset in bytes from the start of ring data below */
84 	u32 write_index;
85 
86 	/* Offset in bytes from the start of ring data below */
87 	u32 read_index;
88 
89 	u32 interrupt_mask;
90 
91 	/*
92 	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
93 	 * driven flow management. The feature bit feat_pending_send_sz
94 	 * is set by the host on the host->guest ring buffer, and by the
95 	 * guest on the guest->host ring buffer.
96 	 *
97 	 * The meaning of the feature bit is a bit complex in that it has
98 	 * semantics that apply to both ring buffers.  If the guest sets
99 	 * the feature bit in the guest->host ring buffer, the guest is
100 	 * telling the host that:
101 	 * 1) It will set the pending_send_sz field in the guest->host ring
102 	 *    buffer when it is waiting for space to become available, and
103 	 * 2) It will read the pending_send_sz field in the host->guest
104 	 *    ring buffer and interrupt the host when it frees enough space
105 	 *
106 	 * Similarly, if the host sets the feature bit in the host->guest
107 	 * ring buffer, the host is telling the guest that:
108 	 * 1) It will set the pending_send_sz field in the host->guest ring
109 	 *    buffer when it is waiting for space to become available, and
110 	 * 2) It will read the pending_send_sz field in the guest->host
111 	 *    ring buffer and interrupt the guest when it frees enough space
112 	 *
113 	 * If either the guest or host does not set the feature bit that it
114 	 * owns, that guest or host must do polling if it encounters a full
115 	 * ring buffer, and not signal the other end with an interrupt.
116 	 */
117 	u32 pending_send_sz;
118 	u32 reserved1[12];
119 	union {
120 		struct {
121 			u32 feat_pending_send_sz:1;
122 		};
123 		u32 value;
124 	} feature_bits;
125 
126 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
127 	u8	reserved2[4028];
128 
129 	/*
130 	 * Ring data starts here + RingDataStartOffset
131 	 * !!! DO NOT place any fields below this !!!
132 	 */
133 	u8 buffer[0];
134 } __packed;
135 
136 struct hv_ring_buffer_info {
137 	struct hv_ring_buffer *ring_buffer;
138 	u32 ring_size;			/* Include the shared header */
139 	struct reciprocal_value ring_size_div10_reciprocal;
140 	spinlock_t ring_lock;
141 
142 	u32 ring_datasize;		/* < ring_size */
143 	u32 priv_read_index;
144 };
145 
146 
hv_get_bytes_to_read(const struct hv_ring_buffer_info * rbi)147 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
148 {
149 	u32 read_loc, write_loc, dsize, read;
150 
151 	dsize = rbi->ring_datasize;
152 	read_loc = rbi->ring_buffer->read_index;
153 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
154 
155 	read = write_loc >= read_loc ? (write_loc - read_loc) :
156 		(dsize - read_loc) + write_loc;
157 
158 	return read;
159 }
160 
hv_get_bytes_to_write(const struct hv_ring_buffer_info * rbi)161 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
162 {
163 	u32 read_loc, write_loc, dsize, write;
164 
165 	dsize = rbi->ring_datasize;
166 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
167 	write_loc = rbi->ring_buffer->write_index;
168 
169 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
170 		read_loc - write_loc;
171 	return write;
172 }
173 
hv_get_avail_to_write_percent(const struct hv_ring_buffer_info * rbi)174 static inline u32 hv_get_avail_to_write_percent(
175 		const struct hv_ring_buffer_info *rbi)
176 {
177 	u32 avail_write = hv_get_bytes_to_write(rbi);
178 
179 	return reciprocal_divide(
180 			(avail_write  << 3) + (avail_write << 1),
181 			rbi->ring_size_div10_reciprocal);
182 }
183 
184 /*
185  * VMBUS version is 32 bit entity broken up into
186  * two 16 bit quantities: major_number. minor_number.
187  *
188  * 0 . 13 (Windows Server 2008)
189  * 1 . 1  (Windows 7)
190  * 2 . 4  (Windows 8)
191  * 3 . 0  (Windows 8 R2)
192  * 4 . 0  (Windows 10)
193  * 5 . 0  (Newer Windows 10)
194  */
195 
196 #define VERSION_WS2008  ((0 << 16) | (13))
197 #define VERSION_WIN7    ((1 << 16) | (1))
198 #define VERSION_WIN8    ((2 << 16) | (4))
199 #define VERSION_WIN8_1    ((3 << 16) | (0))
200 #define VERSION_WIN10	((4 << 16) | (0))
201 #define VERSION_WIN10_V5 ((5 << 16) | (0))
202 
203 #define VERSION_INVAL -1
204 
205 #define VERSION_CURRENT VERSION_WIN10_V5
206 
207 /* Make maximum size of pipe payload of 16K */
208 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
209 
210 /* Define PipeMode values. */
211 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
212 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
213 
214 /* The size of the user defined data buffer for non-pipe offers. */
215 #define MAX_USER_DEFINED_BYTES		120
216 
217 /* The size of the user defined data buffer for pipe offers. */
218 #define MAX_PIPE_USER_DEFINED_BYTES	116
219 
220 /*
221  * At the center of the Channel Management library is the Channel Offer. This
222  * struct contains the fundamental information about an offer.
223  */
224 struct vmbus_channel_offer {
225 	uuid_le if_type;
226 	uuid_le if_instance;
227 
228 	/*
229 	 * These two fields are not currently used.
230 	 */
231 	u64 reserved1;
232 	u64 reserved2;
233 
234 	u16 chn_flags;
235 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
236 
237 	union {
238 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
239 		struct {
240 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
241 		} std;
242 
243 		/*
244 		 * Pipes:
245 		 * The following sructure is an integrated pipe protocol, which
246 		 * is implemented on top of standard user-defined data. Pipe
247 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
248 		 * use.
249 		 */
250 		struct {
251 			u32  pipe_mode;
252 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
253 		} pipe;
254 	} u;
255 	/*
256 	 * The sub_channel_index is defined in win8.
257 	 */
258 	u16 sub_channel_index;
259 	u16 reserved3;
260 } __packed;
261 
262 /* Server Flags */
263 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
264 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
265 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
266 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
267 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
268 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
269 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
270 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
271 
272 struct vmpacket_descriptor {
273 	u16 type;
274 	u16 offset8;
275 	u16 len8;
276 	u16 flags;
277 	u64 trans_id;
278 } __packed;
279 
280 struct vmpacket_header {
281 	u32 prev_pkt_start_offset;
282 	struct vmpacket_descriptor descriptor;
283 } __packed;
284 
285 struct vmtransfer_page_range {
286 	u32 byte_count;
287 	u32 byte_offset;
288 } __packed;
289 
290 struct vmtransfer_page_packet_header {
291 	struct vmpacket_descriptor d;
292 	u16 xfer_pageset_id;
293 	u8  sender_owns_set;
294 	u8 reserved;
295 	u32 range_cnt;
296 	struct vmtransfer_page_range ranges[1];
297 } __packed;
298 
299 struct vmgpadl_packet_header {
300 	struct vmpacket_descriptor d;
301 	u32 gpadl;
302 	u32 reserved;
303 } __packed;
304 
305 struct vmadd_remove_transfer_page_set {
306 	struct vmpacket_descriptor d;
307 	u32 gpadl;
308 	u16 xfer_pageset_id;
309 	u16 reserved;
310 } __packed;
311 
312 /*
313  * This structure defines a range in guest physical space that can be made to
314  * look virtually contiguous.
315  */
316 struct gpa_range {
317 	u32 byte_count;
318 	u32 byte_offset;
319 	u64 pfn_array[0];
320 };
321 
322 /*
323  * This is the format for an Establish Gpadl packet, which contains a handle by
324  * which this GPADL will be known and a set of GPA ranges associated with it.
325  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
326  * ranges, then the resulting MDL will be "chained," representing multiple VA
327  * ranges.
328  */
329 struct vmestablish_gpadl {
330 	struct vmpacket_descriptor d;
331 	u32 gpadl;
332 	u32 range_cnt;
333 	struct gpa_range range[1];
334 } __packed;
335 
336 /*
337  * This is the format for a Teardown Gpadl packet, which indicates that the
338  * GPADL handle in the Establish Gpadl packet will never be referenced again.
339  */
340 struct vmteardown_gpadl {
341 	struct vmpacket_descriptor d;
342 	u32 gpadl;
343 	u32 reserved;	/* for alignment to a 8-byte boundary */
344 } __packed;
345 
346 /*
347  * This is the format for a GPA-Direct packet, which contains a set of GPA
348  * ranges, in addition to commands and/or data.
349  */
350 struct vmdata_gpa_direct {
351 	struct vmpacket_descriptor d;
352 	u32 reserved;
353 	u32 range_cnt;
354 	struct gpa_range range[1];
355 } __packed;
356 
357 /* This is the format for a Additional Data Packet. */
358 struct vmadditional_data {
359 	struct vmpacket_descriptor d;
360 	u64 total_bytes;
361 	u32 offset;
362 	u32 byte_cnt;
363 	unsigned char data[1];
364 } __packed;
365 
366 union vmpacket_largest_possible_header {
367 	struct vmpacket_descriptor simple_hdr;
368 	struct vmtransfer_page_packet_header xfer_page_hdr;
369 	struct vmgpadl_packet_header gpadl_hdr;
370 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
371 	struct vmestablish_gpadl establish_gpadl_hdr;
372 	struct vmteardown_gpadl teardown_gpadl_hdr;
373 	struct vmdata_gpa_direct data_gpa_direct_hdr;
374 };
375 
376 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
377 	(void *)(((unsigned char *)__packet) +	\
378 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
379 
380 #define VMPACKET_DATA_LENGTH(__packet)		\
381 	((((struct vmpacket_descriptor)__packet)->len8 -	\
382 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
383 
384 #define VMPACKET_TRANSFER_MODE(__packet)	\
385 	(((struct IMPACT)__packet)->type)
386 
387 enum vmbus_packet_type {
388 	VM_PKT_INVALID				= 0x0,
389 	VM_PKT_SYNCH				= 0x1,
390 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
391 	VM_PKT_RM_XFER_PAGESET			= 0x3,
392 	VM_PKT_ESTABLISH_GPADL			= 0x4,
393 	VM_PKT_TEARDOWN_GPADL			= 0x5,
394 	VM_PKT_DATA_INBAND			= 0x6,
395 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
396 	VM_PKT_DATA_USING_GPADL			= 0x8,
397 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
398 	VM_PKT_CANCEL_REQUEST			= 0xa,
399 	VM_PKT_COMP				= 0xb,
400 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
401 	VM_PKT_ADDITIONAL_DATA			= 0xd
402 };
403 
404 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
405 
406 
407 /* Version 1 messages */
408 enum vmbus_channel_message_type {
409 	CHANNELMSG_INVALID			=  0,
410 	CHANNELMSG_OFFERCHANNEL		=  1,
411 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
412 	CHANNELMSG_REQUESTOFFERS		=  3,
413 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
414 	CHANNELMSG_OPENCHANNEL		=  5,
415 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
416 	CHANNELMSG_CLOSECHANNEL		=  7,
417 	CHANNELMSG_GPADL_HEADER		=  8,
418 	CHANNELMSG_GPADL_BODY			=  9,
419 	CHANNELMSG_GPADL_CREATED		= 10,
420 	CHANNELMSG_GPADL_TEARDOWN		= 11,
421 	CHANNELMSG_GPADL_TORNDOWN		= 12,
422 	CHANNELMSG_RELID_RELEASED		= 13,
423 	CHANNELMSG_INITIATE_CONTACT		= 14,
424 	CHANNELMSG_VERSION_RESPONSE		= 15,
425 	CHANNELMSG_UNLOAD			= 16,
426 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
427 	CHANNELMSG_18				= 18,
428 	CHANNELMSG_19				= 19,
429 	CHANNELMSG_20				= 20,
430 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
431 	CHANNELMSG_22				= 22,
432 	CHANNELMSG_TL_CONNECT_RESULT		= 23,
433 	CHANNELMSG_COUNT
434 };
435 
436 struct vmbus_channel_message_header {
437 	enum vmbus_channel_message_type msgtype;
438 	u32 padding;
439 } __packed;
440 
441 /* Query VMBus Version parameters */
442 struct vmbus_channel_query_vmbus_version {
443 	struct vmbus_channel_message_header header;
444 	u32 version;
445 } __packed;
446 
447 /* VMBus Version Supported parameters */
448 struct vmbus_channel_version_supported {
449 	struct vmbus_channel_message_header header;
450 	u8 version_supported;
451 } __packed;
452 
453 /* Offer Channel parameters */
454 struct vmbus_channel_offer_channel {
455 	struct vmbus_channel_message_header header;
456 	struct vmbus_channel_offer offer;
457 	u32 child_relid;
458 	u8 monitorid;
459 	/*
460 	 * win7 and beyond splits this field into a bit field.
461 	 */
462 	u8 monitor_allocated:1;
463 	u8 reserved:7;
464 	/*
465 	 * These are new fields added in win7 and later.
466 	 * Do not access these fields without checking the
467 	 * negotiated protocol.
468 	 *
469 	 * If "is_dedicated_interrupt" is set, we must not set the
470 	 * associated bit in the channel bitmap while sending the
471 	 * interrupt to the host.
472 	 *
473 	 * connection_id is to be used in signaling the host.
474 	 */
475 	u16 is_dedicated_interrupt:1;
476 	u16 reserved1:15;
477 	u32 connection_id;
478 } __packed;
479 
480 /* Rescind Offer parameters */
481 struct vmbus_channel_rescind_offer {
482 	struct vmbus_channel_message_header header;
483 	u32 child_relid;
484 } __packed;
485 
486 static inline u32
hv_ringbuffer_pending_size(const struct hv_ring_buffer_info * rbi)487 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
488 {
489 	return rbi->ring_buffer->pending_send_sz;
490 }
491 
492 /*
493  * Request Offer -- no parameters, SynIC message contains the partition ID
494  * Set Snoop -- no parameters, SynIC message contains the partition ID
495  * Clear Snoop -- no parameters, SynIC message contains the partition ID
496  * All Offers Delivered -- no parameters, SynIC message contains the partition
497  *		           ID
498  * Flush Client -- no parameters, SynIC message contains the partition ID
499  */
500 
501 /* Open Channel parameters */
502 struct vmbus_channel_open_channel {
503 	struct vmbus_channel_message_header header;
504 
505 	/* Identifies the specific VMBus channel that is being opened. */
506 	u32 child_relid;
507 
508 	/* ID making a particular open request at a channel offer unique. */
509 	u32 openid;
510 
511 	/* GPADL for the channel's ring buffer. */
512 	u32 ringbuffer_gpadlhandle;
513 
514 	/*
515 	 * Starting with win8, this field will be used to specify
516 	 * the target virtual processor on which to deliver the interrupt for
517 	 * the host to guest communication.
518 	 * Prior to win8, incoming channel interrupts would only
519 	 * be delivered on cpu 0. Setting this value to 0 would
520 	 * preserve the earlier behavior.
521 	 */
522 	u32 target_vp;
523 
524 	/*
525 	 * The upstream ring buffer begins at offset zero in the memory
526 	 * described by RingBufferGpadlHandle. The downstream ring buffer
527 	 * follows it at this offset (in pages).
528 	 */
529 	u32 downstream_ringbuffer_pageoffset;
530 
531 	/* User-specific data to be passed along to the server endpoint. */
532 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
533 } __packed;
534 
535 /* Open Channel Result parameters */
536 struct vmbus_channel_open_result {
537 	struct vmbus_channel_message_header header;
538 	u32 child_relid;
539 	u32 openid;
540 	u32 status;
541 } __packed;
542 
543 /* Close channel parameters; */
544 struct vmbus_channel_close_channel {
545 	struct vmbus_channel_message_header header;
546 	u32 child_relid;
547 } __packed;
548 
549 /* Channel Message GPADL */
550 #define GPADL_TYPE_RING_BUFFER		1
551 #define GPADL_TYPE_SERVER_SAVE_AREA	2
552 #define GPADL_TYPE_TRANSACTION		8
553 
554 /*
555  * The number of PFNs in a GPADL message is defined by the number of
556  * pages that would be spanned by ByteCount and ByteOffset.  If the
557  * implied number of PFNs won't fit in this packet, there will be a
558  * follow-up packet that contains more.
559  */
560 struct vmbus_channel_gpadl_header {
561 	struct vmbus_channel_message_header header;
562 	u32 child_relid;
563 	u32 gpadl;
564 	u16 range_buflen;
565 	u16 rangecount;
566 	struct gpa_range range[0];
567 } __packed;
568 
569 /* This is the followup packet that contains more PFNs. */
570 struct vmbus_channel_gpadl_body {
571 	struct vmbus_channel_message_header header;
572 	u32 msgnumber;
573 	u32 gpadl;
574 	u64 pfn[0];
575 } __packed;
576 
577 struct vmbus_channel_gpadl_created {
578 	struct vmbus_channel_message_header header;
579 	u32 child_relid;
580 	u32 gpadl;
581 	u32 creation_status;
582 } __packed;
583 
584 struct vmbus_channel_gpadl_teardown {
585 	struct vmbus_channel_message_header header;
586 	u32 child_relid;
587 	u32 gpadl;
588 } __packed;
589 
590 struct vmbus_channel_gpadl_torndown {
591 	struct vmbus_channel_message_header header;
592 	u32 gpadl;
593 } __packed;
594 
595 struct vmbus_channel_relid_released {
596 	struct vmbus_channel_message_header header;
597 	u32 child_relid;
598 } __packed;
599 
600 struct vmbus_channel_initiate_contact {
601 	struct vmbus_channel_message_header header;
602 	u32 vmbus_version_requested;
603 	u32 target_vcpu; /* The VCPU the host should respond to */
604 	union {
605 		u64 interrupt_page;
606 		struct {
607 			u8	msg_sint;
608 			u8	padding1[3];
609 			u32	padding2;
610 		};
611 	};
612 	u64 monitor_page1;
613 	u64 monitor_page2;
614 } __packed;
615 
616 /* Hyper-V socket: guest's connect()-ing to host */
617 struct vmbus_channel_tl_connect_request {
618 	struct vmbus_channel_message_header header;
619 	uuid_le guest_endpoint_id;
620 	uuid_le host_service_id;
621 } __packed;
622 
623 struct vmbus_channel_version_response {
624 	struct vmbus_channel_message_header header;
625 	u8 version_supported;
626 
627 	u8 connection_state;
628 	u16 padding;
629 
630 	/*
631 	 * On new hosts that support VMBus protocol 5.0, we must use
632 	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
633 	 * and for subsequent messages, we must use the Message Connection ID
634 	 * field in the host-returned Version Response Message.
635 	 *
636 	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
637 	 */
638 	u32 msg_conn_id;
639 } __packed;
640 
641 enum vmbus_channel_state {
642 	CHANNEL_OFFER_STATE,
643 	CHANNEL_OPENING_STATE,
644 	CHANNEL_OPEN_STATE,
645 	CHANNEL_OPENED_STATE,
646 };
647 
648 /*
649  * Represents each channel msg on the vmbus connection This is a
650  * variable-size data structure depending on the msg type itself
651  */
652 struct vmbus_channel_msginfo {
653 	/* Bookkeeping stuff */
654 	struct list_head msglistentry;
655 
656 	/* So far, this is only used to handle gpadl body message */
657 	struct list_head submsglist;
658 
659 	/* Synchronize the request/response if needed */
660 	struct completion  waitevent;
661 	struct vmbus_channel *waiting_channel;
662 	union {
663 		struct vmbus_channel_version_supported version_supported;
664 		struct vmbus_channel_open_result open_result;
665 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
666 		struct vmbus_channel_gpadl_created gpadl_created;
667 		struct vmbus_channel_version_response version_response;
668 	} response;
669 
670 	u32 msgsize;
671 	/*
672 	 * The channel message that goes out on the "wire".
673 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
674 	 */
675 	unsigned char msg[0];
676 };
677 
678 struct vmbus_close_msg {
679 	struct vmbus_channel_msginfo info;
680 	struct vmbus_channel_close_channel msg;
681 };
682 
683 /* Define connection identifier type. */
684 union hv_connection_id {
685 	u32 asu32;
686 	struct {
687 		u32 id:24;
688 		u32 reserved:8;
689 	} u;
690 };
691 
692 enum hv_numa_policy {
693 	HV_BALANCED = 0,
694 	HV_LOCALIZED,
695 };
696 
697 enum vmbus_device_type {
698 	HV_IDE = 0,
699 	HV_SCSI,
700 	HV_FC,
701 	HV_NIC,
702 	HV_ND,
703 	HV_PCIE,
704 	HV_FB,
705 	HV_KBD,
706 	HV_MOUSE,
707 	HV_KVP,
708 	HV_TS,
709 	HV_HB,
710 	HV_SHUTDOWN,
711 	HV_FCOPY,
712 	HV_BACKUP,
713 	HV_DM,
714 	HV_UNKNOWN,
715 };
716 
717 struct vmbus_device {
718 	u16  dev_type;
719 	uuid_le guid;
720 	bool perf_device;
721 };
722 
723 struct vmbus_channel {
724 	struct list_head listentry;
725 
726 	struct hv_device *device_obj;
727 
728 	enum vmbus_channel_state state;
729 
730 	struct vmbus_channel_offer_channel offermsg;
731 	/*
732 	 * These are based on the OfferMsg.MonitorId.
733 	 * Save it here for easy access.
734 	 */
735 	u8 monitor_grp;
736 	u8 monitor_bit;
737 
738 	bool rescind; /* got rescind msg */
739 	struct completion rescind_event;
740 
741 	u32 ringbuffer_gpadlhandle;
742 
743 	/* Allocated memory for ring buffer */
744 	struct page *ringbuffer_page;
745 	u32 ringbuffer_pagecount;
746 	struct hv_ring_buffer_info outbound;	/* send to parent */
747 	struct hv_ring_buffer_info inbound;	/* receive from parent */
748 
749 	struct vmbus_close_msg close_msg;
750 
751 	/* Statistics */
752 	u64	interrupts;	/* Host to Guest interrupts */
753 	u64	sig_events;	/* Guest to Host events */
754 
755 	/* Channel callback's invoked in softirq context */
756 	struct tasklet_struct callback_event;
757 	void (*onchannel_callback)(void *context);
758 	void *channel_callback_context;
759 
760 	/*
761 	 * A channel can be marked for one of three modes of reading:
762 	 *   BATCHED - callback called from taslket and should read
763 	 *            channel until empty. Interrupts from the host
764 	 *            are masked while read is in process (default).
765 	 *   DIRECT - callback called from tasklet (softirq).
766 	 *   ISR - callback called in interrupt context and must
767 	 *         invoke its own deferred processing.
768 	 *         Host interrupts are disabled and must be re-enabled
769 	 *         when ring is empty.
770 	 */
771 	enum hv_callback_mode {
772 		HV_CALL_BATCHED,
773 		HV_CALL_DIRECT,
774 		HV_CALL_ISR
775 	} callback_mode;
776 
777 	bool is_dedicated_interrupt;
778 	u64 sig_event;
779 
780 	/*
781 	 * Starting with win8, this field will be used to specify
782 	 * the target virtual processor on which to deliver the interrupt for
783 	 * the host to guest communication.
784 	 * Prior to win8, incoming channel interrupts would only
785 	 * be delivered on cpu 0. Setting this value to 0 would
786 	 * preserve the earlier behavior.
787 	 */
788 	u32 target_vp;
789 	/* The corresponding CPUID in the guest */
790 	u32 target_cpu;
791 	/*
792 	 * State to manage the CPU affiliation of channels.
793 	 */
794 	struct cpumask alloced_cpus_in_node;
795 	int numa_node;
796 	/*
797 	 * Support for sub-channels. For high performance devices,
798 	 * it will be useful to have multiple sub-channels to support
799 	 * a scalable communication infrastructure with the host.
800 	 * The support for sub-channels is implemented as an extention
801 	 * to the current infrastructure.
802 	 * The initial offer is considered the primary channel and this
803 	 * offer message will indicate if the host supports sub-channels.
804 	 * The guest is free to ask for sub-channels to be offerred and can
805 	 * open these sub-channels as a normal "primary" channel. However,
806 	 * all sub-channels will have the same type and instance guids as the
807 	 * primary channel. Requests sent on a given channel will result in a
808 	 * response on the same channel.
809 	 */
810 
811 	/*
812 	 * Sub-channel creation callback. This callback will be called in
813 	 * process context when a sub-channel offer is received from the host.
814 	 * The guest can open the sub-channel in the context of this callback.
815 	 */
816 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
817 
818 	/*
819 	 * Channel rescind callback. Some channels (the hvsock ones), need to
820 	 * register a callback which is invoked in vmbus_onoffer_rescind().
821 	 */
822 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
823 
824 	/*
825 	 * The spinlock to protect the structure. It is being used to protect
826 	 * test-and-set access to various attributes of the structure as well
827 	 * as all sc_list operations.
828 	 */
829 	spinlock_t lock;
830 	/*
831 	 * All Sub-channels of a primary channel are linked here.
832 	 */
833 	struct list_head sc_list;
834 	/*
835 	 * Current number of sub-channels.
836 	 */
837 	int num_sc;
838 	/*
839 	 * Number of a sub-channel (position within sc_list) which is supposed
840 	 * to be used as the next outgoing channel.
841 	 */
842 	int next_oc;
843 	/*
844 	 * The primary channel this sub-channel belongs to.
845 	 * This will be NULL for the primary channel.
846 	 */
847 	struct vmbus_channel *primary_channel;
848 	/*
849 	 * Support per-channel state for use by vmbus drivers.
850 	 */
851 	void *per_channel_state;
852 	/*
853 	 * To support per-cpu lookup mapping of relid to channel,
854 	 * link up channels based on their CPU affinity.
855 	 */
856 	struct list_head percpu_list;
857 
858 	/*
859 	 * Defer freeing channel until after all cpu's have
860 	 * gone through grace period.
861 	 */
862 	struct rcu_head rcu;
863 
864 	/*
865 	 * For sysfs per-channel properties.
866 	 */
867 	struct kobject			kobj;
868 
869 	/*
870 	 * For performance critical channels (storage, networking
871 	 * etc,), Hyper-V has a mechanism to enhance the throughput
872 	 * at the expense of latency:
873 	 * When the host is to be signaled, we just set a bit in a shared page
874 	 * and this bit will be inspected by the hypervisor within a certain
875 	 * window and if the bit is set, the host will be signaled. The window
876 	 * of time is the monitor latency - currently around 100 usecs. This
877 	 * mechanism improves throughput by:
878 	 *
879 	 * A) Making the host more efficient - each time it wakes up,
880 	 *    potentially it will process morev number of packets. The
881 	 *    monitor latency allows a batch to build up.
882 	 * B) By deferring the hypercall to signal, we will also minimize
883 	 *    the interrupts.
884 	 *
885 	 * Clearly, these optimizations improve throughput at the expense of
886 	 * latency. Furthermore, since the channel is shared for both
887 	 * control and data messages, control messages currently suffer
888 	 * unnecessary latency adversley impacting performance and boot
889 	 * time. To fix this issue, permit tagging the channel as being
890 	 * in "low latency" mode. In this mode, we will bypass the monitor
891 	 * mechanism.
892 	 */
893 	bool low_latency;
894 
895 	/*
896 	 * NUMA distribution policy:
897 	 * We support two policies:
898 	 * 1) Balanced: Here all performance critical channels are
899 	 *    distributed evenly amongst all the NUMA nodes.
900 	 *    This policy will be the default policy.
901 	 * 2) Localized: All channels of a given instance of a
902 	 *    performance critical service will be assigned CPUs
903 	 *    within a selected NUMA node.
904 	 */
905 	enum hv_numa_policy affinity_policy;
906 
907 	bool probe_done;
908 
909 	/*
910 	 * We must offload the handling of the primary/sub channels
911 	 * from the single-threaded vmbus_connection.work_queue to
912 	 * two different workqueue, otherwise we can block
913 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
914 	 */
915 	struct work_struct add_channel_work;
916 };
917 
is_hvsock_channel(const struct vmbus_channel * c)918 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
919 {
920 	return !!(c->offermsg.offer.chn_flags &
921 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
922 }
923 
set_channel_affinity_state(struct vmbus_channel * c,enum hv_numa_policy policy)924 static inline void set_channel_affinity_state(struct vmbus_channel *c,
925 					      enum hv_numa_policy policy)
926 {
927 	c->affinity_policy = policy;
928 }
929 
set_channel_read_mode(struct vmbus_channel * c,enum hv_callback_mode mode)930 static inline void set_channel_read_mode(struct vmbus_channel *c,
931 					enum hv_callback_mode mode)
932 {
933 	c->callback_mode = mode;
934 }
935 
set_per_channel_state(struct vmbus_channel * c,void * s)936 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
937 {
938 	c->per_channel_state = s;
939 }
940 
get_per_channel_state(struct vmbus_channel * c)941 static inline void *get_per_channel_state(struct vmbus_channel *c)
942 {
943 	return c->per_channel_state;
944 }
945 
set_channel_pending_send_size(struct vmbus_channel * c,u32 size)946 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
947 						 u32 size)
948 {
949 	c->outbound.ring_buffer->pending_send_sz = size;
950 }
951 
set_low_latency_mode(struct vmbus_channel * c)952 static inline void set_low_latency_mode(struct vmbus_channel *c)
953 {
954 	c->low_latency = true;
955 }
956 
clear_low_latency_mode(struct vmbus_channel * c)957 static inline void clear_low_latency_mode(struct vmbus_channel *c)
958 {
959 	c->low_latency = false;
960 }
961 
962 void vmbus_onmessage(void *context);
963 
964 int vmbus_request_offers(void);
965 
966 /*
967  * APIs for managing sub-channels.
968  */
969 
970 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
971 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
972 
973 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
974 		void (*chn_rescind_cb)(struct vmbus_channel *));
975 
976 /*
977  * Retrieve the (sub) channel on which to send an outgoing request.
978  * When a primary channel has multiple sub-channels, we choose a
979  * channel whose VCPU binding is closest to the VCPU on which
980  * this call is being made.
981  */
982 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
983 
984 /*
985  * Check if sub-channels have already been offerred. This API will be useful
986  * when the driver is unloaded after establishing sub-channels. In this case,
987  * when the driver is re-loaded, the driver would have to check if the
988  * subchannels have already been established before attempting to request
989  * the creation of sub-channels.
990  * This function returns TRUE to indicate that subchannels have already been
991  * created.
992  * This function should be invoked after setting the callback function for
993  * sub-channel creation.
994  */
995 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
996 
997 /* The format must be the same as struct vmdata_gpa_direct */
998 struct vmbus_channel_packet_page_buffer {
999 	u16 type;
1000 	u16 dataoffset8;
1001 	u16 length8;
1002 	u16 flags;
1003 	u64 transactionid;
1004 	u32 reserved;
1005 	u32 rangecount;
1006 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1007 } __packed;
1008 
1009 /* The format must be the same as struct vmdata_gpa_direct */
1010 struct vmbus_channel_packet_multipage_buffer {
1011 	u16 type;
1012 	u16 dataoffset8;
1013 	u16 length8;
1014 	u16 flags;
1015 	u64 transactionid;
1016 	u32 reserved;
1017 	u32 rangecount;		/* Always 1 in this case */
1018 	struct hv_multipage_buffer range;
1019 } __packed;
1020 
1021 /* The format must be the same as struct vmdata_gpa_direct */
1022 struct vmbus_packet_mpb_array {
1023 	u16 type;
1024 	u16 dataoffset8;
1025 	u16 length8;
1026 	u16 flags;
1027 	u64 transactionid;
1028 	u32 reserved;
1029 	u32 rangecount;         /* Always 1 in this case */
1030 	struct hv_mpb_array range;
1031 } __packed;
1032 
1033 
1034 extern int vmbus_open(struct vmbus_channel *channel,
1035 			    u32 send_ringbuffersize,
1036 			    u32 recv_ringbuffersize,
1037 			    void *userdata,
1038 			    u32 userdatalen,
1039 			    void (*onchannel_callback)(void *context),
1040 			    void *context);
1041 
1042 extern void vmbus_close(struct vmbus_channel *channel);
1043 
1044 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1045 				  void *buffer,
1046 				  u32 bufferLen,
1047 				  u64 requestid,
1048 				  enum vmbus_packet_type type,
1049 				  u32 flags);
1050 
1051 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1052 					    struct hv_page_buffer pagebuffers[],
1053 					    u32 pagecount,
1054 					    void *buffer,
1055 					    u32 bufferlen,
1056 					    u64 requestid);
1057 
1058 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1059 				     struct vmbus_packet_mpb_array *mpb,
1060 				     u32 desc_size,
1061 				     void *buffer,
1062 				     u32 bufferlen,
1063 				     u64 requestid);
1064 
1065 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1066 				      void *kbuffer,
1067 				      u32 size,
1068 				      u32 *gpadl_handle);
1069 
1070 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1071 				     u32 gpadl_handle);
1072 
1073 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1074 
1075 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1076 				  void *buffer,
1077 				  u32 bufferlen,
1078 				  u32 *buffer_actual_len,
1079 				  u64 *requestid);
1080 
1081 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1082 				     void *buffer,
1083 				     u32 bufferlen,
1084 				     u32 *buffer_actual_len,
1085 				     u64 *requestid);
1086 
1087 
1088 extern void vmbus_ontimer(unsigned long data);
1089 
1090 /* Base driver object */
1091 struct hv_driver {
1092 	const char *name;
1093 
1094 	/*
1095 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1096 	 * channel flag, actually doesn't mean a synthetic device because the
1097 	 * offer's if_type/if_instance can change for every new hvsock
1098 	 * connection.
1099 	 *
1100 	 * However, to facilitate the notification of new-offer/rescind-offer
1101 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1102 	 * a special vmbus device, and hence we need the below flag to
1103 	 * indicate if the driver is the hvsock driver or not: we need to
1104 	 * specially treat the hvosck offer & driver in vmbus_match().
1105 	 */
1106 	bool hvsock;
1107 
1108 	/* the device type supported by this driver */
1109 	uuid_le dev_type;
1110 	const struct hv_vmbus_device_id *id_table;
1111 
1112 	struct device_driver driver;
1113 
1114 	/* dynamic device GUID's */
1115 	struct  {
1116 		spinlock_t lock;
1117 		struct list_head list;
1118 	} dynids;
1119 
1120 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1121 	int (*remove)(struct hv_device *);
1122 	void (*shutdown)(struct hv_device *);
1123 
1124 };
1125 
1126 /* Base device object */
1127 struct hv_device {
1128 	/* the device type id of this device */
1129 	uuid_le dev_type;
1130 
1131 	/* the device instance id of this device */
1132 	uuid_le dev_instance;
1133 	u16 vendor_id;
1134 	u16 device_id;
1135 
1136 	struct device device;
1137 
1138 	struct vmbus_channel *channel;
1139 	struct kset	     *channels_kset;
1140 };
1141 
1142 
device_to_hv_device(struct device * d)1143 static inline struct hv_device *device_to_hv_device(struct device *d)
1144 {
1145 	return container_of(d, struct hv_device, device);
1146 }
1147 
drv_to_hv_drv(struct device_driver * d)1148 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1149 {
1150 	return container_of(d, struct hv_driver, driver);
1151 }
1152 
hv_set_drvdata(struct hv_device * dev,void * data)1153 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1154 {
1155 	dev_set_drvdata(&dev->device, data);
1156 }
1157 
hv_get_drvdata(struct hv_device * dev)1158 static inline void *hv_get_drvdata(struct hv_device *dev)
1159 {
1160 	return dev_get_drvdata(&dev->device);
1161 }
1162 
1163 struct hv_ring_buffer_debug_info {
1164 	u32 current_interrupt_mask;
1165 	u32 current_read_index;
1166 	u32 current_write_index;
1167 	u32 bytes_avail_toread;
1168 	u32 bytes_avail_towrite;
1169 };
1170 
1171 
1172 int hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1173 				struct hv_ring_buffer_debug_info *debug_info);
1174 
1175 /* Vmbus interface */
1176 #define vmbus_driver_register(driver)	\
1177 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1178 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1179 					 struct module *owner,
1180 					 const char *mod_name);
1181 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1182 
1183 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1184 
1185 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1186 			resource_size_t min, resource_size_t max,
1187 			resource_size_t size, resource_size_t align,
1188 			bool fb_overlap_ok);
1189 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1190 
1191 /*
1192  * GUID definitions of various offer types - services offered to the guest.
1193  */
1194 
1195 /*
1196  * Network GUID
1197  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1198  */
1199 #define HV_NIC_GUID \
1200 	.guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1201 			0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1202 
1203 /*
1204  * IDE GUID
1205  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1206  */
1207 #define HV_IDE_GUID \
1208 	.guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1209 			0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1210 
1211 /*
1212  * SCSI GUID
1213  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1214  */
1215 #define HV_SCSI_GUID \
1216 	.guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1217 			0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1218 
1219 /*
1220  * Shutdown GUID
1221  * {0e0b6031-5213-4934-818b-38d90ced39db}
1222  */
1223 #define HV_SHUTDOWN_GUID \
1224 	.guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1225 			0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1226 
1227 /*
1228  * Time Synch GUID
1229  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1230  */
1231 #define HV_TS_GUID \
1232 	.guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1233 			0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1234 
1235 /*
1236  * Heartbeat GUID
1237  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1238  */
1239 #define HV_HEART_BEAT_GUID \
1240 	.guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1241 			0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1242 
1243 /*
1244  * KVP GUID
1245  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1246  */
1247 #define HV_KVP_GUID \
1248 	.guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1249 			0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1250 
1251 /*
1252  * Dynamic memory GUID
1253  * {525074dc-8985-46e2-8057-a307dc18a502}
1254  */
1255 #define HV_DM_GUID \
1256 	.guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1257 			0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1258 
1259 /*
1260  * Mouse GUID
1261  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1262  */
1263 #define HV_MOUSE_GUID \
1264 	.guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1265 			0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1266 
1267 /*
1268  * Keyboard GUID
1269  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1270  */
1271 #define HV_KBD_GUID \
1272 	.guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1273 			0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1274 
1275 /*
1276  * VSS (Backup/Restore) GUID
1277  */
1278 #define HV_VSS_GUID \
1279 	.guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1280 			0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1281 /*
1282  * Synthetic Video GUID
1283  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1284  */
1285 #define HV_SYNTHVID_GUID \
1286 	.guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1287 			0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1288 
1289 /*
1290  * Synthetic FC GUID
1291  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1292  */
1293 #define HV_SYNTHFC_GUID \
1294 	.guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1295 			0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1296 
1297 /*
1298  * Guest File Copy Service
1299  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1300  */
1301 
1302 #define HV_FCOPY_GUID \
1303 	.guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1304 			0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1305 
1306 /*
1307  * NetworkDirect. This is the guest RDMA service.
1308  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1309  */
1310 #define HV_ND_GUID \
1311 	.guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1312 			0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1313 
1314 /*
1315  * PCI Express Pass Through
1316  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1317  */
1318 
1319 #define HV_PCIE_GUID \
1320 	.guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1321 			0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1322 
1323 /*
1324  * Linux doesn't support the 3 devices: the first two are for
1325  * Automatic Virtual Machine Activation, and the third is for
1326  * Remote Desktop Virtualization.
1327  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1328  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1329  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1330  */
1331 
1332 #define HV_AVMA1_GUID \
1333 	.guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1334 			0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1335 
1336 #define HV_AVMA2_GUID \
1337 	.guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1338 			0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1339 
1340 #define HV_RDV_GUID \
1341 	.guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1342 			0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1343 
1344 /*
1345  * Common header for Hyper-V ICs
1346  */
1347 
1348 #define ICMSGTYPE_NEGOTIATE		0
1349 #define ICMSGTYPE_HEARTBEAT		1
1350 #define ICMSGTYPE_KVPEXCHANGE		2
1351 #define ICMSGTYPE_SHUTDOWN		3
1352 #define ICMSGTYPE_TIMESYNC		4
1353 #define ICMSGTYPE_VSS			5
1354 
1355 #define ICMSGHDRFLAG_TRANSACTION	1
1356 #define ICMSGHDRFLAG_REQUEST		2
1357 #define ICMSGHDRFLAG_RESPONSE		4
1358 
1359 
1360 /*
1361  * While we want to handle util services as regular devices,
1362  * there is only one instance of each of these services; so
1363  * we statically allocate the service specific state.
1364  */
1365 
1366 struct hv_util_service {
1367 	u8 *recv_buffer;
1368 	void *channel;
1369 	void (*util_cb)(void *);
1370 	int (*util_init)(struct hv_util_service *);
1371 	void (*util_deinit)(void);
1372 };
1373 
1374 struct vmbuspipe_hdr {
1375 	u32 flags;
1376 	u32 msgsize;
1377 } __packed;
1378 
1379 struct ic_version {
1380 	u16 major;
1381 	u16 minor;
1382 } __packed;
1383 
1384 struct icmsg_hdr {
1385 	struct ic_version icverframe;
1386 	u16 icmsgtype;
1387 	struct ic_version icvermsg;
1388 	u16 icmsgsize;
1389 	u32 status;
1390 	u8 ictransaction_id;
1391 	u8 icflags;
1392 	u8 reserved[2];
1393 } __packed;
1394 
1395 struct icmsg_negotiate {
1396 	u16 icframe_vercnt;
1397 	u16 icmsg_vercnt;
1398 	u32 reserved;
1399 	struct ic_version icversion_data[1]; /* any size array */
1400 } __packed;
1401 
1402 struct shutdown_msg_data {
1403 	u32 reason_code;
1404 	u32 timeout_seconds;
1405 	u32 flags;
1406 	u8  display_message[2048];
1407 } __packed;
1408 
1409 struct heartbeat_msg_data {
1410 	u64 seq_num;
1411 	u32 reserved[8];
1412 } __packed;
1413 
1414 /* Time Sync IC defs */
1415 #define ICTIMESYNCFLAG_PROBE	0
1416 #define ICTIMESYNCFLAG_SYNC	1
1417 #define ICTIMESYNCFLAG_SAMPLE	2
1418 
1419 #ifdef __x86_64__
1420 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1421 #else
1422 #define WLTIMEDELTA	116444736000000000LL
1423 #endif
1424 
1425 struct ictimesync_data {
1426 	u64 parenttime;
1427 	u64 childtime;
1428 	u64 roundtriptime;
1429 	u8 flags;
1430 } __packed;
1431 
1432 struct ictimesync_ref_data {
1433 	u64 parenttime;
1434 	u64 vmreferencetime;
1435 	u8 flags;
1436 	char leapflags;
1437 	char stratum;
1438 	u8 reserved[3];
1439 } __packed;
1440 
1441 struct hyperv_service_callback {
1442 	u8 msg_type;
1443 	char *log_msg;
1444 	uuid_le data;
1445 	struct vmbus_channel *channel;
1446 	void (*callback)(void *context);
1447 };
1448 
1449 #define MAX_SRV_VER	0x7ffffff
1450 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1451 				const int *fw_version, int fw_vercnt,
1452 				const int *srv_version, int srv_vercnt,
1453 				int *nego_fw_version, int *nego_srv_version);
1454 
1455 void hv_process_channel_removal(u32 relid);
1456 
1457 void vmbus_setevent(struct vmbus_channel *channel);
1458 /*
1459  * Negotiated version with the Host.
1460  */
1461 
1462 extern __u32 vmbus_proto_version;
1463 
1464 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1465 				  const uuid_le *shv_host_servie_id);
1466 void vmbus_set_event(struct vmbus_channel *channel);
1467 
1468 /* Get the start of the ring buffer. */
1469 static inline void *
hv_get_ring_buffer(const struct hv_ring_buffer_info * ring_info)1470 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1471 {
1472 	return ring_info->ring_buffer->buffer;
1473 }
1474 
1475 /*
1476  * Mask off host interrupt callback notifications
1477  */
hv_begin_read(struct hv_ring_buffer_info * rbi)1478 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1479 {
1480 	rbi->ring_buffer->interrupt_mask = 1;
1481 
1482 	/* make sure mask update is not reordered */
1483 	virt_mb();
1484 }
1485 
1486 /*
1487  * Re-enable host callback and return number of outstanding bytes
1488  */
hv_end_read(struct hv_ring_buffer_info * rbi)1489 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1490 {
1491 
1492 	rbi->ring_buffer->interrupt_mask = 0;
1493 
1494 	/* make sure mask update is not reordered */
1495 	virt_mb();
1496 
1497 	/*
1498 	 * Now check to see if the ring buffer is still empty.
1499 	 * If it is not, we raced and we need to process new
1500 	 * incoming messages.
1501 	 */
1502 	return hv_get_bytes_to_read(rbi);
1503 }
1504 
1505 /*
1506  * An API to support in-place processing of incoming VMBUS packets.
1507  */
1508 
1509 /* Get data payload associated with descriptor */
hv_pkt_data(const struct vmpacket_descriptor * desc)1510 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1511 {
1512 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1513 }
1514 
1515 /* Get data size associated with descriptor */
hv_pkt_datalen(const struct vmpacket_descriptor * desc)1516 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1517 {
1518 	return (desc->len8 << 3) - (desc->offset8 << 3);
1519 }
1520 
1521 
1522 struct vmpacket_descriptor *
1523 hv_pkt_iter_first(struct vmbus_channel *channel);
1524 
1525 struct vmpacket_descriptor *
1526 __hv_pkt_iter_next(struct vmbus_channel *channel,
1527 		   const struct vmpacket_descriptor *pkt);
1528 
1529 void hv_pkt_iter_close(struct vmbus_channel *channel);
1530 
1531 /*
1532  * Get next packet descriptor from iterator
1533  * If at end of list, return NULL and update host.
1534  */
1535 static inline struct vmpacket_descriptor *
hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * pkt)1536 hv_pkt_iter_next(struct vmbus_channel *channel,
1537 		 const struct vmpacket_descriptor *pkt)
1538 {
1539 	struct vmpacket_descriptor *nxt;
1540 
1541 	nxt = __hv_pkt_iter_next(channel, pkt);
1542 	if (!nxt)
1543 		hv_pkt_iter_close(channel);
1544 
1545 	return nxt;
1546 }
1547 
1548 #define foreach_vmbus_pkt(pkt, channel) \
1549 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1550 	    pkt = hv_pkt_iter_next(channel, pkt))
1551 
1552 #endif /* _HYPERV_H */
1553