1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27
28 #include "clk.h"
29
30 static DEFINE_SPINLOCK(enable_lock);
31 static DEFINE_MUTEX(prepare_lock);
32
33 static struct task_struct *prepare_owner;
34 static struct task_struct *enable_owner;
35
36 static int prepare_refcnt;
37 static int enable_refcnt;
38
39 static HLIST_HEAD(clk_root_list);
40 static HLIST_HEAD(clk_orphan_list);
41 static LIST_HEAD(clk_notifier_list);
42
43 static struct hlist_head *all_lists[] = {
44 &clk_root_list,
45 &clk_orphan_list,
46 NULL,
47 };
48
49 /*** private data structures ***/
50
51 struct clk_core {
52 const char *name;
53 const struct clk_ops *ops;
54 struct clk_hw *hw;
55 struct module *owner;
56 struct device *dev;
57 struct clk_core *parent;
58 const char **parent_names;
59 struct clk_core **parents;
60 u8 num_parents;
61 u8 new_parent_index;
62 unsigned long rate;
63 unsigned long req_rate;
64 unsigned long new_rate;
65 struct clk_core *new_parent;
66 struct clk_core *new_child;
67 unsigned long flags;
68 bool orphan;
69 unsigned int enable_count;
70 unsigned int prepare_count;
71 unsigned int protect_count;
72 unsigned long min_rate;
73 unsigned long max_rate;
74 unsigned long accuracy;
75 int phase;
76 struct clk_duty duty;
77 struct hlist_head children;
78 struct hlist_node child_node;
79 struct hlist_head clks;
80 unsigned int notifier_count;
81 #ifdef CONFIG_DEBUG_FS
82 struct dentry *dentry;
83 struct hlist_node debug_node;
84 #endif
85 struct kref ref;
86 };
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/clk.h>
90
91 struct clk {
92 struct clk_core *core;
93 const char *dev_id;
94 const char *con_id;
95 unsigned long min_rate;
96 unsigned long max_rate;
97 unsigned int exclusive_count;
98 struct hlist_node clks_node;
99 };
100
101 /*** runtime pm ***/
clk_pm_runtime_get(struct clk_core * core)102 static int clk_pm_runtime_get(struct clk_core *core)
103 {
104 int ret = 0;
105
106 if (!core->dev)
107 return 0;
108
109 ret = pm_runtime_get_sync(core->dev);
110 if (ret < 0) {
111 pm_runtime_put_noidle(core->dev);
112 return ret;
113 }
114 return 0;
115 }
116
clk_pm_runtime_put(struct clk_core * core)117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 if (!core->dev)
120 return;
121
122 pm_runtime_put_sync(core->dev);
123 }
124
125 /*** locking ***/
clk_prepare_lock(void)126 static void clk_prepare_lock(void)
127 {
128 if (!mutex_trylock(&prepare_lock)) {
129 if (prepare_owner == current) {
130 prepare_refcnt++;
131 return;
132 }
133 mutex_lock(&prepare_lock);
134 }
135 WARN_ON_ONCE(prepare_owner != NULL);
136 WARN_ON_ONCE(prepare_refcnt != 0);
137 prepare_owner = current;
138 prepare_refcnt = 1;
139 }
140
clk_prepare_unlock(void)141 static void clk_prepare_unlock(void)
142 {
143 WARN_ON_ONCE(prepare_owner != current);
144 WARN_ON_ONCE(prepare_refcnt == 0);
145
146 if (--prepare_refcnt)
147 return;
148 prepare_owner = NULL;
149 mutex_unlock(&prepare_lock);
150 }
151
clk_enable_lock(void)152 static unsigned long clk_enable_lock(void)
153 __acquires(enable_lock)
154 {
155 unsigned long flags;
156
157 /*
158 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 * we already hold the lock. So, in that case, we rely only on
160 * reference counting.
161 */
162 if (!IS_ENABLED(CONFIG_SMP) ||
163 !spin_trylock_irqsave(&enable_lock, flags)) {
164 if (enable_owner == current) {
165 enable_refcnt++;
166 __acquire(enable_lock);
167 if (!IS_ENABLED(CONFIG_SMP))
168 local_save_flags(flags);
169 return flags;
170 }
171 spin_lock_irqsave(&enable_lock, flags);
172 }
173 WARN_ON_ONCE(enable_owner != NULL);
174 WARN_ON_ONCE(enable_refcnt != 0);
175 enable_owner = current;
176 enable_refcnt = 1;
177 return flags;
178 }
179
clk_enable_unlock(unsigned long flags)180 static void clk_enable_unlock(unsigned long flags)
181 __releases(enable_lock)
182 {
183 WARN_ON_ONCE(enable_owner != current);
184 WARN_ON_ONCE(enable_refcnt == 0);
185
186 if (--enable_refcnt) {
187 __release(enable_lock);
188 return;
189 }
190 enable_owner = NULL;
191 spin_unlock_irqrestore(&enable_lock, flags);
192 }
193
clk_core_rate_is_protected(struct clk_core * core)194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 return core->protect_count;
197 }
198
clk_core_is_prepared(struct clk_core * core)199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 bool ret = false;
202
203 /*
204 * .is_prepared is optional for clocks that can prepare
205 * fall back to software usage counter if it is missing
206 */
207 if (!core->ops->is_prepared)
208 return core->prepare_count;
209
210 if (!clk_pm_runtime_get(core)) {
211 ret = core->ops->is_prepared(core->hw);
212 clk_pm_runtime_put(core);
213 }
214
215 return ret;
216 }
217
clk_core_is_enabled(struct clk_core * core)218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 bool ret = false;
221
222 /*
223 * .is_enabled is only mandatory for clocks that gate
224 * fall back to software usage counter if .is_enabled is missing
225 */
226 if (!core->ops->is_enabled)
227 return core->enable_count;
228
229 /*
230 * Check if clock controller's device is runtime active before
231 * calling .is_enabled callback. If not, assume that clock is
232 * disabled, because we might be called from atomic context, from
233 * which pm_runtime_get() is not allowed.
234 * This function is called mainly from clk_disable_unused_subtree,
235 * which ensures proper runtime pm activation of controller before
236 * taking enable spinlock, but the below check is needed if one tries
237 * to call it from other places.
238 */
239 if (core->dev) {
240 pm_runtime_get_noresume(core->dev);
241 if (!pm_runtime_active(core->dev)) {
242 ret = false;
243 goto done;
244 }
245 }
246
247 /*
248 * This could be called with the enable lock held, or from atomic
249 * context. If the parent isn't enabled already, we can't do
250 * anything here. We can also assume this clock isn't enabled.
251 */
252 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
253 if (!clk_core_is_enabled(core->parent)) {
254 ret = false;
255 goto done;
256 }
257
258 ret = core->ops->is_enabled(core->hw);
259 done:
260 if (core->dev)
261 pm_runtime_put(core->dev);
262
263 return ret;
264 }
265
266 /*** helper functions ***/
267
__clk_get_name(const struct clk * clk)268 const char *__clk_get_name(const struct clk *clk)
269 {
270 return !clk ? NULL : clk->core->name;
271 }
272 EXPORT_SYMBOL_GPL(__clk_get_name);
273
clk_hw_get_name(const struct clk_hw * hw)274 const char *clk_hw_get_name(const struct clk_hw *hw)
275 {
276 return hw->core->name;
277 }
278 EXPORT_SYMBOL_GPL(clk_hw_get_name);
279
__clk_get_hw(struct clk * clk)280 struct clk_hw *__clk_get_hw(struct clk *clk)
281 {
282 return !clk ? NULL : clk->core->hw;
283 }
284 EXPORT_SYMBOL_GPL(__clk_get_hw);
285
clk_hw_get_num_parents(const struct clk_hw * hw)286 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
287 {
288 return hw->core->num_parents;
289 }
290 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
291
clk_hw_get_parent(const struct clk_hw * hw)292 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
293 {
294 return hw->core->parent ? hw->core->parent->hw : NULL;
295 }
296 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
297
__clk_lookup_subtree(const char * name,struct clk_core * core)298 static struct clk_core *__clk_lookup_subtree(const char *name,
299 struct clk_core *core)
300 {
301 struct clk_core *child;
302 struct clk_core *ret;
303
304 if (!strcmp(core->name, name))
305 return core;
306
307 hlist_for_each_entry(child, &core->children, child_node) {
308 ret = __clk_lookup_subtree(name, child);
309 if (ret)
310 return ret;
311 }
312
313 return NULL;
314 }
315
clk_core_lookup(const char * name)316 static struct clk_core *clk_core_lookup(const char *name)
317 {
318 struct clk_core *root_clk;
319 struct clk_core *ret;
320
321 if (!name)
322 return NULL;
323
324 /* search the 'proper' clk tree first */
325 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
326 ret = __clk_lookup_subtree(name, root_clk);
327 if (ret)
328 return ret;
329 }
330
331 /* if not found, then search the orphan tree */
332 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
333 ret = __clk_lookup_subtree(name, root_clk);
334 if (ret)
335 return ret;
336 }
337
338 return NULL;
339 }
340
clk_core_get_parent_by_index(struct clk_core * core,u8 index)341 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
342 u8 index)
343 {
344 if (!core || index >= core->num_parents)
345 return NULL;
346
347 if (!core->parents[index])
348 core->parents[index] =
349 clk_core_lookup(core->parent_names[index]);
350
351 return core->parents[index];
352 }
353
354 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)355 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
356 {
357 struct clk_core *parent;
358
359 parent = clk_core_get_parent_by_index(hw->core, index);
360
361 return !parent ? NULL : parent->hw;
362 }
363 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
364
__clk_get_enable_count(struct clk * clk)365 unsigned int __clk_get_enable_count(struct clk *clk)
366 {
367 return !clk ? 0 : clk->core->enable_count;
368 }
369
clk_core_get_rate_nolock(struct clk_core * core)370 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
371 {
372 unsigned long ret;
373
374 if (!core) {
375 ret = 0;
376 goto out;
377 }
378
379 ret = core->rate;
380
381 if (!core->num_parents)
382 goto out;
383
384 if (!core->parent)
385 ret = 0;
386
387 out:
388 return ret;
389 }
390
clk_hw_get_rate(const struct clk_hw * hw)391 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
392 {
393 return clk_core_get_rate_nolock(hw->core);
394 }
395 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
396
__clk_get_accuracy(struct clk_core * core)397 static unsigned long __clk_get_accuracy(struct clk_core *core)
398 {
399 if (!core)
400 return 0;
401
402 return core->accuracy;
403 }
404
__clk_get_flags(struct clk * clk)405 unsigned long __clk_get_flags(struct clk *clk)
406 {
407 return !clk ? 0 : clk->core->flags;
408 }
409 EXPORT_SYMBOL_GPL(__clk_get_flags);
410
clk_hw_get_flags(const struct clk_hw * hw)411 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
412 {
413 return hw->core->flags;
414 }
415 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
416
clk_hw_is_prepared(const struct clk_hw * hw)417 bool clk_hw_is_prepared(const struct clk_hw *hw)
418 {
419 return clk_core_is_prepared(hw->core);
420 }
421
clk_hw_rate_is_protected(const struct clk_hw * hw)422 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
423 {
424 return clk_core_rate_is_protected(hw->core);
425 }
426
clk_hw_is_enabled(const struct clk_hw * hw)427 bool clk_hw_is_enabled(const struct clk_hw *hw)
428 {
429 return clk_core_is_enabled(hw->core);
430 }
431
__clk_is_enabled(struct clk * clk)432 bool __clk_is_enabled(struct clk *clk)
433 {
434 if (!clk)
435 return false;
436
437 return clk_core_is_enabled(clk->core);
438 }
439 EXPORT_SYMBOL_GPL(__clk_is_enabled);
440
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)441 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
442 unsigned long best, unsigned long flags)
443 {
444 if (flags & CLK_MUX_ROUND_CLOSEST)
445 return abs(now - rate) < abs(best - rate);
446
447 return now <= rate && now > best;
448 }
449
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)450 int clk_mux_determine_rate_flags(struct clk_hw *hw,
451 struct clk_rate_request *req,
452 unsigned long flags)
453 {
454 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
455 int i, num_parents, ret;
456 unsigned long best = 0;
457 struct clk_rate_request parent_req = *req;
458
459 /* if NO_REPARENT flag set, pass through to current parent */
460 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
461 parent = core->parent;
462 if (core->flags & CLK_SET_RATE_PARENT) {
463 ret = __clk_determine_rate(parent ? parent->hw : NULL,
464 &parent_req);
465 if (ret)
466 return ret;
467
468 best = parent_req.rate;
469 } else if (parent) {
470 best = clk_core_get_rate_nolock(parent);
471 } else {
472 best = clk_core_get_rate_nolock(core);
473 }
474
475 goto out;
476 }
477
478 /* find the parent that can provide the fastest rate <= rate */
479 num_parents = core->num_parents;
480 for (i = 0; i < num_parents; i++) {
481 parent = clk_core_get_parent_by_index(core, i);
482 if (!parent)
483 continue;
484
485 if (core->flags & CLK_SET_RATE_PARENT) {
486 parent_req = *req;
487 ret = __clk_determine_rate(parent->hw, &parent_req);
488 if (ret)
489 continue;
490 } else {
491 parent_req.rate = clk_core_get_rate_nolock(parent);
492 }
493
494 if (mux_is_better_rate(req->rate, parent_req.rate,
495 best, flags)) {
496 best_parent = parent;
497 best = parent_req.rate;
498 }
499 }
500
501 if (!best_parent)
502 return -EINVAL;
503
504 out:
505 if (best_parent)
506 req->best_parent_hw = best_parent->hw;
507 req->best_parent_rate = best;
508 req->rate = best;
509
510 return 0;
511 }
512 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
513
__clk_lookup(const char * name)514 struct clk *__clk_lookup(const char *name)
515 {
516 struct clk_core *core = clk_core_lookup(name);
517
518 return !core ? NULL : core->hw->clk;
519 }
520
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)521 static void clk_core_get_boundaries(struct clk_core *core,
522 unsigned long *min_rate,
523 unsigned long *max_rate)
524 {
525 struct clk *clk_user;
526
527 *min_rate = core->min_rate;
528 *max_rate = core->max_rate;
529
530 hlist_for_each_entry(clk_user, &core->clks, clks_node)
531 *min_rate = max(*min_rate, clk_user->min_rate);
532
533 hlist_for_each_entry(clk_user, &core->clks, clks_node)
534 *max_rate = min(*max_rate, clk_user->max_rate);
535 }
536
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)537 static bool clk_core_check_boundaries(struct clk_core *core,
538 unsigned long min_rate,
539 unsigned long max_rate)
540 {
541 struct clk *user;
542
543 lockdep_assert_held(&prepare_lock);
544
545 if (min_rate > core->max_rate || max_rate < core->min_rate)
546 return false;
547
548 hlist_for_each_entry(user, &core->clks, clks_node)
549 if (min_rate > user->max_rate || max_rate < user->min_rate)
550 return false;
551
552 return true;
553 }
554
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)555 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
556 unsigned long max_rate)
557 {
558 hw->core->min_rate = min_rate;
559 hw->core->max_rate = max_rate;
560 }
561 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
562
563 /*
564 * Helper for finding best parent to provide a given frequency. This can be used
565 * directly as a determine_rate callback (e.g. for a mux), or from a more
566 * complex clock that may combine a mux with other operations.
567 */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)568 int __clk_mux_determine_rate(struct clk_hw *hw,
569 struct clk_rate_request *req)
570 {
571 return clk_mux_determine_rate_flags(hw, req, 0);
572 }
573 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
574
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)575 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
576 struct clk_rate_request *req)
577 {
578 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
579 }
580 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
581
582 /*** clk api ***/
583
clk_core_rate_unprotect(struct clk_core * core)584 static void clk_core_rate_unprotect(struct clk_core *core)
585 {
586 lockdep_assert_held(&prepare_lock);
587
588 if (!core)
589 return;
590
591 if (WARN(core->protect_count == 0,
592 "%s already unprotected\n", core->name))
593 return;
594
595 if (--core->protect_count > 0)
596 return;
597
598 clk_core_rate_unprotect(core->parent);
599 }
600
clk_core_rate_nuke_protect(struct clk_core * core)601 static int clk_core_rate_nuke_protect(struct clk_core *core)
602 {
603 int ret;
604
605 lockdep_assert_held(&prepare_lock);
606
607 if (!core)
608 return -EINVAL;
609
610 if (core->protect_count == 0)
611 return 0;
612
613 ret = core->protect_count;
614 core->protect_count = 1;
615 clk_core_rate_unprotect(core);
616
617 return ret;
618 }
619
620 /**
621 * clk_rate_exclusive_put - release exclusivity over clock rate control
622 * @clk: the clk over which the exclusivity is released
623 *
624 * clk_rate_exclusive_put() completes a critical section during which a clock
625 * consumer cannot tolerate any other consumer making any operation on the
626 * clock which could result in a rate change or rate glitch. Exclusive clocks
627 * cannot have their rate changed, either directly or indirectly due to changes
628 * further up the parent chain of clocks. As a result, clocks up parent chain
629 * also get under exclusive control of the calling consumer.
630 *
631 * If exlusivity is claimed more than once on clock, even by the same consumer,
632 * the rate effectively gets locked as exclusivity can't be preempted.
633 *
634 * Calls to clk_rate_exclusive_put() must be balanced with calls to
635 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
636 * error status.
637 */
clk_rate_exclusive_put(struct clk * clk)638 void clk_rate_exclusive_put(struct clk *clk)
639 {
640 if (!clk)
641 return;
642
643 clk_prepare_lock();
644
645 /*
646 * if there is something wrong with this consumer protect count, stop
647 * here before messing with the provider
648 */
649 if (WARN_ON(clk->exclusive_count <= 0))
650 goto out;
651
652 clk_core_rate_unprotect(clk->core);
653 clk->exclusive_count--;
654 out:
655 clk_prepare_unlock();
656 }
657 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
658
clk_core_rate_protect(struct clk_core * core)659 static void clk_core_rate_protect(struct clk_core *core)
660 {
661 lockdep_assert_held(&prepare_lock);
662
663 if (!core)
664 return;
665
666 if (core->protect_count == 0)
667 clk_core_rate_protect(core->parent);
668
669 core->protect_count++;
670 }
671
clk_core_rate_restore_protect(struct clk_core * core,int count)672 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
673 {
674 lockdep_assert_held(&prepare_lock);
675
676 if (!core)
677 return;
678
679 if (count == 0)
680 return;
681
682 clk_core_rate_protect(core);
683 core->protect_count = count;
684 }
685
686 /**
687 * clk_rate_exclusive_get - get exclusivity over the clk rate control
688 * @clk: the clk over which the exclusity of rate control is requested
689 *
690 * clk_rate_exlusive_get() begins a critical section during which a clock
691 * consumer cannot tolerate any other consumer making any operation on the
692 * clock which could result in a rate change or rate glitch. Exclusive clocks
693 * cannot have their rate changed, either directly or indirectly due to changes
694 * further up the parent chain of clocks. As a result, clocks up parent chain
695 * also get under exclusive control of the calling consumer.
696 *
697 * If exlusivity is claimed more than once on clock, even by the same consumer,
698 * the rate effectively gets locked as exclusivity can't be preempted.
699 *
700 * Calls to clk_rate_exclusive_get() should be balanced with calls to
701 * clk_rate_exclusive_put(). Calls to this function may sleep.
702 * Returns 0 on success, -EERROR otherwise
703 */
clk_rate_exclusive_get(struct clk * clk)704 int clk_rate_exclusive_get(struct clk *clk)
705 {
706 if (!clk)
707 return 0;
708
709 clk_prepare_lock();
710 clk_core_rate_protect(clk->core);
711 clk->exclusive_count++;
712 clk_prepare_unlock();
713
714 return 0;
715 }
716 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
717
clk_core_unprepare(struct clk_core * core)718 static void clk_core_unprepare(struct clk_core *core)
719 {
720 lockdep_assert_held(&prepare_lock);
721
722 if (!core)
723 return;
724
725 if (WARN(core->prepare_count == 0,
726 "%s already unprepared\n", core->name))
727 return;
728
729 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
730 "Unpreparing critical %s\n", core->name))
731 return;
732
733 if (core->flags & CLK_SET_RATE_GATE)
734 clk_core_rate_unprotect(core);
735
736 if (--core->prepare_count > 0)
737 return;
738
739 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
740
741 trace_clk_unprepare(core);
742
743 if (core->ops->unprepare)
744 core->ops->unprepare(core->hw);
745
746 trace_clk_unprepare_complete(core);
747 clk_core_unprepare(core->parent);
748 clk_pm_runtime_put(core);
749 }
750
clk_core_unprepare_lock(struct clk_core * core)751 static void clk_core_unprepare_lock(struct clk_core *core)
752 {
753 clk_prepare_lock();
754 clk_core_unprepare(core);
755 clk_prepare_unlock();
756 }
757
758 /**
759 * clk_unprepare - undo preparation of a clock source
760 * @clk: the clk being unprepared
761 *
762 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
763 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
764 * if the operation may sleep. One example is a clk which is accessed over
765 * I2c. In the complex case a clk gate operation may require a fast and a slow
766 * part. It is this reason that clk_unprepare and clk_disable are not mutually
767 * exclusive. In fact clk_disable must be called before clk_unprepare.
768 */
clk_unprepare(struct clk * clk)769 void clk_unprepare(struct clk *clk)
770 {
771 if (IS_ERR_OR_NULL(clk))
772 return;
773
774 clk_core_unprepare_lock(clk->core);
775 }
776 EXPORT_SYMBOL_GPL(clk_unprepare);
777
clk_core_prepare(struct clk_core * core)778 static int clk_core_prepare(struct clk_core *core)
779 {
780 int ret = 0;
781
782 lockdep_assert_held(&prepare_lock);
783
784 if (!core)
785 return 0;
786
787 if (core->prepare_count == 0) {
788 ret = clk_pm_runtime_get(core);
789 if (ret)
790 return ret;
791
792 ret = clk_core_prepare(core->parent);
793 if (ret)
794 goto runtime_put;
795
796 trace_clk_prepare(core);
797
798 if (core->ops->prepare)
799 ret = core->ops->prepare(core->hw);
800
801 trace_clk_prepare_complete(core);
802
803 if (ret)
804 goto unprepare;
805 }
806
807 core->prepare_count++;
808
809 /*
810 * CLK_SET_RATE_GATE is a special case of clock protection
811 * Instead of a consumer claiming exclusive rate control, it is
812 * actually the provider which prevents any consumer from making any
813 * operation which could result in a rate change or rate glitch while
814 * the clock is prepared.
815 */
816 if (core->flags & CLK_SET_RATE_GATE)
817 clk_core_rate_protect(core);
818
819 return 0;
820 unprepare:
821 clk_core_unprepare(core->parent);
822 runtime_put:
823 clk_pm_runtime_put(core);
824 return ret;
825 }
826
clk_core_prepare_lock(struct clk_core * core)827 static int clk_core_prepare_lock(struct clk_core *core)
828 {
829 int ret;
830
831 clk_prepare_lock();
832 ret = clk_core_prepare(core);
833 clk_prepare_unlock();
834
835 return ret;
836 }
837
838 /**
839 * clk_prepare - prepare a clock source
840 * @clk: the clk being prepared
841 *
842 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
843 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
844 * operation may sleep. One example is a clk which is accessed over I2c. In
845 * the complex case a clk ungate operation may require a fast and a slow part.
846 * It is this reason that clk_prepare and clk_enable are not mutually
847 * exclusive. In fact clk_prepare must be called before clk_enable.
848 * Returns 0 on success, -EERROR otherwise.
849 */
clk_prepare(struct clk * clk)850 int clk_prepare(struct clk *clk)
851 {
852 if (!clk)
853 return 0;
854
855 return clk_core_prepare_lock(clk->core);
856 }
857 EXPORT_SYMBOL_GPL(clk_prepare);
858
clk_core_disable(struct clk_core * core)859 static void clk_core_disable(struct clk_core *core)
860 {
861 lockdep_assert_held(&enable_lock);
862
863 if (!core)
864 return;
865
866 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
867 return;
868
869 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
870 "Disabling critical %s\n", core->name))
871 return;
872
873 if (--core->enable_count > 0)
874 return;
875
876 trace_clk_disable_rcuidle(core);
877
878 if (core->ops->disable)
879 core->ops->disable(core->hw);
880
881 trace_clk_disable_complete_rcuidle(core);
882
883 clk_core_disable(core->parent);
884 }
885
clk_core_disable_lock(struct clk_core * core)886 static void clk_core_disable_lock(struct clk_core *core)
887 {
888 unsigned long flags;
889
890 flags = clk_enable_lock();
891 clk_core_disable(core);
892 clk_enable_unlock(flags);
893 }
894
895 /**
896 * clk_disable - gate a clock
897 * @clk: the clk being gated
898 *
899 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
900 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
901 * clk if the operation is fast and will never sleep. One example is a
902 * SoC-internal clk which is controlled via simple register writes. In the
903 * complex case a clk gate operation may require a fast and a slow part. It is
904 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
905 * In fact clk_disable must be called before clk_unprepare.
906 */
clk_disable(struct clk * clk)907 void clk_disable(struct clk *clk)
908 {
909 if (IS_ERR_OR_NULL(clk))
910 return;
911
912 clk_core_disable_lock(clk->core);
913 }
914 EXPORT_SYMBOL_GPL(clk_disable);
915
clk_core_enable(struct clk_core * core)916 static int clk_core_enable(struct clk_core *core)
917 {
918 int ret = 0;
919
920 lockdep_assert_held(&enable_lock);
921
922 if (!core)
923 return 0;
924
925 if (WARN(core->prepare_count == 0,
926 "Enabling unprepared %s\n", core->name))
927 return -ESHUTDOWN;
928
929 if (core->enable_count == 0) {
930 ret = clk_core_enable(core->parent);
931
932 if (ret)
933 return ret;
934
935 trace_clk_enable_rcuidle(core);
936
937 if (core->ops->enable)
938 ret = core->ops->enable(core->hw);
939
940 trace_clk_enable_complete_rcuidle(core);
941
942 if (ret) {
943 clk_core_disable(core->parent);
944 return ret;
945 }
946 }
947
948 core->enable_count++;
949 return 0;
950 }
951
clk_core_enable_lock(struct clk_core * core)952 static int clk_core_enable_lock(struct clk_core *core)
953 {
954 unsigned long flags;
955 int ret;
956
957 flags = clk_enable_lock();
958 ret = clk_core_enable(core);
959 clk_enable_unlock(flags);
960
961 return ret;
962 }
963
964 /**
965 * clk_enable - ungate a clock
966 * @clk: the clk being ungated
967 *
968 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
969 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
970 * if the operation will never sleep. One example is a SoC-internal clk which
971 * is controlled via simple register writes. In the complex case a clk ungate
972 * operation may require a fast and a slow part. It is this reason that
973 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
974 * must be called before clk_enable. Returns 0 on success, -EERROR
975 * otherwise.
976 */
clk_enable(struct clk * clk)977 int clk_enable(struct clk *clk)
978 {
979 if (!clk)
980 return 0;
981
982 return clk_core_enable_lock(clk->core);
983 }
984 EXPORT_SYMBOL_GPL(clk_enable);
985
clk_core_prepare_enable(struct clk_core * core)986 static int clk_core_prepare_enable(struct clk_core *core)
987 {
988 int ret;
989
990 ret = clk_core_prepare_lock(core);
991 if (ret)
992 return ret;
993
994 ret = clk_core_enable_lock(core);
995 if (ret)
996 clk_core_unprepare_lock(core);
997
998 return ret;
999 }
1000
clk_core_disable_unprepare(struct clk_core * core)1001 static void clk_core_disable_unprepare(struct clk_core *core)
1002 {
1003 clk_core_disable_lock(core);
1004 clk_core_unprepare_lock(core);
1005 }
1006
clk_unprepare_unused_subtree(struct clk_core * core)1007 static void clk_unprepare_unused_subtree(struct clk_core *core)
1008 {
1009 struct clk_core *child;
1010
1011 lockdep_assert_held(&prepare_lock);
1012
1013 hlist_for_each_entry(child, &core->children, child_node)
1014 clk_unprepare_unused_subtree(child);
1015
1016 if (core->prepare_count)
1017 return;
1018
1019 if (core->flags & CLK_IGNORE_UNUSED)
1020 return;
1021
1022 if (clk_pm_runtime_get(core))
1023 return;
1024
1025 if (clk_core_is_prepared(core)) {
1026 trace_clk_unprepare(core);
1027 if (core->ops->unprepare_unused)
1028 core->ops->unprepare_unused(core->hw);
1029 else if (core->ops->unprepare)
1030 core->ops->unprepare(core->hw);
1031 trace_clk_unprepare_complete(core);
1032 }
1033
1034 clk_pm_runtime_put(core);
1035 }
1036
clk_disable_unused_subtree(struct clk_core * core)1037 static void clk_disable_unused_subtree(struct clk_core *core)
1038 {
1039 struct clk_core *child;
1040 unsigned long flags;
1041
1042 lockdep_assert_held(&prepare_lock);
1043
1044 hlist_for_each_entry(child, &core->children, child_node)
1045 clk_disable_unused_subtree(child);
1046
1047 if (core->flags & CLK_OPS_PARENT_ENABLE)
1048 clk_core_prepare_enable(core->parent);
1049
1050 if (clk_pm_runtime_get(core))
1051 goto unprepare_out;
1052
1053 flags = clk_enable_lock();
1054
1055 if (core->enable_count)
1056 goto unlock_out;
1057
1058 if (core->flags & CLK_IGNORE_UNUSED)
1059 goto unlock_out;
1060
1061 /*
1062 * some gate clocks have special needs during the disable-unused
1063 * sequence. call .disable_unused if available, otherwise fall
1064 * back to .disable
1065 */
1066 if (clk_core_is_enabled(core)) {
1067 trace_clk_disable(core);
1068 if (core->ops->disable_unused)
1069 core->ops->disable_unused(core->hw);
1070 else if (core->ops->disable)
1071 core->ops->disable(core->hw);
1072 trace_clk_disable_complete(core);
1073 }
1074
1075 unlock_out:
1076 clk_enable_unlock(flags);
1077 clk_pm_runtime_put(core);
1078 unprepare_out:
1079 if (core->flags & CLK_OPS_PARENT_ENABLE)
1080 clk_core_disable_unprepare(core->parent);
1081 }
1082
1083 static bool clk_ignore_unused;
clk_ignore_unused_setup(char * __unused)1084 static int __init clk_ignore_unused_setup(char *__unused)
1085 {
1086 clk_ignore_unused = true;
1087 return 1;
1088 }
1089 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1090
clk_disable_unused(void)1091 static int clk_disable_unused(void)
1092 {
1093 struct clk_core *core;
1094
1095 if (clk_ignore_unused) {
1096 pr_warn("clk: Not disabling unused clocks\n");
1097 return 0;
1098 }
1099
1100 clk_prepare_lock();
1101
1102 hlist_for_each_entry(core, &clk_root_list, child_node)
1103 clk_disable_unused_subtree(core);
1104
1105 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1106 clk_disable_unused_subtree(core);
1107
1108 hlist_for_each_entry(core, &clk_root_list, child_node)
1109 clk_unprepare_unused_subtree(core);
1110
1111 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1112 clk_unprepare_unused_subtree(core);
1113
1114 clk_prepare_unlock();
1115
1116 return 0;
1117 }
1118 late_initcall_sync(clk_disable_unused);
1119
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1120 static int clk_core_determine_round_nolock(struct clk_core *core,
1121 struct clk_rate_request *req)
1122 {
1123 long rate;
1124
1125 lockdep_assert_held(&prepare_lock);
1126
1127 if (!core)
1128 return 0;
1129
1130 /*
1131 * At this point, core protection will be disabled if
1132 * - if the provider is not protected at all
1133 * - if the calling consumer is the only one which has exclusivity
1134 * over the provider
1135 */
1136 if (clk_core_rate_is_protected(core)) {
1137 req->rate = core->rate;
1138 } else if (core->ops->determine_rate) {
1139 return core->ops->determine_rate(core->hw, req);
1140 } else if (core->ops->round_rate) {
1141 rate = core->ops->round_rate(core->hw, req->rate,
1142 &req->best_parent_rate);
1143 if (rate < 0)
1144 return rate;
1145
1146 req->rate = rate;
1147 } else {
1148 return -EINVAL;
1149 }
1150
1151 return 0;
1152 }
1153
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req)1154 static void clk_core_init_rate_req(struct clk_core * const core,
1155 struct clk_rate_request *req)
1156 {
1157 struct clk_core *parent;
1158
1159 if (WARN_ON(!core || !req))
1160 return;
1161
1162 parent = core->parent;
1163 if (parent) {
1164 req->best_parent_hw = parent->hw;
1165 req->best_parent_rate = parent->rate;
1166 } else {
1167 req->best_parent_hw = NULL;
1168 req->best_parent_rate = 0;
1169 }
1170 }
1171
clk_core_can_round(struct clk_core * const core)1172 static bool clk_core_can_round(struct clk_core * const core)
1173 {
1174 if (core->ops->determine_rate || core->ops->round_rate)
1175 return true;
1176
1177 return false;
1178 }
1179
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1180 static int clk_core_round_rate_nolock(struct clk_core *core,
1181 struct clk_rate_request *req)
1182 {
1183 lockdep_assert_held(&prepare_lock);
1184
1185 if (!core) {
1186 req->rate = 0;
1187 return 0;
1188 }
1189
1190 clk_core_init_rate_req(core, req);
1191
1192 if (clk_core_can_round(core))
1193 return clk_core_determine_round_nolock(core, req);
1194 else if (core->flags & CLK_SET_RATE_PARENT)
1195 return clk_core_round_rate_nolock(core->parent, req);
1196
1197 req->rate = core->rate;
1198 return 0;
1199 }
1200
1201 /**
1202 * __clk_determine_rate - get the closest rate actually supported by a clock
1203 * @hw: determine the rate of this clock
1204 * @req: target rate request
1205 *
1206 * Useful for clk_ops such as .set_rate and .determine_rate.
1207 */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1208 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1209 {
1210 if (!hw) {
1211 req->rate = 0;
1212 return 0;
1213 }
1214
1215 return clk_core_round_rate_nolock(hw->core, req);
1216 }
1217 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1218
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1219 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1220 {
1221 int ret;
1222 struct clk_rate_request req;
1223
1224 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1225 req.rate = rate;
1226
1227 ret = clk_core_round_rate_nolock(hw->core, &req);
1228 if (ret)
1229 return 0;
1230
1231 return req.rate;
1232 }
1233 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1234
1235 /**
1236 * clk_round_rate - round the given rate for a clk
1237 * @clk: the clk for which we are rounding a rate
1238 * @rate: the rate which is to be rounded
1239 *
1240 * Takes in a rate as input and rounds it to a rate that the clk can actually
1241 * use which is then returned. If clk doesn't support round_rate operation
1242 * then the parent rate is returned.
1243 */
clk_round_rate(struct clk * clk,unsigned long rate)1244 long clk_round_rate(struct clk *clk, unsigned long rate)
1245 {
1246 struct clk_rate_request req;
1247 int ret;
1248
1249 if (!clk)
1250 return 0;
1251
1252 clk_prepare_lock();
1253
1254 if (clk->exclusive_count)
1255 clk_core_rate_unprotect(clk->core);
1256
1257 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1258 req.rate = rate;
1259
1260 ret = clk_core_round_rate_nolock(clk->core, &req);
1261
1262 if (clk->exclusive_count)
1263 clk_core_rate_protect(clk->core);
1264
1265 clk_prepare_unlock();
1266
1267 if (ret)
1268 return ret;
1269
1270 return req.rate;
1271 }
1272 EXPORT_SYMBOL_GPL(clk_round_rate);
1273
1274 /**
1275 * __clk_notify - call clk notifier chain
1276 * @core: clk that is changing rate
1277 * @msg: clk notifier type (see include/linux/clk.h)
1278 * @old_rate: old clk rate
1279 * @new_rate: new clk rate
1280 *
1281 * Triggers a notifier call chain on the clk rate-change notification
1282 * for 'clk'. Passes a pointer to the struct clk and the previous
1283 * and current rates to the notifier callback. Intended to be called by
1284 * internal clock code only. Returns NOTIFY_DONE from the last driver
1285 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1286 * a driver returns that.
1287 */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1288 static int __clk_notify(struct clk_core *core, unsigned long msg,
1289 unsigned long old_rate, unsigned long new_rate)
1290 {
1291 struct clk_notifier *cn;
1292 struct clk_notifier_data cnd;
1293 int ret = NOTIFY_DONE;
1294
1295 cnd.old_rate = old_rate;
1296 cnd.new_rate = new_rate;
1297
1298 list_for_each_entry(cn, &clk_notifier_list, node) {
1299 if (cn->clk->core == core) {
1300 cnd.clk = cn->clk;
1301 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1302 &cnd);
1303 if (ret & NOTIFY_STOP_MASK)
1304 return ret;
1305 }
1306 }
1307
1308 return ret;
1309 }
1310
1311 /**
1312 * __clk_recalc_accuracies
1313 * @core: first clk in the subtree
1314 *
1315 * Walks the subtree of clks starting with clk and recalculates accuracies as
1316 * it goes. Note that if a clk does not implement the .recalc_accuracy
1317 * callback then it is assumed that the clock will take on the accuracy of its
1318 * parent.
1319 */
__clk_recalc_accuracies(struct clk_core * core)1320 static void __clk_recalc_accuracies(struct clk_core *core)
1321 {
1322 unsigned long parent_accuracy = 0;
1323 struct clk_core *child;
1324
1325 lockdep_assert_held(&prepare_lock);
1326
1327 if (core->parent)
1328 parent_accuracy = core->parent->accuracy;
1329
1330 if (core->ops->recalc_accuracy)
1331 core->accuracy = core->ops->recalc_accuracy(core->hw,
1332 parent_accuracy);
1333 else
1334 core->accuracy = parent_accuracy;
1335
1336 hlist_for_each_entry(child, &core->children, child_node)
1337 __clk_recalc_accuracies(child);
1338 }
1339
clk_core_get_accuracy(struct clk_core * core)1340 static long clk_core_get_accuracy(struct clk_core *core)
1341 {
1342 unsigned long accuracy;
1343
1344 clk_prepare_lock();
1345 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1346 __clk_recalc_accuracies(core);
1347
1348 accuracy = __clk_get_accuracy(core);
1349 clk_prepare_unlock();
1350
1351 return accuracy;
1352 }
1353
1354 /**
1355 * clk_get_accuracy - return the accuracy of clk
1356 * @clk: the clk whose accuracy is being returned
1357 *
1358 * Simply returns the cached accuracy of the clk, unless
1359 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1360 * issued.
1361 * If clk is NULL then returns 0.
1362 */
clk_get_accuracy(struct clk * clk)1363 long clk_get_accuracy(struct clk *clk)
1364 {
1365 if (!clk)
1366 return 0;
1367
1368 return clk_core_get_accuracy(clk->core);
1369 }
1370 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1371
clk_recalc(struct clk_core * core,unsigned long parent_rate)1372 static unsigned long clk_recalc(struct clk_core *core,
1373 unsigned long parent_rate)
1374 {
1375 unsigned long rate = parent_rate;
1376
1377 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1378 rate = core->ops->recalc_rate(core->hw, parent_rate);
1379 clk_pm_runtime_put(core);
1380 }
1381 return rate;
1382 }
1383
1384 /**
1385 * __clk_recalc_rates
1386 * @core: first clk in the subtree
1387 * @msg: notification type (see include/linux/clk.h)
1388 *
1389 * Walks the subtree of clks starting with clk and recalculates rates as it
1390 * goes. Note that if a clk does not implement the .recalc_rate callback then
1391 * it is assumed that the clock will take on the rate of its parent.
1392 *
1393 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1394 * if necessary.
1395 */
__clk_recalc_rates(struct clk_core * core,unsigned long msg)1396 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1397 {
1398 unsigned long old_rate;
1399 unsigned long parent_rate = 0;
1400 struct clk_core *child;
1401
1402 lockdep_assert_held(&prepare_lock);
1403
1404 old_rate = core->rate;
1405
1406 if (core->parent)
1407 parent_rate = core->parent->rate;
1408
1409 core->rate = clk_recalc(core, parent_rate);
1410
1411 /*
1412 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1413 * & ABORT_RATE_CHANGE notifiers
1414 */
1415 if (core->notifier_count && msg)
1416 __clk_notify(core, msg, old_rate, core->rate);
1417
1418 hlist_for_each_entry(child, &core->children, child_node)
1419 __clk_recalc_rates(child, msg);
1420 }
1421
clk_core_get_rate(struct clk_core * core)1422 static unsigned long clk_core_get_rate(struct clk_core *core)
1423 {
1424 unsigned long rate;
1425
1426 clk_prepare_lock();
1427
1428 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1429 __clk_recalc_rates(core, 0);
1430
1431 rate = clk_core_get_rate_nolock(core);
1432 clk_prepare_unlock();
1433
1434 return rate;
1435 }
1436
1437 /**
1438 * clk_get_rate - return the rate of clk
1439 * @clk: the clk whose rate is being returned
1440 *
1441 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1442 * is set, which means a recalc_rate will be issued.
1443 * If clk is NULL then returns 0.
1444 */
clk_get_rate(struct clk * clk)1445 unsigned long clk_get_rate(struct clk *clk)
1446 {
1447 if (!clk)
1448 return 0;
1449
1450 return clk_core_get_rate(clk->core);
1451 }
1452 EXPORT_SYMBOL_GPL(clk_get_rate);
1453
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1454 static int clk_fetch_parent_index(struct clk_core *core,
1455 struct clk_core *parent)
1456 {
1457 int i;
1458
1459 if (!parent)
1460 return -EINVAL;
1461
1462 for (i = 0; i < core->num_parents; i++)
1463 if (clk_core_get_parent_by_index(core, i) == parent)
1464 return i;
1465
1466 return -EINVAL;
1467 }
1468
1469 /*
1470 * Update the orphan status of @core and all its children.
1471 */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1472 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1473 {
1474 struct clk_core *child;
1475
1476 core->orphan = is_orphan;
1477
1478 hlist_for_each_entry(child, &core->children, child_node)
1479 clk_core_update_orphan_status(child, is_orphan);
1480 }
1481
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1482 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1483 {
1484 bool was_orphan = core->orphan;
1485
1486 hlist_del(&core->child_node);
1487
1488 if (new_parent) {
1489 bool becomes_orphan = new_parent->orphan;
1490
1491 /* avoid duplicate POST_RATE_CHANGE notifications */
1492 if (new_parent->new_child == core)
1493 new_parent->new_child = NULL;
1494
1495 hlist_add_head(&core->child_node, &new_parent->children);
1496
1497 if (was_orphan != becomes_orphan)
1498 clk_core_update_orphan_status(core, becomes_orphan);
1499 } else {
1500 hlist_add_head(&core->child_node, &clk_orphan_list);
1501 if (!was_orphan)
1502 clk_core_update_orphan_status(core, true);
1503 }
1504
1505 core->parent = new_parent;
1506 }
1507
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)1508 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1509 struct clk_core *parent)
1510 {
1511 unsigned long flags;
1512 struct clk_core *old_parent = core->parent;
1513
1514 /*
1515 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1516 *
1517 * 2. Migrate prepare state between parents and prevent race with
1518 * clk_enable().
1519 *
1520 * If the clock is not prepared, then a race with
1521 * clk_enable/disable() is impossible since we already have the
1522 * prepare lock (future calls to clk_enable() need to be preceded by
1523 * a clk_prepare()).
1524 *
1525 * If the clock is prepared, migrate the prepared state to the new
1526 * parent and also protect against a race with clk_enable() by
1527 * forcing the clock and the new parent on. This ensures that all
1528 * future calls to clk_enable() are practically NOPs with respect to
1529 * hardware and software states.
1530 *
1531 * See also: Comment for clk_set_parent() below.
1532 */
1533
1534 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1535 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1536 clk_core_prepare_enable(old_parent);
1537 clk_core_prepare_enable(parent);
1538 }
1539
1540 /* migrate prepare count if > 0 */
1541 if (core->prepare_count) {
1542 clk_core_prepare_enable(parent);
1543 clk_core_enable_lock(core);
1544 }
1545
1546 /* update the clk tree topology */
1547 flags = clk_enable_lock();
1548 clk_reparent(core, parent);
1549 clk_enable_unlock(flags);
1550
1551 return old_parent;
1552 }
1553
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1554 static void __clk_set_parent_after(struct clk_core *core,
1555 struct clk_core *parent,
1556 struct clk_core *old_parent)
1557 {
1558 /*
1559 * Finish the migration of prepare state and undo the changes done
1560 * for preventing a race with clk_enable().
1561 */
1562 if (core->prepare_count) {
1563 clk_core_disable_lock(core);
1564 clk_core_disable_unprepare(old_parent);
1565 }
1566
1567 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1568 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1569 clk_core_disable_unprepare(parent);
1570 clk_core_disable_unprepare(old_parent);
1571 }
1572 }
1573
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)1574 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1575 u8 p_index)
1576 {
1577 unsigned long flags;
1578 int ret = 0;
1579 struct clk_core *old_parent;
1580
1581 old_parent = __clk_set_parent_before(core, parent);
1582
1583 trace_clk_set_parent(core, parent);
1584
1585 /* change clock input source */
1586 if (parent && core->ops->set_parent)
1587 ret = core->ops->set_parent(core->hw, p_index);
1588
1589 trace_clk_set_parent_complete(core, parent);
1590
1591 if (ret) {
1592 flags = clk_enable_lock();
1593 clk_reparent(core, old_parent);
1594 clk_enable_unlock(flags);
1595 __clk_set_parent_after(core, old_parent, parent);
1596
1597 return ret;
1598 }
1599
1600 __clk_set_parent_after(core, parent, old_parent);
1601
1602 return 0;
1603 }
1604
1605 /**
1606 * __clk_speculate_rates
1607 * @core: first clk in the subtree
1608 * @parent_rate: the "future" rate of clk's parent
1609 *
1610 * Walks the subtree of clks starting with clk, speculating rates as it
1611 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1612 *
1613 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1614 * pre-rate change notifications and returns early if no clks in the
1615 * subtree have subscribed to the notifications. Note that if a clk does not
1616 * implement the .recalc_rate callback then it is assumed that the clock will
1617 * take on the rate of its parent.
1618 */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)1619 static int __clk_speculate_rates(struct clk_core *core,
1620 unsigned long parent_rate)
1621 {
1622 struct clk_core *child;
1623 unsigned long new_rate;
1624 int ret = NOTIFY_DONE;
1625
1626 lockdep_assert_held(&prepare_lock);
1627
1628 new_rate = clk_recalc(core, parent_rate);
1629
1630 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1631 if (core->notifier_count)
1632 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1633
1634 if (ret & NOTIFY_STOP_MASK) {
1635 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1636 __func__, core->name, ret);
1637 goto out;
1638 }
1639
1640 hlist_for_each_entry(child, &core->children, child_node) {
1641 ret = __clk_speculate_rates(child, new_rate);
1642 if (ret & NOTIFY_STOP_MASK)
1643 break;
1644 }
1645
1646 out:
1647 return ret;
1648 }
1649
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)1650 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1651 struct clk_core *new_parent, u8 p_index)
1652 {
1653 struct clk_core *child;
1654
1655 core->new_rate = new_rate;
1656 core->new_parent = new_parent;
1657 core->new_parent_index = p_index;
1658 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1659 core->new_child = NULL;
1660 if (new_parent && new_parent != core->parent)
1661 new_parent->new_child = core;
1662
1663 hlist_for_each_entry(child, &core->children, child_node) {
1664 child->new_rate = clk_recalc(child, new_rate);
1665 clk_calc_subtree(child, child->new_rate, NULL, 0);
1666 }
1667 }
1668
1669 /*
1670 * calculate the new rates returning the topmost clock that has to be
1671 * changed.
1672 */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)1673 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1674 unsigned long rate)
1675 {
1676 struct clk_core *top = core;
1677 struct clk_core *old_parent, *parent;
1678 unsigned long best_parent_rate = 0;
1679 unsigned long new_rate;
1680 unsigned long min_rate;
1681 unsigned long max_rate;
1682 int p_index = 0;
1683 long ret;
1684
1685 /* sanity */
1686 if (IS_ERR_OR_NULL(core))
1687 return NULL;
1688
1689 /* save parent rate, if it exists */
1690 parent = old_parent = core->parent;
1691 if (parent)
1692 best_parent_rate = parent->rate;
1693
1694 clk_core_get_boundaries(core, &min_rate, &max_rate);
1695
1696 /* find the closest rate and parent clk/rate */
1697 if (clk_core_can_round(core)) {
1698 struct clk_rate_request req;
1699
1700 req.rate = rate;
1701 req.min_rate = min_rate;
1702 req.max_rate = max_rate;
1703
1704 clk_core_init_rate_req(core, &req);
1705
1706 ret = clk_core_determine_round_nolock(core, &req);
1707 if (ret < 0)
1708 return NULL;
1709
1710 best_parent_rate = req.best_parent_rate;
1711 new_rate = req.rate;
1712 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1713
1714 if (new_rate < min_rate || new_rate > max_rate)
1715 return NULL;
1716 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1717 /* pass-through clock without adjustable parent */
1718 core->new_rate = core->rate;
1719 return NULL;
1720 } else {
1721 /* pass-through clock with adjustable parent */
1722 top = clk_calc_new_rates(parent, rate);
1723 new_rate = parent->new_rate;
1724 goto out;
1725 }
1726
1727 /* some clocks must be gated to change parent */
1728 if (parent != old_parent &&
1729 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1730 pr_debug("%s: %s not gated but wants to reparent\n",
1731 __func__, core->name);
1732 return NULL;
1733 }
1734
1735 /* try finding the new parent index */
1736 if (parent && core->num_parents > 1) {
1737 p_index = clk_fetch_parent_index(core, parent);
1738 if (p_index < 0) {
1739 pr_debug("%s: clk %s can not be parent of clk %s\n",
1740 __func__, parent->name, core->name);
1741 return NULL;
1742 }
1743 }
1744
1745 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1746 best_parent_rate != parent->rate)
1747 top = clk_calc_new_rates(parent, best_parent_rate);
1748
1749 out:
1750 clk_calc_subtree(core, new_rate, parent, p_index);
1751
1752 return top;
1753 }
1754
1755 /*
1756 * Notify about rate changes in a subtree. Always walk down the whole tree
1757 * so that in case of an error we can walk down the whole tree again and
1758 * abort the change.
1759 */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)1760 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1761 unsigned long event)
1762 {
1763 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1764 int ret = NOTIFY_DONE;
1765
1766 if (core->rate == core->new_rate)
1767 return NULL;
1768
1769 if (core->notifier_count) {
1770 ret = __clk_notify(core, event, core->rate, core->new_rate);
1771 if (ret & NOTIFY_STOP_MASK)
1772 fail_clk = core;
1773 }
1774
1775 hlist_for_each_entry(child, &core->children, child_node) {
1776 /* Skip children who will be reparented to another clock */
1777 if (child->new_parent && child->new_parent != core)
1778 continue;
1779 tmp_clk = clk_propagate_rate_change(child, event);
1780 if (tmp_clk)
1781 fail_clk = tmp_clk;
1782 }
1783
1784 /* handle the new child who might not be in core->children yet */
1785 if (core->new_child) {
1786 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1787 if (tmp_clk)
1788 fail_clk = tmp_clk;
1789 }
1790
1791 return fail_clk;
1792 }
1793
1794 /*
1795 * walk down a subtree and set the new rates notifying the rate
1796 * change on the way
1797 */
clk_change_rate(struct clk_core * core)1798 static void clk_change_rate(struct clk_core *core)
1799 {
1800 struct clk_core *child;
1801 struct hlist_node *tmp;
1802 unsigned long old_rate;
1803 unsigned long best_parent_rate = 0;
1804 bool skip_set_rate = false;
1805 struct clk_core *old_parent;
1806 struct clk_core *parent = NULL;
1807
1808 old_rate = core->rate;
1809
1810 if (core->new_parent) {
1811 parent = core->new_parent;
1812 best_parent_rate = core->new_parent->rate;
1813 } else if (core->parent) {
1814 parent = core->parent;
1815 best_parent_rate = core->parent->rate;
1816 }
1817
1818 if (clk_pm_runtime_get(core))
1819 return;
1820
1821 if (core->flags & CLK_SET_RATE_UNGATE) {
1822 unsigned long flags;
1823
1824 clk_core_prepare(core);
1825 flags = clk_enable_lock();
1826 clk_core_enable(core);
1827 clk_enable_unlock(flags);
1828 }
1829
1830 if (core->new_parent && core->new_parent != core->parent) {
1831 old_parent = __clk_set_parent_before(core, core->new_parent);
1832 trace_clk_set_parent(core, core->new_parent);
1833
1834 if (core->ops->set_rate_and_parent) {
1835 skip_set_rate = true;
1836 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1837 best_parent_rate,
1838 core->new_parent_index);
1839 } else if (core->ops->set_parent) {
1840 core->ops->set_parent(core->hw, core->new_parent_index);
1841 }
1842
1843 trace_clk_set_parent_complete(core, core->new_parent);
1844 __clk_set_parent_after(core, core->new_parent, old_parent);
1845 }
1846
1847 if (core->flags & CLK_OPS_PARENT_ENABLE)
1848 clk_core_prepare_enable(parent);
1849
1850 trace_clk_set_rate(core, core->new_rate);
1851
1852 if (!skip_set_rate && core->ops->set_rate)
1853 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1854
1855 trace_clk_set_rate_complete(core, core->new_rate);
1856
1857 core->rate = clk_recalc(core, best_parent_rate);
1858
1859 if (core->flags & CLK_SET_RATE_UNGATE) {
1860 unsigned long flags;
1861
1862 flags = clk_enable_lock();
1863 clk_core_disable(core);
1864 clk_enable_unlock(flags);
1865 clk_core_unprepare(core);
1866 }
1867
1868 if (core->flags & CLK_OPS_PARENT_ENABLE)
1869 clk_core_disable_unprepare(parent);
1870
1871 if (core->notifier_count && old_rate != core->rate)
1872 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1873
1874 if (core->flags & CLK_RECALC_NEW_RATES)
1875 (void)clk_calc_new_rates(core, core->new_rate);
1876
1877 /*
1878 * Use safe iteration, as change_rate can actually swap parents
1879 * for certain clock types.
1880 */
1881 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1882 /* Skip children who will be reparented to another clock */
1883 if (child->new_parent && child->new_parent != core)
1884 continue;
1885 clk_change_rate(child);
1886 }
1887
1888 /* handle the new child who might not be in core->children yet */
1889 if (core->new_child)
1890 clk_change_rate(core->new_child);
1891
1892 clk_pm_runtime_put(core);
1893 }
1894
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)1895 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1896 unsigned long req_rate)
1897 {
1898 int ret, cnt;
1899 struct clk_rate_request req;
1900
1901 lockdep_assert_held(&prepare_lock);
1902
1903 if (!core)
1904 return 0;
1905
1906 /* simulate what the rate would be if it could be freely set */
1907 cnt = clk_core_rate_nuke_protect(core);
1908 if (cnt < 0)
1909 return cnt;
1910
1911 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1912 req.rate = req_rate;
1913
1914 ret = clk_core_round_rate_nolock(core, &req);
1915
1916 /* restore the protection */
1917 clk_core_rate_restore_protect(core, cnt);
1918
1919 return ret ? 0 : req.rate;
1920 }
1921
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)1922 static int clk_core_set_rate_nolock(struct clk_core *core,
1923 unsigned long req_rate)
1924 {
1925 struct clk_core *top, *fail_clk;
1926 unsigned long rate;
1927 int ret = 0;
1928
1929 if (!core)
1930 return 0;
1931
1932 rate = clk_core_req_round_rate_nolock(core, req_rate);
1933
1934 /* bail early if nothing to do */
1935 if (rate == clk_core_get_rate_nolock(core))
1936 return 0;
1937
1938 /* fail on a direct rate set of a protected provider */
1939 if (clk_core_rate_is_protected(core))
1940 return -EBUSY;
1941
1942 /* calculate new rates and get the topmost changed clock */
1943 top = clk_calc_new_rates(core, req_rate);
1944 if (!top)
1945 return -EINVAL;
1946
1947 ret = clk_pm_runtime_get(core);
1948 if (ret)
1949 return ret;
1950
1951 /* notify that we are about to change rates */
1952 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1953 if (fail_clk) {
1954 pr_debug("%s: failed to set %s rate\n", __func__,
1955 fail_clk->name);
1956 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1957 ret = -EBUSY;
1958 goto err;
1959 }
1960
1961 /* change the rates */
1962 clk_change_rate(top);
1963
1964 core->req_rate = req_rate;
1965 err:
1966 clk_pm_runtime_put(core);
1967
1968 return ret;
1969 }
1970
1971 /**
1972 * clk_set_rate - specify a new rate for clk
1973 * @clk: the clk whose rate is being changed
1974 * @rate: the new rate for clk
1975 *
1976 * In the simplest case clk_set_rate will only adjust the rate of clk.
1977 *
1978 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1979 * propagate up to clk's parent; whether or not this happens depends on the
1980 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1981 * after calling .round_rate then upstream parent propagation is ignored. If
1982 * *parent_rate comes back with a new rate for clk's parent then we propagate
1983 * up to clk's parent and set its rate. Upward propagation will continue
1984 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1985 * .round_rate stops requesting changes to clk's parent_rate.
1986 *
1987 * Rate changes are accomplished via tree traversal that also recalculates the
1988 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1989 *
1990 * Returns 0 on success, -EERROR otherwise.
1991 */
clk_set_rate(struct clk * clk,unsigned long rate)1992 int clk_set_rate(struct clk *clk, unsigned long rate)
1993 {
1994 int ret;
1995
1996 if (!clk)
1997 return 0;
1998
1999 /* prevent racing with updates to the clock topology */
2000 clk_prepare_lock();
2001
2002 if (clk->exclusive_count)
2003 clk_core_rate_unprotect(clk->core);
2004
2005 ret = clk_core_set_rate_nolock(clk->core, rate);
2006
2007 if (clk->exclusive_count)
2008 clk_core_rate_protect(clk->core);
2009
2010 clk_prepare_unlock();
2011
2012 return ret;
2013 }
2014 EXPORT_SYMBOL_GPL(clk_set_rate);
2015
2016 /**
2017 * clk_set_rate_exclusive - specify a new rate get exclusive control
2018 * @clk: the clk whose rate is being changed
2019 * @rate: the new rate for clk
2020 *
2021 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2022 * within a critical section
2023 *
2024 * This can be used initially to ensure that at least 1 consumer is
2025 * statisfied when several consumers are competing for exclusivity over the
2026 * same clock provider.
2027 *
2028 * The exclusivity is not applied if setting the rate failed.
2029 *
2030 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2031 * clk_rate_exclusive_put().
2032 *
2033 * Returns 0 on success, -EERROR otherwise.
2034 */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2035 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2036 {
2037 int ret;
2038
2039 if (!clk)
2040 return 0;
2041
2042 /* prevent racing with updates to the clock topology */
2043 clk_prepare_lock();
2044
2045 /*
2046 * The temporary protection removal is not here, on purpose
2047 * This function is meant to be used instead of clk_rate_protect,
2048 * so before the consumer code path protect the clock provider
2049 */
2050
2051 ret = clk_core_set_rate_nolock(clk->core, rate);
2052 if (!ret) {
2053 clk_core_rate_protect(clk->core);
2054 clk->exclusive_count++;
2055 }
2056
2057 clk_prepare_unlock();
2058
2059 return ret;
2060 }
2061 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2062
2063 /**
2064 * clk_set_rate_range - set a rate range for a clock source
2065 * @clk: clock source
2066 * @min: desired minimum clock rate in Hz, inclusive
2067 * @max: desired maximum clock rate in Hz, inclusive
2068 *
2069 * Returns success (0) or negative errno.
2070 */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2071 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2072 {
2073 int ret = 0;
2074 unsigned long old_min, old_max, rate;
2075
2076 if (!clk)
2077 return 0;
2078
2079 if (min > max) {
2080 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2081 __func__, clk->core->name, clk->dev_id, clk->con_id,
2082 min, max);
2083 return -EINVAL;
2084 }
2085
2086 clk_prepare_lock();
2087
2088 if (clk->exclusive_count)
2089 clk_core_rate_unprotect(clk->core);
2090
2091 /* Save the current values in case we need to rollback the change */
2092 old_min = clk->min_rate;
2093 old_max = clk->max_rate;
2094 clk->min_rate = min;
2095 clk->max_rate = max;
2096
2097 if (!clk_core_check_boundaries(clk->core, min, max)) {
2098 ret = -EINVAL;
2099 goto out;
2100 }
2101
2102 rate = clk_core_get_rate_nolock(clk->core);
2103 if (rate < min || rate > max) {
2104 /*
2105 * FIXME:
2106 * We are in bit of trouble here, current rate is outside the
2107 * the requested range. We are going try to request appropriate
2108 * range boundary but there is a catch. It may fail for the
2109 * usual reason (clock broken, clock protected, etc) but also
2110 * because:
2111 * - round_rate() was not favorable and fell on the wrong
2112 * side of the boundary
2113 * - the determine_rate() callback does not really check for
2114 * this corner case when determining the rate
2115 */
2116
2117 if (rate < min)
2118 rate = min;
2119 else
2120 rate = max;
2121
2122 ret = clk_core_set_rate_nolock(clk->core, rate);
2123 if (ret) {
2124 /* rollback the changes */
2125 clk->min_rate = old_min;
2126 clk->max_rate = old_max;
2127 }
2128 }
2129
2130 out:
2131 if (clk->exclusive_count)
2132 clk_core_rate_protect(clk->core);
2133
2134 clk_prepare_unlock();
2135
2136 return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2139
2140 /**
2141 * clk_set_min_rate - set a minimum clock rate for a clock source
2142 * @clk: clock source
2143 * @rate: desired minimum clock rate in Hz, inclusive
2144 *
2145 * Returns success (0) or negative errno.
2146 */
clk_set_min_rate(struct clk * clk,unsigned long rate)2147 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2148 {
2149 if (!clk)
2150 return 0;
2151
2152 return clk_set_rate_range(clk, rate, clk->max_rate);
2153 }
2154 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2155
2156 /**
2157 * clk_set_max_rate - set a maximum clock rate for a clock source
2158 * @clk: clock source
2159 * @rate: desired maximum clock rate in Hz, inclusive
2160 *
2161 * Returns success (0) or negative errno.
2162 */
clk_set_max_rate(struct clk * clk,unsigned long rate)2163 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2164 {
2165 if (!clk)
2166 return 0;
2167
2168 return clk_set_rate_range(clk, clk->min_rate, rate);
2169 }
2170 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2171
2172 /**
2173 * clk_get_parent - return the parent of a clk
2174 * @clk: the clk whose parent gets returned
2175 *
2176 * Simply returns clk->parent. Returns NULL if clk is NULL.
2177 */
clk_get_parent(struct clk * clk)2178 struct clk *clk_get_parent(struct clk *clk)
2179 {
2180 struct clk *parent;
2181
2182 if (!clk)
2183 return NULL;
2184
2185 clk_prepare_lock();
2186 /* TODO: Create a per-user clk and change callers to call clk_put */
2187 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2188 clk_prepare_unlock();
2189
2190 return parent;
2191 }
2192 EXPORT_SYMBOL_GPL(clk_get_parent);
2193
__clk_init_parent(struct clk_core * core)2194 static struct clk_core *__clk_init_parent(struct clk_core *core)
2195 {
2196 u8 index = 0;
2197
2198 if (core->num_parents > 1 && core->ops->get_parent)
2199 index = core->ops->get_parent(core->hw);
2200
2201 return clk_core_get_parent_by_index(core, index);
2202 }
2203
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2204 static void clk_core_reparent(struct clk_core *core,
2205 struct clk_core *new_parent)
2206 {
2207 clk_reparent(core, new_parent);
2208 __clk_recalc_accuracies(core);
2209 __clk_recalc_rates(core, POST_RATE_CHANGE);
2210 }
2211
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2212 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2213 {
2214 if (!hw)
2215 return;
2216
2217 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2218 }
2219
2220 /**
2221 * clk_has_parent - check if a clock is a possible parent for another
2222 * @clk: clock source
2223 * @parent: parent clock source
2224 *
2225 * This function can be used in drivers that need to check that a clock can be
2226 * the parent of another without actually changing the parent.
2227 *
2228 * Returns true if @parent is a possible parent for @clk, false otherwise.
2229 */
clk_has_parent(struct clk * clk,struct clk * parent)2230 bool clk_has_parent(struct clk *clk, struct clk *parent)
2231 {
2232 struct clk_core *core, *parent_core;
2233
2234 /* NULL clocks should be nops, so return success if either is NULL. */
2235 if (!clk || !parent)
2236 return true;
2237
2238 core = clk->core;
2239 parent_core = parent->core;
2240
2241 /* Optimize for the case where the parent is already the parent. */
2242 if (core->parent == parent_core)
2243 return true;
2244
2245 return match_string(core->parent_names, core->num_parents,
2246 parent_core->name) >= 0;
2247 }
2248 EXPORT_SYMBOL_GPL(clk_has_parent);
2249
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2250 static int clk_core_set_parent_nolock(struct clk_core *core,
2251 struct clk_core *parent)
2252 {
2253 int ret = 0;
2254 int p_index = 0;
2255 unsigned long p_rate = 0;
2256
2257 lockdep_assert_held(&prepare_lock);
2258
2259 if (!core)
2260 return 0;
2261
2262 if (core->parent == parent)
2263 return 0;
2264
2265 /* verify ops for for multi-parent clks */
2266 if (core->num_parents > 1 && !core->ops->set_parent)
2267 return -EPERM;
2268
2269 /* check that we are allowed to re-parent if the clock is in use */
2270 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2271 return -EBUSY;
2272
2273 if (clk_core_rate_is_protected(core))
2274 return -EBUSY;
2275
2276 /* try finding the new parent index */
2277 if (parent) {
2278 p_index = clk_fetch_parent_index(core, parent);
2279 if (p_index < 0) {
2280 pr_debug("%s: clk %s can not be parent of clk %s\n",
2281 __func__, parent->name, core->name);
2282 return p_index;
2283 }
2284 p_rate = parent->rate;
2285 }
2286
2287 ret = clk_pm_runtime_get(core);
2288 if (ret)
2289 return ret;
2290
2291 /* propagate PRE_RATE_CHANGE notifications */
2292 ret = __clk_speculate_rates(core, p_rate);
2293
2294 /* abort if a driver objects */
2295 if (ret & NOTIFY_STOP_MASK)
2296 goto runtime_put;
2297
2298 /* do the re-parent */
2299 ret = __clk_set_parent(core, parent, p_index);
2300
2301 /* propagate rate an accuracy recalculation accordingly */
2302 if (ret) {
2303 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2304 } else {
2305 __clk_recalc_rates(core, POST_RATE_CHANGE);
2306 __clk_recalc_accuracies(core);
2307 }
2308
2309 runtime_put:
2310 clk_pm_runtime_put(core);
2311
2312 return ret;
2313 }
2314
2315 /**
2316 * clk_set_parent - switch the parent of a mux clk
2317 * @clk: the mux clk whose input we are switching
2318 * @parent: the new input to clk
2319 *
2320 * Re-parent clk to use parent as its new input source. If clk is in
2321 * prepared state, the clk will get enabled for the duration of this call. If
2322 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2323 * that, the reparenting is glitchy in hardware, etc), use the
2324 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2325 *
2326 * After successfully changing clk's parent clk_set_parent will update the
2327 * clk topology, sysfs topology and propagate rate recalculation via
2328 * __clk_recalc_rates.
2329 *
2330 * Returns 0 on success, -EERROR otherwise.
2331 */
clk_set_parent(struct clk * clk,struct clk * parent)2332 int clk_set_parent(struct clk *clk, struct clk *parent)
2333 {
2334 int ret;
2335
2336 if (!clk)
2337 return 0;
2338
2339 clk_prepare_lock();
2340
2341 if (clk->exclusive_count)
2342 clk_core_rate_unprotect(clk->core);
2343
2344 ret = clk_core_set_parent_nolock(clk->core,
2345 parent ? parent->core : NULL);
2346
2347 if (clk->exclusive_count)
2348 clk_core_rate_protect(clk->core);
2349
2350 clk_prepare_unlock();
2351
2352 return ret;
2353 }
2354 EXPORT_SYMBOL_GPL(clk_set_parent);
2355
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2356 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2357 {
2358 int ret = -EINVAL;
2359
2360 lockdep_assert_held(&prepare_lock);
2361
2362 if (!core)
2363 return 0;
2364
2365 if (clk_core_rate_is_protected(core))
2366 return -EBUSY;
2367
2368 trace_clk_set_phase(core, degrees);
2369
2370 if (core->ops->set_phase) {
2371 ret = core->ops->set_phase(core->hw, degrees);
2372 if (!ret)
2373 core->phase = degrees;
2374 }
2375
2376 trace_clk_set_phase_complete(core, degrees);
2377
2378 return ret;
2379 }
2380
2381 /**
2382 * clk_set_phase - adjust the phase shift of a clock signal
2383 * @clk: clock signal source
2384 * @degrees: number of degrees the signal is shifted
2385 *
2386 * Shifts the phase of a clock signal by the specified
2387 * degrees. Returns 0 on success, -EERROR otherwise.
2388 *
2389 * This function makes no distinction about the input or reference
2390 * signal that we adjust the clock signal phase against. For example
2391 * phase locked-loop clock signal generators we may shift phase with
2392 * respect to feedback clock signal input, but for other cases the
2393 * clock phase may be shifted with respect to some other, unspecified
2394 * signal.
2395 *
2396 * Additionally the concept of phase shift does not propagate through
2397 * the clock tree hierarchy, which sets it apart from clock rates and
2398 * clock accuracy. A parent clock phase attribute does not have an
2399 * impact on the phase attribute of a child clock.
2400 */
clk_set_phase(struct clk * clk,int degrees)2401 int clk_set_phase(struct clk *clk, int degrees)
2402 {
2403 int ret;
2404
2405 if (!clk)
2406 return 0;
2407
2408 /* sanity check degrees */
2409 degrees %= 360;
2410 if (degrees < 0)
2411 degrees += 360;
2412
2413 clk_prepare_lock();
2414
2415 if (clk->exclusive_count)
2416 clk_core_rate_unprotect(clk->core);
2417
2418 ret = clk_core_set_phase_nolock(clk->core, degrees);
2419
2420 if (clk->exclusive_count)
2421 clk_core_rate_protect(clk->core);
2422
2423 clk_prepare_unlock();
2424
2425 return ret;
2426 }
2427 EXPORT_SYMBOL_GPL(clk_set_phase);
2428
clk_core_get_phase(struct clk_core * core)2429 static int clk_core_get_phase(struct clk_core *core)
2430 {
2431 int ret;
2432
2433 clk_prepare_lock();
2434 /* Always try to update cached phase if possible */
2435 if (core->ops->get_phase)
2436 core->phase = core->ops->get_phase(core->hw);
2437 ret = core->phase;
2438 clk_prepare_unlock();
2439
2440 return ret;
2441 }
2442
2443 /**
2444 * clk_get_phase - return the phase shift of a clock signal
2445 * @clk: clock signal source
2446 *
2447 * Returns the phase shift of a clock node in degrees, otherwise returns
2448 * -EERROR.
2449 */
clk_get_phase(struct clk * clk)2450 int clk_get_phase(struct clk *clk)
2451 {
2452 if (!clk)
2453 return 0;
2454
2455 return clk_core_get_phase(clk->core);
2456 }
2457 EXPORT_SYMBOL_GPL(clk_get_phase);
2458
clk_core_reset_duty_cycle_nolock(struct clk_core * core)2459 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2460 {
2461 /* Assume a default value of 50% */
2462 core->duty.num = 1;
2463 core->duty.den = 2;
2464 }
2465
2466 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2467
clk_core_update_duty_cycle_nolock(struct clk_core * core)2468 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2469 {
2470 struct clk_duty *duty = &core->duty;
2471 int ret = 0;
2472
2473 if (!core->ops->get_duty_cycle)
2474 return clk_core_update_duty_cycle_parent_nolock(core);
2475
2476 ret = core->ops->get_duty_cycle(core->hw, duty);
2477 if (ret)
2478 goto reset;
2479
2480 /* Don't trust the clock provider too much */
2481 if (duty->den == 0 || duty->num > duty->den) {
2482 ret = -EINVAL;
2483 goto reset;
2484 }
2485
2486 return 0;
2487
2488 reset:
2489 clk_core_reset_duty_cycle_nolock(core);
2490 return ret;
2491 }
2492
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)2493 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2494 {
2495 int ret = 0;
2496
2497 if (core->parent &&
2498 core->flags & CLK_DUTY_CYCLE_PARENT) {
2499 ret = clk_core_update_duty_cycle_nolock(core->parent);
2500 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2501 } else {
2502 clk_core_reset_duty_cycle_nolock(core);
2503 }
2504
2505 return ret;
2506 }
2507
2508 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2509 struct clk_duty *duty);
2510
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)2511 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2512 struct clk_duty *duty)
2513 {
2514 int ret;
2515
2516 lockdep_assert_held(&prepare_lock);
2517
2518 if (clk_core_rate_is_protected(core))
2519 return -EBUSY;
2520
2521 trace_clk_set_duty_cycle(core, duty);
2522
2523 if (!core->ops->set_duty_cycle)
2524 return clk_core_set_duty_cycle_parent_nolock(core, duty);
2525
2526 ret = core->ops->set_duty_cycle(core->hw, duty);
2527 if (!ret)
2528 memcpy(&core->duty, duty, sizeof(*duty));
2529
2530 trace_clk_set_duty_cycle_complete(core, duty);
2531
2532 return ret;
2533 }
2534
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)2535 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2536 struct clk_duty *duty)
2537 {
2538 int ret = 0;
2539
2540 if (core->parent &&
2541 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2542 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2543 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2544 }
2545
2546 return ret;
2547 }
2548
2549 /**
2550 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2551 * @clk: clock signal source
2552 * @num: numerator of the duty cycle ratio to be applied
2553 * @den: denominator of the duty cycle ratio to be applied
2554 *
2555 * Apply the duty cycle ratio if the ratio is valid and the clock can
2556 * perform this operation
2557 *
2558 * Returns (0) on success, a negative errno otherwise.
2559 */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)2560 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2561 {
2562 int ret;
2563 struct clk_duty duty;
2564
2565 if (!clk)
2566 return 0;
2567
2568 /* sanity check the ratio */
2569 if (den == 0 || num > den)
2570 return -EINVAL;
2571
2572 duty.num = num;
2573 duty.den = den;
2574
2575 clk_prepare_lock();
2576
2577 if (clk->exclusive_count)
2578 clk_core_rate_unprotect(clk->core);
2579
2580 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2581
2582 if (clk->exclusive_count)
2583 clk_core_rate_protect(clk->core);
2584
2585 clk_prepare_unlock();
2586
2587 return ret;
2588 }
2589 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2590
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)2591 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2592 unsigned int scale)
2593 {
2594 struct clk_duty *duty = &core->duty;
2595 int ret;
2596
2597 clk_prepare_lock();
2598
2599 ret = clk_core_update_duty_cycle_nolock(core);
2600 if (!ret)
2601 ret = mult_frac(scale, duty->num, duty->den);
2602
2603 clk_prepare_unlock();
2604
2605 return ret;
2606 }
2607
2608 /**
2609 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2610 * @clk: clock signal source
2611 * @scale: scaling factor to be applied to represent the ratio as an integer
2612 *
2613 * Returns the duty cycle ratio of a clock node multiplied by the provided
2614 * scaling factor, or negative errno on error.
2615 */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)2616 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2617 {
2618 if (!clk)
2619 return 0;
2620
2621 return clk_core_get_scaled_duty_cycle(clk->core, scale);
2622 }
2623 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2624
2625 /**
2626 * clk_is_match - check if two clk's point to the same hardware clock
2627 * @p: clk compared against q
2628 * @q: clk compared against p
2629 *
2630 * Returns true if the two struct clk pointers both point to the same hardware
2631 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2632 * share the same struct clk_core object.
2633 *
2634 * Returns false otherwise. Note that two NULL clks are treated as matching.
2635 */
clk_is_match(const struct clk * p,const struct clk * q)2636 bool clk_is_match(const struct clk *p, const struct clk *q)
2637 {
2638 /* trivial case: identical struct clk's or both NULL */
2639 if (p == q)
2640 return true;
2641
2642 /* true if clk->core pointers match. Avoid dereferencing garbage */
2643 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2644 if (p->core == q->core)
2645 return true;
2646
2647 return false;
2648 }
2649 EXPORT_SYMBOL_GPL(clk_is_match);
2650
2651 /*** debugfs support ***/
2652
2653 #ifdef CONFIG_DEBUG_FS
2654 #include <linux/debugfs.h>
2655
2656 static struct dentry *rootdir;
2657 static int inited = 0;
2658 static DEFINE_MUTEX(clk_debug_lock);
2659 static HLIST_HEAD(clk_debug_list);
2660
2661 static struct hlist_head *orphan_list[] = {
2662 &clk_orphan_list,
2663 NULL,
2664 };
2665
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)2666 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2667 int level)
2668 {
2669 if (!c)
2670 return;
2671
2672 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2673 level * 3 + 1, "",
2674 30 - level * 3, c->name,
2675 c->enable_count, c->prepare_count, c->protect_count,
2676 clk_core_get_rate(c), clk_core_get_accuracy(c),
2677 clk_core_get_phase(c),
2678 clk_core_get_scaled_duty_cycle(c, 100000));
2679 }
2680
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)2681 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2682 int level)
2683 {
2684 struct clk_core *child;
2685
2686 if (!c)
2687 return;
2688
2689 clk_summary_show_one(s, c, level);
2690
2691 hlist_for_each_entry(child, &c->children, child_node)
2692 clk_summary_show_subtree(s, child, level + 1);
2693 }
2694
clk_summary_show(struct seq_file * s,void * data)2695 static int clk_summary_show(struct seq_file *s, void *data)
2696 {
2697 struct clk_core *c;
2698 struct hlist_head **lists = (struct hlist_head **)s->private;
2699
2700 seq_puts(s, " enable prepare protect duty\n");
2701 seq_puts(s, " clock count count count rate accuracy phase cycle\n");
2702 seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2703
2704 clk_prepare_lock();
2705
2706 for (; *lists; lists++)
2707 hlist_for_each_entry(c, *lists, child_node)
2708 clk_summary_show_subtree(s, c, 0);
2709
2710 clk_prepare_unlock();
2711
2712 return 0;
2713 }
2714 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2715
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)2716 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2717 {
2718 if (!c)
2719 return;
2720
2721 /* This should be JSON format, i.e. elements separated with a comma */
2722 seq_printf(s, "\"%s\": { ", c->name);
2723 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2724 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2725 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2726 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2727 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2728 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c));
2729 seq_printf(s, "\"duty_cycle\": %u",
2730 clk_core_get_scaled_duty_cycle(c, 100000));
2731 }
2732
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)2733 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2734 {
2735 struct clk_core *child;
2736
2737 if (!c)
2738 return;
2739
2740 clk_dump_one(s, c, level);
2741
2742 hlist_for_each_entry(child, &c->children, child_node) {
2743 seq_putc(s, ',');
2744 clk_dump_subtree(s, child, level + 1);
2745 }
2746
2747 seq_putc(s, '}');
2748 }
2749
clk_dump_show(struct seq_file * s,void * data)2750 static int clk_dump_show(struct seq_file *s, void *data)
2751 {
2752 struct clk_core *c;
2753 bool first_node = true;
2754 struct hlist_head **lists = (struct hlist_head **)s->private;
2755
2756 seq_putc(s, '{');
2757 clk_prepare_lock();
2758
2759 for (; *lists; lists++) {
2760 hlist_for_each_entry(c, *lists, child_node) {
2761 if (!first_node)
2762 seq_putc(s, ',');
2763 first_node = false;
2764 clk_dump_subtree(s, c, 0);
2765 }
2766 }
2767
2768 clk_prepare_unlock();
2769
2770 seq_puts(s, "}\n");
2771 return 0;
2772 }
2773 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2774
2775 static const struct {
2776 unsigned long flag;
2777 const char *name;
2778 } clk_flags[] = {
2779 #define ENTRY(f) { f, #f }
2780 ENTRY(CLK_SET_RATE_GATE),
2781 ENTRY(CLK_SET_PARENT_GATE),
2782 ENTRY(CLK_SET_RATE_PARENT),
2783 ENTRY(CLK_IGNORE_UNUSED),
2784 ENTRY(CLK_IS_BASIC),
2785 ENTRY(CLK_GET_RATE_NOCACHE),
2786 ENTRY(CLK_SET_RATE_NO_REPARENT),
2787 ENTRY(CLK_GET_ACCURACY_NOCACHE),
2788 ENTRY(CLK_RECALC_NEW_RATES),
2789 ENTRY(CLK_SET_RATE_UNGATE),
2790 ENTRY(CLK_IS_CRITICAL),
2791 ENTRY(CLK_OPS_PARENT_ENABLE),
2792 ENTRY(CLK_DUTY_CYCLE_PARENT),
2793 #undef ENTRY
2794 };
2795
clk_flags_show(struct seq_file * s,void * data)2796 static int clk_flags_show(struct seq_file *s, void *data)
2797 {
2798 struct clk_core *core = s->private;
2799 unsigned long flags = core->flags;
2800 unsigned int i;
2801
2802 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2803 if (flags & clk_flags[i].flag) {
2804 seq_printf(s, "%s\n", clk_flags[i].name);
2805 flags &= ~clk_flags[i].flag;
2806 }
2807 }
2808 if (flags) {
2809 /* Unknown flags */
2810 seq_printf(s, "0x%lx\n", flags);
2811 }
2812
2813 return 0;
2814 }
2815 DEFINE_SHOW_ATTRIBUTE(clk_flags);
2816
possible_parents_show(struct seq_file * s,void * data)2817 static int possible_parents_show(struct seq_file *s, void *data)
2818 {
2819 struct clk_core *core = s->private;
2820 int i;
2821
2822 for (i = 0; i < core->num_parents - 1; i++)
2823 seq_printf(s, "%s ", core->parent_names[i]);
2824
2825 seq_printf(s, "%s\n", core->parent_names[i]);
2826
2827 return 0;
2828 }
2829 DEFINE_SHOW_ATTRIBUTE(possible_parents);
2830
clk_duty_cycle_show(struct seq_file * s,void * data)2831 static int clk_duty_cycle_show(struct seq_file *s, void *data)
2832 {
2833 struct clk_core *core = s->private;
2834 struct clk_duty *duty = &core->duty;
2835
2836 seq_printf(s, "%u/%u\n", duty->num, duty->den);
2837
2838 return 0;
2839 }
2840 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
2841
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)2842 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2843 {
2844 struct dentry *root;
2845
2846 if (!core || !pdentry)
2847 return;
2848
2849 root = debugfs_create_dir(core->name, pdentry);
2850 core->dentry = root;
2851
2852 debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
2853 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
2854 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
2855 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
2856 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
2857 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
2858 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
2859 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
2860 debugfs_create_file("clk_duty_cycle", 0444, root, core,
2861 &clk_duty_cycle_fops);
2862
2863 if (core->num_parents > 1)
2864 debugfs_create_file("clk_possible_parents", 0444, root, core,
2865 &possible_parents_fops);
2866
2867 if (core->ops->debug_init)
2868 core->ops->debug_init(core->hw, core->dentry);
2869 }
2870
2871 /**
2872 * clk_debug_register - add a clk node to the debugfs clk directory
2873 * @core: the clk being added to the debugfs clk directory
2874 *
2875 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2876 * initialized. Otherwise it bails out early since the debugfs clk directory
2877 * will be created lazily by clk_debug_init as part of a late_initcall.
2878 */
clk_debug_register(struct clk_core * core)2879 static void clk_debug_register(struct clk_core *core)
2880 {
2881 mutex_lock(&clk_debug_lock);
2882 hlist_add_head(&core->debug_node, &clk_debug_list);
2883 if (inited)
2884 clk_debug_create_one(core, rootdir);
2885 mutex_unlock(&clk_debug_lock);
2886 }
2887
2888 /**
2889 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2890 * @core: the clk being removed from the debugfs clk directory
2891 *
2892 * Dynamically removes a clk and all its child nodes from the
2893 * debugfs clk directory if clk->dentry points to debugfs created by
2894 * clk_debug_register in __clk_core_init.
2895 */
clk_debug_unregister(struct clk_core * core)2896 static void clk_debug_unregister(struct clk_core *core)
2897 {
2898 mutex_lock(&clk_debug_lock);
2899 hlist_del_init(&core->debug_node);
2900 debugfs_remove_recursive(core->dentry);
2901 core->dentry = NULL;
2902 mutex_unlock(&clk_debug_lock);
2903 }
2904
2905 /**
2906 * clk_debug_init - lazily populate the debugfs clk directory
2907 *
2908 * clks are often initialized very early during boot before memory can be
2909 * dynamically allocated and well before debugfs is setup. This function
2910 * populates the debugfs clk directory once at boot-time when we know that
2911 * debugfs is setup. It should only be called once at boot-time, all other clks
2912 * added dynamically will be done so with clk_debug_register.
2913 */
clk_debug_init(void)2914 static int __init clk_debug_init(void)
2915 {
2916 struct clk_core *core;
2917
2918 rootdir = debugfs_create_dir("clk", NULL);
2919
2920 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2921 &clk_summary_fops);
2922 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2923 &clk_dump_fops);
2924 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
2925 &clk_summary_fops);
2926 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
2927 &clk_dump_fops);
2928
2929 mutex_lock(&clk_debug_lock);
2930 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2931 clk_debug_create_one(core, rootdir);
2932
2933 inited = 1;
2934 mutex_unlock(&clk_debug_lock);
2935
2936 return 0;
2937 }
2938 late_initcall(clk_debug_init);
2939 #else
clk_debug_register(struct clk_core * core)2940 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_reparent(struct clk_core * core,struct clk_core * new_parent)2941 static inline void clk_debug_reparent(struct clk_core *core,
2942 struct clk_core *new_parent)
2943 {
2944 }
clk_debug_unregister(struct clk_core * core)2945 static inline void clk_debug_unregister(struct clk_core *core)
2946 {
2947 }
2948 #endif
2949
2950 /**
2951 * __clk_core_init - initialize the data structures in a struct clk_core
2952 * @core: clk_core being initialized
2953 *
2954 * Initializes the lists in struct clk_core, queries the hardware for the
2955 * parent and rate and sets them both.
2956 */
__clk_core_init(struct clk_core * core)2957 static int __clk_core_init(struct clk_core *core)
2958 {
2959 int i, ret;
2960 struct clk_core *orphan;
2961 struct hlist_node *tmp2;
2962 unsigned long rate;
2963
2964 if (!core)
2965 return -EINVAL;
2966
2967 clk_prepare_lock();
2968
2969 ret = clk_pm_runtime_get(core);
2970 if (ret)
2971 goto unlock;
2972
2973 /* check to see if a clock with this name is already registered */
2974 if (clk_core_lookup(core->name)) {
2975 pr_debug("%s: clk %s already initialized\n",
2976 __func__, core->name);
2977 ret = -EEXIST;
2978 goto out;
2979 }
2980
2981 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
2982 if (core->ops->set_rate &&
2983 !((core->ops->round_rate || core->ops->determine_rate) &&
2984 core->ops->recalc_rate)) {
2985 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2986 __func__, core->name);
2987 ret = -EINVAL;
2988 goto out;
2989 }
2990
2991 if (core->ops->set_parent && !core->ops->get_parent) {
2992 pr_err("%s: %s must implement .get_parent & .set_parent\n",
2993 __func__, core->name);
2994 ret = -EINVAL;
2995 goto out;
2996 }
2997
2998 if (core->num_parents > 1 && !core->ops->get_parent) {
2999 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3000 __func__, core->name);
3001 ret = -EINVAL;
3002 goto out;
3003 }
3004
3005 if (core->ops->set_rate_and_parent &&
3006 !(core->ops->set_parent && core->ops->set_rate)) {
3007 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3008 __func__, core->name);
3009 ret = -EINVAL;
3010 goto out;
3011 }
3012
3013 /* throw a WARN if any entries in parent_names are NULL */
3014 for (i = 0; i < core->num_parents; i++)
3015 WARN(!core->parent_names[i],
3016 "%s: invalid NULL in %s's .parent_names\n",
3017 __func__, core->name);
3018
3019 core->parent = __clk_init_parent(core);
3020
3021 /*
3022 * Populate core->parent if parent has already been clk_core_init'd. If
3023 * parent has not yet been clk_core_init'd then place clk in the orphan
3024 * list. If clk doesn't have any parents then place it in the root
3025 * clk list.
3026 *
3027 * Every time a new clk is clk_init'd then we walk the list of orphan
3028 * clocks and re-parent any that are children of the clock currently
3029 * being clk_init'd.
3030 */
3031 if (core->parent) {
3032 hlist_add_head(&core->child_node,
3033 &core->parent->children);
3034 core->orphan = core->parent->orphan;
3035 } else if (!core->num_parents) {
3036 hlist_add_head(&core->child_node, &clk_root_list);
3037 core->orphan = false;
3038 } else {
3039 hlist_add_head(&core->child_node, &clk_orphan_list);
3040 core->orphan = true;
3041 }
3042
3043 /*
3044 * optional platform-specific magic
3045 *
3046 * The .init callback is not used by any of the basic clock types, but
3047 * exists for weird hardware that must perform initialization magic.
3048 * Please consider other ways of solving initialization problems before
3049 * using this callback, as its use is discouraged.
3050 */
3051 if (core->ops->init)
3052 core->ops->init(core->hw);
3053
3054 /*
3055 * Set clk's accuracy. The preferred method is to use
3056 * .recalc_accuracy. For simple clocks and lazy developers the default
3057 * fallback is to use the parent's accuracy. If a clock doesn't have a
3058 * parent (or is orphaned) then accuracy is set to zero (perfect
3059 * clock).
3060 */
3061 if (core->ops->recalc_accuracy)
3062 core->accuracy = core->ops->recalc_accuracy(core->hw,
3063 __clk_get_accuracy(core->parent));
3064 else if (core->parent)
3065 core->accuracy = core->parent->accuracy;
3066 else
3067 core->accuracy = 0;
3068
3069 /*
3070 * Set clk's phase.
3071 * Since a phase is by definition relative to its parent, just
3072 * query the current clock phase, or just assume it's in phase.
3073 */
3074 if (core->ops->get_phase)
3075 core->phase = core->ops->get_phase(core->hw);
3076 else
3077 core->phase = 0;
3078
3079 /*
3080 * Set clk's duty cycle.
3081 */
3082 clk_core_update_duty_cycle_nolock(core);
3083
3084 /*
3085 * Set clk's rate. The preferred method is to use .recalc_rate. For
3086 * simple clocks and lazy developers the default fallback is to use the
3087 * parent's rate. If a clock doesn't have a parent (or is orphaned)
3088 * then rate is set to zero.
3089 */
3090 if (core->ops->recalc_rate)
3091 rate = core->ops->recalc_rate(core->hw,
3092 clk_core_get_rate_nolock(core->parent));
3093 else if (core->parent)
3094 rate = core->parent->rate;
3095 else
3096 rate = 0;
3097 core->rate = core->req_rate = rate;
3098
3099 /*
3100 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3101 * don't get accidentally disabled when walking the orphan tree and
3102 * reparenting clocks
3103 */
3104 if (core->flags & CLK_IS_CRITICAL) {
3105 unsigned long flags;
3106
3107 ret = clk_core_prepare(core);
3108 if (ret)
3109 goto out;
3110
3111 flags = clk_enable_lock();
3112 ret = clk_core_enable(core);
3113 clk_enable_unlock(flags);
3114 if (ret) {
3115 clk_core_unprepare(core);
3116 goto out;
3117 }
3118 }
3119
3120 /*
3121 * walk the list of orphan clocks and reparent any that newly finds a
3122 * parent.
3123 */
3124 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3125 struct clk_core *parent = __clk_init_parent(orphan);
3126
3127 /*
3128 * We need to use __clk_set_parent_before() and _after() to
3129 * to properly migrate any prepare/enable count of the orphan
3130 * clock. This is important for CLK_IS_CRITICAL clocks, which
3131 * are enabled during init but might not have a parent yet.
3132 */
3133 if (parent) {
3134 /* update the clk tree topology */
3135 __clk_set_parent_before(orphan, parent);
3136 __clk_set_parent_after(orphan, parent, NULL);
3137 __clk_recalc_accuracies(orphan);
3138 __clk_recalc_rates(orphan, 0);
3139 }
3140 }
3141
3142 kref_init(&core->ref);
3143 out:
3144 clk_pm_runtime_put(core);
3145 unlock:
3146 if (ret)
3147 hlist_del_init(&core->child_node);
3148
3149 clk_prepare_unlock();
3150
3151 if (!ret)
3152 clk_debug_register(core);
3153
3154 return ret;
3155 }
3156
__clk_create_clk(struct clk_hw * hw,const char * dev_id,const char * con_id)3157 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
3158 const char *con_id)
3159 {
3160 struct clk *clk;
3161
3162 /* This is to allow this function to be chained to others */
3163 if (IS_ERR_OR_NULL(hw))
3164 return ERR_CAST(hw);
3165
3166 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3167 if (!clk)
3168 return ERR_PTR(-ENOMEM);
3169
3170 clk->core = hw->core;
3171 clk->dev_id = dev_id;
3172 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3173 clk->max_rate = ULONG_MAX;
3174
3175 clk_prepare_lock();
3176 hlist_add_head(&clk->clks_node, &hw->core->clks);
3177 clk_prepare_unlock();
3178
3179 return clk;
3180 }
3181
3182 /* keep in sync with __clk_put */
__clk_free_clk(struct clk * clk)3183 void __clk_free_clk(struct clk *clk)
3184 {
3185 clk_prepare_lock();
3186 hlist_del(&clk->clks_node);
3187 clk_prepare_unlock();
3188
3189 kfree_const(clk->con_id);
3190 kfree(clk);
3191 }
3192
3193 /**
3194 * clk_register - allocate a new clock, register it and return an opaque cookie
3195 * @dev: device that is registering this clock
3196 * @hw: link to hardware-specific clock data
3197 *
3198 * clk_register is the primary interface for populating the clock tree with new
3199 * clock nodes. It returns a pointer to the newly allocated struct clk which
3200 * cannot be dereferenced by driver code but may be used in conjunction with the
3201 * rest of the clock API. In the event of an error clk_register will return an
3202 * error code; drivers must test for an error code after calling clk_register.
3203 */
clk_register(struct device * dev,struct clk_hw * hw)3204 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3205 {
3206 int i, ret;
3207 struct clk_core *core;
3208
3209 core = kzalloc(sizeof(*core), GFP_KERNEL);
3210 if (!core) {
3211 ret = -ENOMEM;
3212 goto fail_out;
3213 }
3214
3215 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3216 if (!core->name) {
3217 ret = -ENOMEM;
3218 goto fail_name;
3219 }
3220
3221 if (WARN_ON(!hw->init->ops)) {
3222 ret = -EINVAL;
3223 goto fail_ops;
3224 }
3225 core->ops = hw->init->ops;
3226
3227 if (dev && pm_runtime_enabled(dev))
3228 core->dev = dev;
3229 if (dev && dev->driver)
3230 core->owner = dev->driver->owner;
3231 core->hw = hw;
3232 core->flags = hw->init->flags;
3233 core->num_parents = hw->init->num_parents;
3234 core->min_rate = 0;
3235 core->max_rate = ULONG_MAX;
3236 hw->core = core;
3237
3238 /* allocate local copy in case parent_names is __initdata */
3239 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
3240 GFP_KERNEL);
3241
3242 if (!core->parent_names) {
3243 ret = -ENOMEM;
3244 goto fail_parent_names;
3245 }
3246
3247
3248 /* copy each string name in case parent_names is __initdata */
3249 for (i = 0; i < core->num_parents; i++) {
3250 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3251 GFP_KERNEL);
3252 if (!core->parent_names[i]) {
3253 ret = -ENOMEM;
3254 goto fail_parent_names_copy;
3255 }
3256 }
3257
3258 /* avoid unnecessary string look-ups of clk_core's possible parents. */
3259 core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3260 GFP_KERNEL);
3261 if (!core->parents) {
3262 ret = -ENOMEM;
3263 goto fail_parents;
3264 };
3265
3266 INIT_HLIST_HEAD(&core->clks);
3267
3268 hw->clk = __clk_create_clk(hw, NULL, NULL);
3269 if (IS_ERR(hw->clk)) {
3270 ret = PTR_ERR(hw->clk);
3271 goto fail_parents;
3272 }
3273
3274 ret = __clk_core_init(core);
3275 if (!ret)
3276 return hw->clk;
3277
3278 __clk_free_clk(hw->clk);
3279 hw->clk = NULL;
3280
3281 fail_parents:
3282 kfree(core->parents);
3283 fail_parent_names_copy:
3284 while (--i >= 0)
3285 kfree_const(core->parent_names[i]);
3286 kfree(core->parent_names);
3287 fail_parent_names:
3288 fail_ops:
3289 kfree_const(core->name);
3290 fail_name:
3291 kfree(core);
3292 fail_out:
3293 return ERR_PTR(ret);
3294 }
3295 EXPORT_SYMBOL_GPL(clk_register);
3296
3297 /**
3298 * clk_hw_register - register a clk_hw and return an error code
3299 * @dev: device that is registering this clock
3300 * @hw: link to hardware-specific clock data
3301 *
3302 * clk_hw_register is the primary interface for populating the clock tree with
3303 * new clock nodes. It returns an integer equal to zero indicating success or
3304 * less than zero indicating failure. Drivers must test for an error code after
3305 * calling clk_hw_register().
3306 */
clk_hw_register(struct device * dev,struct clk_hw * hw)3307 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3308 {
3309 return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3310 }
3311 EXPORT_SYMBOL_GPL(clk_hw_register);
3312
3313 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)3314 static void __clk_release(struct kref *ref)
3315 {
3316 struct clk_core *core = container_of(ref, struct clk_core, ref);
3317 int i = core->num_parents;
3318
3319 lockdep_assert_held(&prepare_lock);
3320
3321 kfree(core->parents);
3322 while (--i >= 0)
3323 kfree_const(core->parent_names[i]);
3324
3325 kfree(core->parent_names);
3326 kfree_const(core->name);
3327 kfree(core);
3328 }
3329
3330 /*
3331 * Empty clk_ops for unregistered clocks. These are used temporarily
3332 * after clk_unregister() was called on a clock and until last clock
3333 * consumer calls clk_put() and the struct clk object is freed.
3334 */
clk_nodrv_prepare_enable(struct clk_hw * hw)3335 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3336 {
3337 return -ENXIO;
3338 }
3339
clk_nodrv_disable_unprepare(struct clk_hw * hw)3340 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3341 {
3342 WARN_ON_ONCE(1);
3343 }
3344
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)3345 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3346 unsigned long parent_rate)
3347 {
3348 return -ENXIO;
3349 }
3350
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)3351 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3352 {
3353 return -ENXIO;
3354 }
3355
3356 static const struct clk_ops clk_nodrv_ops = {
3357 .enable = clk_nodrv_prepare_enable,
3358 .disable = clk_nodrv_disable_unprepare,
3359 .prepare = clk_nodrv_prepare_enable,
3360 .unprepare = clk_nodrv_disable_unprepare,
3361 .set_rate = clk_nodrv_set_rate,
3362 .set_parent = clk_nodrv_set_parent,
3363 };
3364
clk_core_evict_parent_cache_subtree(struct clk_core * root,struct clk_core * target)3365 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3366 struct clk_core *target)
3367 {
3368 int i;
3369 struct clk_core *child;
3370
3371 for (i = 0; i < root->num_parents; i++)
3372 if (root->parents[i] == target)
3373 root->parents[i] = NULL;
3374
3375 hlist_for_each_entry(child, &root->children, child_node)
3376 clk_core_evict_parent_cache_subtree(child, target);
3377 }
3378
3379 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)3380 static void clk_core_evict_parent_cache(struct clk_core *core)
3381 {
3382 struct hlist_head **lists;
3383 struct clk_core *root;
3384
3385 lockdep_assert_held(&prepare_lock);
3386
3387 for (lists = all_lists; *lists; lists++)
3388 hlist_for_each_entry(root, *lists, child_node)
3389 clk_core_evict_parent_cache_subtree(root, core);
3390
3391 }
3392
3393 /**
3394 * clk_unregister - unregister a currently registered clock
3395 * @clk: clock to unregister
3396 */
clk_unregister(struct clk * clk)3397 void clk_unregister(struct clk *clk)
3398 {
3399 unsigned long flags;
3400
3401 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3402 return;
3403
3404 clk_debug_unregister(clk->core);
3405
3406 clk_prepare_lock();
3407
3408 if (clk->core->ops == &clk_nodrv_ops) {
3409 pr_err("%s: unregistered clock: %s\n", __func__,
3410 clk->core->name);
3411 goto unlock;
3412 }
3413 /*
3414 * Assign empty clock ops for consumers that might still hold
3415 * a reference to this clock.
3416 */
3417 flags = clk_enable_lock();
3418 clk->core->ops = &clk_nodrv_ops;
3419 clk_enable_unlock(flags);
3420
3421 if (!hlist_empty(&clk->core->children)) {
3422 struct clk_core *child;
3423 struct hlist_node *t;
3424
3425 /* Reparent all children to the orphan list. */
3426 hlist_for_each_entry_safe(child, t, &clk->core->children,
3427 child_node)
3428 clk_core_set_parent_nolock(child, NULL);
3429 }
3430
3431 clk_core_evict_parent_cache(clk->core);
3432
3433 hlist_del_init(&clk->core->child_node);
3434
3435 if (clk->core->prepare_count)
3436 pr_warn("%s: unregistering prepared clock: %s\n",
3437 __func__, clk->core->name);
3438
3439 if (clk->core->protect_count)
3440 pr_warn("%s: unregistering protected clock: %s\n",
3441 __func__, clk->core->name);
3442
3443 kref_put(&clk->core->ref, __clk_release);
3444 unlock:
3445 clk_prepare_unlock();
3446 }
3447 EXPORT_SYMBOL_GPL(clk_unregister);
3448
3449 /**
3450 * clk_hw_unregister - unregister a currently registered clk_hw
3451 * @hw: hardware-specific clock data to unregister
3452 */
clk_hw_unregister(struct clk_hw * hw)3453 void clk_hw_unregister(struct clk_hw *hw)
3454 {
3455 clk_unregister(hw->clk);
3456 }
3457 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3458
devm_clk_release(struct device * dev,void * res)3459 static void devm_clk_release(struct device *dev, void *res)
3460 {
3461 clk_unregister(*(struct clk **)res);
3462 }
3463
devm_clk_hw_release(struct device * dev,void * res)3464 static void devm_clk_hw_release(struct device *dev, void *res)
3465 {
3466 clk_hw_unregister(*(struct clk_hw **)res);
3467 }
3468
3469 /**
3470 * devm_clk_register - resource managed clk_register()
3471 * @dev: device that is registering this clock
3472 * @hw: link to hardware-specific clock data
3473 *
3474 * Managed clk_register(). Clocks returned from this function are
3475 * automatically clk_unregister()ed on driver detach. See clk_register() for
3476 * more information.
3477 */
devm_clk_register(struct device * dev,struct clk_hw * hw)3478 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3479 {
3480 struct clk *clk;
3481 struct clk **clkp;
3482
3483 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3484 if (!clkp)
3485 return ERR_PTR(-ENOMEM);
3486
3487 clk = clk_register(dev, hw);
3488 if (!IS_ERR(clk)) {
3489 *clkp = clk;
3490 devres_add(dev, clkp);
3491 } else {
3492 devres_free(clkp);
3493 }
3494
3495 return clk;
3496 }
3497 EXPORT_SYMBOL_GPL(devm_clk_register);
3498
3499 /**
3500 * devm_clk_hw_register - resource managed clk_hw_register()
3501 * @dev: device that is registering this clock
3502 * @hw: link to hardware-specific clock data
3503 *
3504 * Managed clk_hw_register(). Clocks registered by this function are
3505 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3506 * for more information.
3507 */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)3508 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3509 {
3510 struct clk_hw **hwp;
3511 int ret;
3512
3513 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3514 if (!hwp)
3515 return -ENOMEM;
3516
3517 ret = clk_hw_register(dev, hw);
3518 if (!ret) {
3519 *hwp = hw;
3520 devres_add(dev, hwp);
3521 } else {
3522 devres_free(hwp);
3523 }
3524
3525 return ret;
3526 }
3527 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3528
devm_clk_match(struct device * dev,void * res,void * data)3529 static int devm_clk_match(struct device *dev, void *res, void *data)
3530 {
3531 struct clk *c = res;
3532 if (WARN_ON(!c))
3533 return 0;
3534 return c == data;
3535 }
3536
devm_clk_hw_match(struct device * dev,void * res,void * data)3537 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3538 {
3539 struct clk_hw *hw = res;
3540
3541 if (WARN_ON(!hw))
3542 return 0;
3543 return hw == data;
3544 }
3545
3546 /**
3547 * devm_clk_unregister - resource managed clk_unregister()
3548 * @clk: clock to unregister
3549 *
3550 * Deallocate a clock allocated with devm_clk_register(). Normally
3551 * this function will not need to be called and the resource management
3552 * code will ensure that the resource is freed.
3553 */
devm_clk_unregister(struct device * dev,struct clk * clk)3554 void devm_clk_unregister(struct device *dev, struct clk *clk)
3555 {
3556 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3557 }
3558 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3559
3560 /**
3561 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3562 * @dev: device that is unregistering the hardware-specific clock data
3563 * @hw: link to hardware-specific clock data
3564 *
3565 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3566 * this function will not need to be called and the resource management
3567 * code will ensure that the resource is freed.
3568 */
devm_clk_hw_unregister(struct device * dev,struct clk_hw * hw)3569 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3570 {
3571 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3572 hw));
3573 }
3574 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3575
3576 /*
3577 * clkdev helpers
3578 */
__clk_get(struct clk * clk)3579 int __clk_get(struct clk *clk)
3580 {
3581 struct clk_core *core = !clk ? NULL : clk->core;
3582
3583 if (core) {
3584 if (!try_module_get(core->owner))
3585 return 0;
3586
3587 kref_get(&core->ref);
3588 }
3589 return 1;
3590 }
3591
3592 /* keep in sync with __clk_free_clk */
__clk_put(struct clk * clk)3593 void __clk_put(struct clk *clk)
3594 {
3595 struct module *owner;
3596
3597 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3598 return;
3599
3600 clk_prepare_lock();
3601
3602 /*
3603 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3604 * given user should be balanced with calls to clk_rate_exclusive_put()
3605 * and by that same consumer
3606 */
3607 if (WARN_ON(clk->exclusive_count)) {
3608 /* We voiced our concern, let's sanitize the situation */
3609 clk->core->protect_count -= (clk->exclusive_count - 1);
3610 clk_core_rate_unprotect(clk->core);
3611 clk->exclusive_count = 0;
3612 }
3613
3614 hlist_del(&clk->clks_node);
3615 if (clk->min_rate > clk->core->req_rate ||
3616 clk->max_rate < clk->core->req_rate)
3617 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3618
3619 owner = clk->core->owner;
3620 kref_put(&clk->core->ref, __clk_release);
3621
3622 clk_prepare_unlock();
3623
3624 module_put(owner);
3625
3626 kfree_const(clk->con_id);
3627 kfree(clk);
3628 }
3629
3630 /*** clk rate change notifiers ***/
3631
3632 /**
3633 * clk_notifier_register - add a clk rate change notifier
3634 * @clk: struct clk * to watch
3635 * @nb: struct notifier_block * with callback info
3636 *
3637 * Request notification when clk's rate changes. This uses an SRCU
3638 * notifier because we want it to block and notifier unregistrations are
3639 * uncommon. The callbacks associated with the notifier must not
3640 * re-enter into the clk framework by calling any top-level clk APIs;
3641 * this will cause a nested prepare_lock mutex.
3642 *
3643 * In all notification cases (pre, post and abort rate change) the original
3644 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3645 * and the new frequency is passed via struct clk_notifier_data.new_rate.
3646 *
3647 * clk_notifier_register() must be called from non-atomic context.
3648 * Returns -EINVAL if called with null arguments, -ENOMEM upon
3649 * allocation failure; otherwise, passes along the return value of
3650 * srcu_notifier_chain_register().
3651 */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)3652 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3653 {
3654 struct clk_notifier *cn;
3655 int ret = -ENOMEM;
3656
3657 if (!clk || !nb)
3658 return -EINVAL;
3659
3660 clk_prepare_lock();
3661
3662 /* search the list of notifiers for this clk */
3663 list_for_each_entry(cn, &clk_notifier_list, node)
3664 if (cn->clk == clk)
3665 goto found;
3666
3667 /* if clk wasn't in the notifier list, allocate new clk_notifier */
3668 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3669 if (!cn)
3670 goto out;
3671
3672 cn->clk = clk;
3673 srcu_init_notifier_head(&cn->notifier_head);
3674
3675 list_add(&cn->node, &clk_notifier_list);
3676
3677 found:
3678 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3679
3680 clk->core->notifier_count++;
3681
3682 out:
3683 clk_prepare_unlock();
3684
3685 return ret;
3686 }
3687 EXPORT_SYMBOL_GPL(clk_notifier_register);
3688
3689 /**
3690 * clk_notifier_unregister - remove a clk rate change notifier
3691 * @clk: struct clk *
3692 * @nb: struct notifier_block * with callback info
3693 *
3694 * Request no further notification for changes to 'clk' and frees memory
3695 * allocated in clk_notifier_register.
3696 *
3697 * Returns -EINVAL if called with null arguments; otherwise, passes
3698 * along the return value of srcu_notifier_chain_unregister().
3699 */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)3700 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3701 {
3702 struct clk_notifier *cn;
3703 int ret = -ENOENT;
3704
3705 if (!clk || !nb)
3706 return -EINVAL;
3707
3708 clk_prepare_lock();
3709
3710 list_for_each_entry(cn, &clk_notifier_list, node) {
3711 if (cn->clk == clk) {
3712 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3713
3714 clk->core->notifier_count--;
3715
3716 /* XXX the notifier code should handle this better */
3717 if (!cn->notifier_head.head) {
3718 srcu_cleanup_notifier_head(&cn->notifier_head);
3719 list_del(&cn->node);
3720 kfree(cn);
3721 }
3722 break;
3723 }
3724 }
3725
3726 clk_prepare_unlock();
3727
3728 return ret;
3729 }
3730 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3731
3732 #ifdef CONFIG_OF
3733 /**
3734 * struct of_clk_provider - Clock provider registration structure
3735 * @link: Entry in global list of clock providers
3736 * @node: Pointer to device tree node of clock provider
3737 * @get: Get clock callback. Returns NULL or a struct clk for the
3738 * given clock specifier
3739 * @data: context pointer to be passed into @get callback
3740 */
3741 struct of_clk_provider {
3742 struct list_head link;
3743
3744 struct device_node *node;
3745 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3746 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3747 void *data;
3748 };
3749
3750 static const struct of_device_id __clk_of_table_sentinel
3751 __used __section(__clk_of_table_end);
3752
3753 static LIST_HEAD(of_clk_providers);
3754 static DEFINE_MUTEX(of_clk_mutex);
3755
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)3756 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3757 void *data)
3758 {
3759 return data;
3760 }
3761 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3762
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)3763 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3764 {
3765 return data;
3766 }
3767 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3768
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)3769 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3770 {
3771 struct clk_onecell_data *clk_data = data;
3772 unsigned int idx = clkspec->args[0];
3773
3774 if (idx >= clk_data->clk_num) {
3775 pr_err("%s: invalid clock index %u\n", __func__, idx);
3776 return ERR_PTR(-EINVAL);
3777 }
3778
3779 return clk_data->clks[idx];
3780 }
3781 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3782
3783 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)3784 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3785 {
3786 struct clk_hw_onecell_data *hw_data = data;
3787 unsigned int idx = clkspec->args[0];
3788
3789 if (idx >= hw_data->num) {
3790 pr_err("%s: invalid index %u\n", __func__, idx);
3791 return ERR_PTR(-EINVAL);
3792 }
3793
3794 return hw_data->hws[idx];
3795 }
3796 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3797
3798 /**
3799 * of_clk_add_provider() - Register a clock provider for a node
3800 * @np: Device node pointer associated with clock provider
3801 * @clk_src_get: callback for decoding clock
3802 * @data: context pointer for @clk_src_get callback.
3803 */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)3804 int of_clk_add_provider(struct device_node *np,
3805 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3806 void *data),
3807 void *data)
3808 {
3809 struct of_clk_provider *cp;
3810 int ret;
3811
3812 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3813 if (!cp)
3814 return -ENOMEM;
3815
3816 cp->node = of_node_get(np);
3817 cp->data = data;
3818 cp->get = clk_src_get;
3819
3820 mutex_lock(&of_clk_mutex);
3821 list_add(&cp->link, &of_clk_providers);
3822 mutex_unlock(&of_clk_mutex);
3823 pr_debug("Added clock from %pOF\n", np);
3824
3825 ret = of_clk_set_defaults(np, true);
3826 if (ret < 0)
3827 of_clk_del_provider(np);
3828
3829 return ret;
3830 }
3831 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3832
3833 /**
3834 * of_clk_add_hw_provider() - Register a clock provider for a node
3835 * @np: Device node pointer associated with clock provider
3836 * @get: callback for decoding clk_hw
3837 * @data: context pointer for @get callback.
3838 */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)3839 int of_clk_add_hw_provider(struct device_node *np,
3840 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3841 void *data),
3842 void *data)
3843 {
3844 struct of_clk_provider *cp;
3845 int ret;
3846
3847 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3848 if (!cp)
3849 return -ENOMEM;
3850
3851 cp->node = of_node_get(np);
3852 cp->data = data;
3853 cp->get_hw = get;
3854
3855 mutex_lock(&of_clk_mutex);
3856 list_add(&cp->link, &of_clk_providers);
3857 mutex_unlock(&of_clk_mutex);
3858 pr_debug("Added clk_hw provider from %pOF\n", np);
3859
3860 ret = of_clk_set_defaults(np, true);
3861 if (ret < 0)
3862 of_clk_del_provider(np);
3863
3864 return ret;
3865 }
3866 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3867
devm_of_clk_release_provider(struct device * dev,void * res)3868 static void devm_of_clk_release_provider(struct device *dev, void *res)
3869 {
3870 of_clk_del_provider(*(struct device_node **)res);
3871 }
3872
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)3873 int devm_of_clk_add_hw_provider(struct device *dev,
3874 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3875 void *data),
3876 void *data)
3877 {
3878 struct device_node **ptr, *np;
3879 int ret;
3880
3881 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3882 GFP_KERNEL);
3883 if (!ptr)
3884 return -ENOMEM;
3885
3886 np = dev->of_node;
3887 ret = of_clk_add_hw_provider(np, get, data);
3888 if (!ret) {
3889 *ptr = np;
3890 devres_add(dev, ptr);
3891 } else {
3892 devres_free(ptr);
3893 }
3894
3895 return ret;
3896 }
3897 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3898
3899 /**
3900 * of_clk_del_provider() - Remove a previously registered clock provider
3901 * @np: Device node pointer associated with clock provider
3902 */
of_clk_del_provider(struct device_node * np)3903 void of_clk_del_provider(struct device_node *np)
3904 {
3905 struct of_clk_provider *cp;
3906
3907 mutex_lock(&of_clk_mutex);
3908 list_for_each_entry(cp, &of_clk_providers, link) {
3909 if (cp->node == np) {
3910 list_del(&cp->link);
3911 of_node_put(cp->node);
3912 kfree(cp);
3913 break;
3914 }
3915 }
3916 mutex_unlock(&of_clk_mutex);
3917 }
3918 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3919
devm_clk_provider_match(struct device * dev,void * res,void * data)3920 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3921 {
3922 struct device_node **np = res;
3923
3924 if (WARN_ON(!np || !*np))
3925 return 0;
3926
3927 return *np == data;
3928 }
3929
devm_of_clk_del_provider(struct device * dev)3930 void devm_of_clk_del_provider(struct device *dev)
3931 {
3932 int ret;
3933
3934 ret = devres_release(dev, devm_of_clk_release_provider,
3935 devm_clk_provider_match, dev->of_node);
3936
3937 WARN_ON(ret);
3938 }
3939 EXPORT_SYMBOL(devm_of_clk_del_provider);
3940
3941 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)3942 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3943 struct of_phandle_args *clkspec)
3944 {
3945 struct clk *clk;
3946
3947 if (provider->get_hw)
3948 return provider->get_hw(clkspec, provider->data);
3949
3950 clk = provider->get(clkspec, provider->data);
3951 if (IS_ERR(clk))
3952 return ERR_CAST(clk);
3953 return __clk_get_hw(clk);
3954 }
3955
__of_clk_get_from_provider(struct of_phandle_args * clkspec,const char * dev_id,const char * con_id)3956 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3957 const char *dev_id, const char *con_id)
3958 {
3959 struct of_clk_provider *provider;
3960 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3961 struct clk_hw *hw;
3962
3963 if (!clkspec)
3964 return ERR_PTR(-EINVAL);
3965
3966 /* Check if we have such a provider in our array */
3967 mutex_lock(&of_clk_mutex);
3968 list_for_each_entry(provider, &of_clk_providers, link) {
3969 if (provider->node == clkspec->np) {
3970 hw = __of_clk_get_hw_from_provider(provider, clkspec);
3971 clk = __clk_create_clk(hw, dev_id, con_id);
3972 }
3973
3974 if (!IS_ERR(clk)) {
3975 if (!__clk_get(clk)) {
3976 __clk_free_clk(clk);
3977 clk = ERR_PTR(-ENOENT);
3978 }
3979
3980 break;
3981 }
3982 }
3983 mutex_unlock(&of_clk_mutex);
3984
3985 return clk;
3986 }
3987
3988 /**
3989 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3990 * @clkspec: pointer to a clock specifier data structure
3991 *
3992 * This function looks up a struct clk from the registered list of clock
3993 * providers, an input is a clock specifier data structure as returned
3994 * from the of_parse_phandle_with_args() function call.
3995 */
of_clk_get_from_provider(struct of_phandle_args * clkspec)3996 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3997 {
3998 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3999 }
4000 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4001
4002 /**
4003 * of_clk_get_parent_count() - Count the number of clocks a device node has
4004 * @np: device node to count
4005 *
4006 * Returns: The number of clocks that are possible parents of this node
4007 */
of_clk_get_parent_count(struct device_node * np)4008 unsigned int of_clk_get_parent_count(struct device_node *np)
4009 {
4010 int count;
4011
4012 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4013 if (count < 0)
4014 return 0;
4015
4016 return count;
4017 }
4018 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4019
of_clk_get_parent_name(struct device_node * np,int index)4020 const char *of_clk_get_parent_name(struct device_node *np, int index)
4021 {
4022 struct of_phandle_args clkspec;
4023 struct property *prop;
4024 const char *clk_name;
4025 const __be32 *vp;
4026 u32 pv;
4027 int rc;
4028 int count;
4029 struct clk *clk;
4030
4031 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4032 &clkspec);
4033 if (rc)
4034 return NULL;
4035
4036 index = clkspec.args_count ? clkspec.args[0] : 0;
4037 count = 0;
4038
4039 /* if there is an indices property, use it to transfer the index
4040 * specified into an array offset for the clock-output-names property.
4041 */
4042 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4043 if (index == pv) {
4044 index = count;
4045 break;
4046 }
4047 count++;
4048 }
4049 /* We went off the end of 'clock-indices' without finding it */
4050 if (prop && !vp)
4051 return NULL;
4052
4053 if (of_property_read_string_index(clkspec.np, "clock-output-names",
4054 index,
4055 &clk_name) < 0) {
4056 /*
4057 * Best effort to get the name if the clock has been
4058 * registered with the framework. If the clock isn't
4059 * registered, we return the node name as the name of
4060 * the clock as long as #clock-cells = 0.
4061 */
4062 clk = of_clk_get_from_provider(&clkspec);
4063 if (IS_ERR(clk)) {
4064 if (clkspec.args_count == 0)
4065 clk_name = clkspec.np->name;
4066 else
4067 clk_name = NULL;
4068 } else {
4069 clk_name = __clk_get_name(clk);
4070 clk_put(clk);
4071 }
4072 }
4073
4074
4075 of_node_put(clkspec.np);
4076 return clk_name;
4077 }
4078 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4079
4080 /**
4081 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4082 * number of parents
4083 * @np: Device node pointer associated with clock provider
4084 * @parents: pointer to char array that hold the parents' names
4085 * @size: size of the @parents array
4086 *
4087 * Return: number of parents for the clock node.
4088 */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)4089 int of_clk_parent_fill(struct device_node *np, const char **parents,
4090 unsigned int size)
4091 {
4092 unsigned int i = 0;
4093
4094 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4095 i++;
4096
4097 return i;
4098 }
4099 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4100
4101 struct clock_provider {
4102 void (*clk_init_cb)(struct device_node *);
4103 struct device_node *np;
4104 struct list_head node;
4105 };
4106
4107 /*
4108 * This function looks for a parent clock. If there is one, then it
4109 * checks that the provider for this parent clock was initialized, in
4110 * this case the parent clock will be ready.
4111 */
parent_ready(struct device_node * np)4112 static int parent_ready(struct device_node *np)
4113 {
4114 int i = 0;
4115
4116 while (true) {
4117 struct clk *clk = of_clk_get(np, i);
4118
4119 /* this parent is ready we can check the next one */
4120 if (!IS_ERR(clk)) {
4121 clk_put(clk);
4122 i++;
4123 continue;
4124 }
4125
4126 /* at least one parent is not ready, we exit now */
4127 if (PTR_ERR(clk) == -EPROBE_DEFER)
4128 return 0;
4129
4130 /*
4131 * Here we make assumption that the device tree is
4132 * written correctly. So an error means that there is
4133 * no more parent. As we didn't exit yet, then the
4134 * previous parent are ready. If there is no clock
4135 * parent, no need to wait for them, then we can
4136 * consider their absence as being ready
4137 */
4138 return 1;
4139 }
4140 }
4141
4142 /**
4143 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4144 * @np: Device node pointer associated with clock provider
4145 * @index: clock index
4146 * @flags: pointer to top-level framework flags
4147 *
4148 * Detects if the clock-critical property exists and, if so, sets the
4149 * corresponding CLK_IS_CRITICAL flag.
4150 *
4151 * Do not use this function. It exists only for legacy Device Tree
4152 * bindings, such as the one-clock-per-node style that are outdated.
4153 * Those bindings typically put all clock data into .dts and the Linux
4154 * driver has no clock data, thus making it impossible to set this flag
4155 * correctly from the driver. Only those drivers may call
4156 * of_clk_detect_critical from their setup functions.
4157 *
4158 * Return: error code or zero on success
4159 */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)4160 int of_clk_detect_critical(struct device_node *np,
4161 int index, unsigned long *flags)
4162 {
4163 struct property *prop;
4164 const __be32 *cur;
4165 uint32_t idx;
4166
4167 if (!np || !flags)
4168 return -EINVAL;
4169
4170 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4171 if (index == idx)
4172 *flags |= CLK_IS_CRITICAL;
4173
4174 return 0;
4175 }
4176
4177 /**
4178 * of_clk_init() - Scan and init clock providers from the DT
4179 * @matches: array of compatible values and init functions for providers.
4180 *
4181 * This function scans the device tree for matching clock providers
4182 * and calls their initialization functions. It also does it by trying
4183 * to follow the dependencies.
4184 */
of_clk_init(const struct of_device_id * matches)4185 void __init of_clk_init(const struct of_device_id *matches)
4186 {
4187 const struct of_device_id *match;
4188 struct device_node *np;
4189 struct clock_provider *clk_provider, *next;
4190 bool is_init_done;
4191 bool force = false;
4192 LIST_HEAD(clk_provider_list);
4193
4194 if (!matches)
4195 matches = &__clk_of_table;
4196
4197 /* First prepare the list of the clocks providers */
4198 for_each_matching_node_and_match(np, matches, &match) {
4199 struct clock_provider *parent;
4200
4201 if (!of_device_is_available(np))
4202 continue;
4203
4204 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4205 if (!parent) {
4206 list_for_each_entry_safe(clk_provider, next,
4207 &clk_provider_list, node) {
4208 list_del(&clk_provider->node);
4209 of_node_put(clk_provider->np);
4210 kfree(clk_provider);
4211 }
4212 of_node_put(np);
4213 return;
4214 }
4215
4216 parent->clk_init_cb = match->data;
4217 parent->np = of_node_get(np);
4218 list_add_tail(&parent->node, &clk_provider_list);
4219 }
4220
4221 while (!list_empty(&clk_provider_list)) {
4222 is_init_done = false;
4223 list_for_each_entry_safe(clk_provider, next,
4224 &clk_provider_list, node) {
4225 if (force || parent_ready(clk_provider->np)) {
4226
4227 /* Don't populate platform devices */
4228 of_node_set_flag(clk_provider->np,
4229 OF_POPULATED);
4230
4231 clk_provider->clk_init_cb(clk_provider->np);
4232 of_clk_set_defaults(clk_provider->np, true);
4233
4234 list_del(&clk_provider->node);
4235 of_node_put(clk_provider->np);
4236 kfree(clk_provider);
4237 is_init_done = true;
4238 }
4239 }
4240
4241 /*
4242 * We didn't manage to initialize any of the
4243 * remaining providers during the last loop, so now we
4244 * initialize all the remaining ones unconditionally
4245 * in case the clock parent was not mandatory
4246 */
4247 if (!is_init_done)
4248 force = true;
4249 }
4250 }
4251 #endif
4252