1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * linux/cgroup-defs.h - basic definitions for cgroup
4  *
5  * This file provides basic type and interface.  Include this file directly
6  * only if necessary to avoid cyclic dependencies.
7  */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10 
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 
24 #ifdef CONFIG_CGROUPS
25 
26 struct cgroup;
27 struct cgroup_root;
28 struct cgroup_subsys;
29 struct cgroup_taskset;
30 struct kernfs_node;
31 struct kernfs_ops;
32 struct kernfs_open_file;
33 struct seq_file;
34 
35 #define MAX_CGROUP_TYPE_NAMELEN 32
36 #define MAX_CGROUP_ROOT_NAMELEN 64
37 #define MAX_CFTYPE_NAME		64
38 
39 /* define the enumeration of all cgroup subsystems */
40 #define SUBSYS(_x) _x ## _cgrp_id,
41 enum cgroup_subsys_id {
42 #include <linux/cgroup_subsys.h>
43 	CGROUP_SUBSYS_COUNT,
44 };
45 #undef SUBSYS
46 
47 /* bits in struct cgroup_subsys_state flags field */
48 enum {
49 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
50 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
51 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
52 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
53 	CSS_DYING	= (1 << 4), /* css is dying */
54 };
55 
56 /* bits in struct cgroup flags field */
57 enum {
58 	/* Control Group requires release notifications to userspace */
59 	CGRP_NOTIFY_ON_RELEASE,
60 	/*
61 	 * Clone the parent's configuration when creating a new child
62 	 * cpuset cgroup.  For historical reasons, this option can be
63 	 * specified at mount time and thus is implemented here.
64 	 */
65 	CGRP_CPUSET_CLONE_CHILDREN,
66 };
67 
68 /* cgroup_root->flags */
69 enum {
70 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
71 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
72 
73 	/*
74 	 * Consider namespaces as delegation boundaries.  If this flag is
75 	 * set, controller specific interface files in a namespace root
76 	 * aren't writeable from inside the namespace.
77 	 */
78 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
79 
80 	/*
81 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
82 	 */
83 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
84 };
85 
86 /* cftype->flags */
87 enum {
88 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
89 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
90 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
91 
92 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
93 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
94 
95 	/* internal flags, do not use outside cgroup core proper */
96 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
97 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
98 };
99 
100 /*
101  * cgroup_file is the handle for a file instance created in a cgroup which
102  * is used, for example, to generate file changed notifications.  This can
103  * be obtained by setting cftype->file_offset.
104  */
105 struct cgroup_file {
106 	/* do not access any fields from outside cgroup core */
107 	struct kernfs_node *kn;
108 	unsigned long notified_at;
109 	struct timer_list notify_timer;
110 };
111 
112 /*
113  * Per-subsystem/per-cgroup state maintained by the system.  This is the
114  * fundamental structural building block that controllers deal with.
115  *
116  * Fields marked with "PI:" are public and immutable and may be accessed
117  * directly without synchronization.
118  */
119 struct cgroup_subsys_state {
120 	/* PI: the cgroup that this css is attached to */
121 	struct cgroup *cgroup;
122 
123 	/* PI: the cgroup subsystem that this css is attached to */
124 	struct cgroup_subsys *ss;
125 
126 	/* reference count - access via css_[try]get() and css_put() */
127 	struct percpu_ref refcnt;
128 
129 	/* siblings list anchored at the parent's ->children */
130 	struct list_head sibling;
131 	struct list_head children;
132 
133 	/* flush target list anchored at cgrp->rstat_css_list */
134 	struct list_head rstat_css_node;
135 
136 	/*
137 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
138 	 * matching css can be looked up using css_from_id().
139 	 */
140 	int id;
141 
142 	unsigned int flags;
143 
144 	/*
145 	 * Monotonically increasing unique serial number which defines a
146 	 * uniform order among all csses.  It's guaranteed that all
147 	 * ->children lists are in the ascending order of ->serial_nr and
148 	 * used to allow interrupting and resuming iterations.
149 	 */
150 	u64 serial_nr;
151 
152 	/*
153 	 * Incremented by online self and children.  Used to guarantee that
154 	 * parents are not offlined before their children.
155 	 */
156 	atomic_t online_cnt;
157 
158 	/* percpu_ref killing and RCU release */
159 	struct work_struct destroy_work;
160 	struct rcu_work destroy_rwork;
161 
162 	/*
163 	 * PI: the parent css.	Placed here for cache proximity to following
164 	 * fields of the containing structure.
165 	 */
166 	struct cgroup_subsys_state *parent;
167 };
168 
169 /*
170  * A css_set is a structure holding pointers to a set of
171  * cgroup_subsys_state objects. This saves space in the task struct
172  * object and speeds up fork()/exit(), since a single inc/dec and a
173  * list_add()/del() can bump the reference count on the entire cgroup
174  * set for a task.
175  */
176 struct css_set {
177 	/*
178 	 * Set of subsystem states, one for each subsystem. This array is
179 	 * immutable after creation apart from the init_css_set during
180 	 * subsystem registration (at boot time).
181 	 */
182 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
183 
184 	/* reference count */
185 	refcount_t refcount;
186 
187 	/*
188 	 * For a domain cgroup, the following points to self.  If threaded,
189 	 * to the matching cset of the nearest domain ancestor.  The
190 	 * dom_cset provides access to the domain cgroup and its csses to
191 	 * which domain level resource consumptions should be charged.
192 	 */
193 	struct css_set *dom_cset;
194 
195 	/* the default cgroup associated with this css_set */
196 	struct cgroup *dfl_cgrp;
197 
198 	/* internal task count, protected by css_set_lock */
199 	int nr_tasks;
200 
201 	/*
202 	 * Lists running through all tasks using this cgroup group.
203 	 * mg_tasks lists tasks which belong to this cset but are in the
204 	 * process of being migrated out or in.  Protected by
205 	 * css_set_rwsem, but, during migration, once tasks are moved to
206 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
207 	 */
208 	struct list_head tasks;
209 	struct list_head mg_tasks;
210 	struct list_head dying_tasks;
211 
212 	/* all css_task_iters currently walking this cset */
213 	struct list_head task_iters;
214 
215 	/*
216 	 * On the default hierarhcy, ->subsys[ssid] may point to a css
217 	 * attached to an ancestor instead of the cgroup this css_set is
218 	 * associated with.  The following node is anchored at
219 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
220 	 * iterate through all css's attached to a given cgroup.
221 	 */
222 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
223 
224 	/* all threaded csets whose ->dom_cset points to this cset */
225 	struct list_head threaded_csets;
226 	struct list_head threaded_csets_node;
227 
228 	/*
229 	 * List running through all cgroup groups in the same hash
230 	 * slot. Protected by css_set_lock
231 	 */
232 	struct hlist_node hlist;
233 
234 	/*
235 	 * List of cgrp_cset_links pointing at cgroups referenced from this
236 	 * css_set.  Protected by css_set_lock.
237 	 */
238 	struct list_head cgrp_links;
239 
240 	/*
241 	 * List of csets participating in the on-going migration either as
242 	 * source or destination.  Protected by cgroup_mutex.
243 	 */
244 	struct list_head mg_src_preload_node;
245 	struct list_head mg_dst_preload_node;
246 	struct list_head mg_node;
247 
248 	/*
249 	 * If this cset is acting as the source of migration the following
250 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
251 	 * respectively the source and destination cgroups of the on-going
252 	 * migration.  mg_dst_cset is the destination cset the target tasks
253 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
254 	 */
255 	struct cgroup *mg_src_cgrp;
256 	struct cgroup *mg_dst_cgrp;
257 	struct css_set *mg_dst_cset;
258 
259 	/* dead and being drained, ignore for migration */
260 	bool dead;
261 
262 	/* For RCU-protected deletion */
263 	struct rcu_head rcu_head;
264 };
265 
266 struct cgroup_base_stat {
267 	struct task_cputime cputime;
268 };
269 
270 /*
271  * rstat - cgroup scalable recursive statistics.  Accounting is done
272  * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
273  * hierarchy on reads.
274  *
275  * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
276  * linked into the updated tree.  On the following read, propagation only
277  * considers and consumes the updated tree.  This makes reading O(the
278  * number of descendants which have been active since last read) instead of
279  * O(the total number of descendants).
280  *
281  * This is important because there can be a lot of (draining) cgroups which
282  * aren't active and stat may be read frequently.  The combination can
283  * become very expensive.  By propagating selectively, increasing reading
284  * frequency decreases the cost of each read.
285  *
286  * This struct hosts both the fields which implement the above -
287  * updated_children and updated_next - and the fields which track basic
288  * resource statistics on top of it - bsync, bstat and last_bstat.
289  */
290 struct cgroup_rstat_cpu {
291 	/*
292 	 * ->bsync protects ->bstat.  These are the only fields which get
293 	 * updated in the hot path.
294 	 */
295 	struct u64_stats_sync bsync;
296 	struct cgroup_base_stat bstat;
297 
298 	/*
299 	 * Snapshots at the last reading.  These are used to calculate the
300 	 * deltas to propagate to the global counters.
301 	 */
302 	struct cgroup_base_stat last_bstat;
303 
304 	/*
305 	 * Child cgroups with stat updates on this cpu since the last read
306 	 * are linked on the parent's ->updated_children through
307 	 * ->updated_next.
308 	 *
309 	 * In addition to being more compact, singly-linked list pointing
310 	 * to the cgroup makes it unnecessary for each per-cpu struct to
311 	 * point back to the associated cgroup.
312 	 *
313 	 * Protected by per-cpu cgroup_rstat_cpu_lock.
314 	 */
315 	struct cgroup *updated_children;	/* terminated by self cgroup */
316 	struct cgroup *updated_next;		/* NULL iff not on the list */
317 };
318 
319 struct cgroup {
320 	/* self css with NULL ->ss, points back to this cgroup */
321 	struct cgroup_subsys_state self;
322 
323 	unsigned long flags;		/* "unsigned long" so bitops work */
324 
325 	/*
326 	 * idr allocated in-hierarchy ID.
327 	 *
328 	 * ID 0 is not used, the ID of the root cgroup is always 1, and a
329 	 * new cgroup will be assigned with a smallest available ID.
330 	 *
331 	 * Allocating/Removing ID must be protected by cgroup_mutex.
332 	 */
333 	int id;
334 
335 	/*
336 	 * The depth this cgroup is at.  The root is at depth zero and each
337 	 * step down the hierarchy increments the level.  This along with
338 	 * ancestor_ids[] can determine whether a given cgroup is a
339 	 * descendant of another without traversing the hierarchy.
340 	 */
341 	int level;
342 
343 	/* Maximum allowed descent tree depth */
344 	int max_depth;
345 
346 	/*
347 	 * Keep track of total numbers of visible and dying descent cgroups.
348 	 * Dying cgroups are cgroups which were deleted by a user,
349 	 * but are still existing because someone else is holding a reference.
350 	 * max_descendants is a maximum allowed number of descent cgroups.
351 	 *
352 	 * nr_descendants and nr_dying_descendants are protected
353 	 * by cgroup_mutex and css_set_lock. It's fine to read them holding
354 	 * any of cgroup_mutex and css_set_lock; for writing both locks
355 	 * should be held.
356 	 */
357 	int nr_descendants;
358 	int nr_dying_descendants;
359 	int max_descendants;
360 
361 	/*
362 	 * Each non-empty css_set associated with this cgroup contributes
363 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
364 	 * doesn't have any tasks.
365 	 *
366 	 * All children which have non-zero nr_populated_csets and/or
367 	 * nr_populated_children of their own contribute one to either
368 	 * nr_populated_domain_children or nr_populated_threaded_children
369 	 * depending on their type.  Each counter is zero iff all cgroups
370 	 * of the type in the subtree proper don't have any tasks.
371 	 */
372 	int nr_populated_csets;
373 	int nr_populated_domain_children;
374 	int nr_populated_threaded_children;
375 
376 	int nr_threaded_children;	/* # of live threaded child cgroups */
377 
378 	struct kernfs_node *kn;		/* cgroup kernfs entry */
379 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
380 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
381 
382 	/*
383 	 * The bitmask of subsystems enabled on the child cgroups.
384 	 * ->subtree_control is the one configured through
385 	 * "cgroup.subtree_control" while ->child_ss_mask is the effective
386 	 * one which may have more subsystems enabled.  Controller knobs
387 	 * are made available iff it's enabled in ->subtree_control.
388 	 */
389 	u16 subtree_control;
390 	u16 subtree_ss_mask;
391 	u16 old_subtree_control;
392 	u16 old_subtree_ss_mask;
393 
394 	/* Private pointers for each registered subsystem */
395 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
396 
397 	struct cgroup_root *root;
398 
399 	/*
400 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
401 	 * cgroup.  Protected by css_set_lock.
402 	 */
403 	struct list_head cset_links;
404 
405 	/*
406 	 * On the default hierarchy, a css_set for a cgroup with some
407 	 * susbsys disabled will point to css's which are associated with
408 	 * the closest ancestor which has the subsys enabled.  The
409 	 * following lists all css_sets which point to this cgroup's css
410 	 * for the given subsystem.
411 	 */
412 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
413 
414 	/*
415 	 * If !threaded, self.  If threaded, it points to the nearest
416 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
417 	 * from process granularity and no-internal-task constraint.
418 	 * Domain level resource consumptions which aren't tied to a
419 	 * specific task are charged to the dom_cgrp.
420 	 */
421 	struct cgroup *dom_cgrp;
422 	struct cgroup *old_dom_cgrp;		/* used while enabling threaded */
423 
424 	/* per-cpu recursive resource statistics */
425 	struct cgroup_rstat_cpu __percpu *rstat_cpu;
426 	struct list_head rstat_css_list;
427 
428 	/* cgroup basic resource statistics */
429 	struct cgroup_base_stat pending_bstat;	/* pending from children */
430 	struct cgroup_base_stat bstat;
431 	struct prev_cputime prev_cputime;	/* for printing out cputime */
432 
433 	/*
434 	 * list of pidlists, up to two for each namespace (one for procs, one
435 	 * for tasks); created on demand.
436 	 */
437 	struct list_head pidlists;
438 	struct mutex pidlist_mutex;
439 
440 	/* used to wait for offlining of csses */
441 	wait_queue_head_t offline_waitq;
442 
443 	/* used to schedule release agent */
444 	struct work_struct release_agent_work;
445 
446 	/* used to store eBPF programs */
447 	struct cgroup_bpf bpf;
448 
449 	/* If there is block congestion on this cgroup. */
450 	atomic_t congestion_count;
451 
452 	/* ids of the ancestors at each level including self */
453 	int ancestor_ids[];
454 };
455 
456 /*
457  * A cgroup_root represents the root of a cgroup hierarchy, and may be
458  * associated with a kernfs_root to form an active hierarchy.  This is
459  * internal to cgroup core.  Don't access directly from controllers.
460  */
461 struct cgroup_root {
462 	struct kernfs_root *kf_root;
463 
464 	/* The bitmask of subsystems attached to this hierarchy */
465 	unsigned int subsys_mask;
466 
467 	/* Unique id for this hierarchy. */
468 	int hierarchy_id;
469 
470 	/* The root cgroup.  Root is destroyed on its release. */
471 	struct cgroup cgrp;
472 
473 	/* for cgrp->ancestor_ids[0] */
474 	int cgrp_ancestor_id_storage;
475 
476 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
477 	atomic_t nr_cgrps;
478 
479 	/* A list running through the active hierarchies */
480 	struct list_head root_list;
481 
482 	/* Hierarchy-specific flags */
483 	unsigned int flags;
484 
485 	/* IDs for cgroups in this hierarchy */
486 	struct idr cgroup_idr;
487 
488 	/* The path to use for release notifications. */
489 	char release_agent_path[PATH_MAX];
490 
491 	/* The name for this hierarchy - may be empty */
492 	char name[MAX_CGROUP_ROOT_NAMELEN];
493 };
494 
495 /*
496  * struct cftype: handler definitions for cgroup control files
497  *
498  * When reading/writing to a file:
499  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
500  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
501  */
502 struct cftype {
503 	/*
504 	 * By convention, the name should begin with the name of the
505 	 * subsystem, followed by a period.  Zero length string indicates
506 	 * end of cftype array.
507 	 */
508 	char name[MAX_CFTYPE_NAME];
509 	unsigned long private;
510 
511 	/*
512 	 * The maximum length of string, excluding trailing nul, that can
513 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
514 	 */
515 	size_t max_write_len;
516 
517 	/* CFTYPE_* flags */
518 	unsigned int flags;
519 
520 	/*
521 	 * If non-zero, should contain the offset from the start of css to
522 	 * a struct cgroup_file field.  cgroup will record the handle of
523 	 * the created file into it.  The recorded handle can be used as
524 	 * long as the containing css remains accessible.
525 	 */
526 	unsigned int file_offset;
527 
528 	/*
529 	 * Fields used for internal bookkeeping.  Initialized automatically
530 	 * during registration.
531 	 */
532 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
533 	struct list_head node;		/* anchored at ss->cfts */
534 	struct kernfs_ops *kf_ops;
535 
536 	int (*open)(struct kernfs_open_file *of);
537 	void (*release)(struct kernfs_open_file *of);
538 
539 	/*
540 	 * read_u64() is a shortcut for the common case of returning a
541 	 * single integer. Use it in place of read()
542 	 */
543 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
544 	/*
545 	 * read_s64() is a signed version of read_u64()
546 	 */
547 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
548 
549 	/* generic seq_file read interface */
550 	int (*seq_show)(struct seq_file *sf, void *v);
551 
552 	/* optional ops, implement all or none */
553 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
554 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
555 	void (*seq_stop)(struct seq_file *sf, void *v);
556 
557 	/*
558 	 * write_u64() is a shortcut for the common case of accepting
559 	 * a single integer (as parsed by simple_strtoull) from
560 	 * userspace. Use in place of write(); return 0 or error.
561 	 */
562 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
563 			 u64 val);
564 	/*
565 	 * write_s64() is a signed version of write_u64()
566 	 */
567 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
568 			 s64 val);
569 
570 	/*
571 	 * write() is the generic write callback which maps directly to
572 	 * kernfs write operation and overrides all other operations.
573 	 * Maximum write size is determined by ->max_write_len.  Use
574 	 * of_css/cft() to access the associated css and cft.
575 	 */
576 	ssize_t (*write)(struct kernfs_open_file *of,
577 			 char *buf, size_t nbytes, loff_t off);
578 
579 #ifdef CONFIG_DEBUG_LOCK_ALLOC
580 	struct lock_class_key	lockdep_key;
581 #endif
582 };
583 
584 /*
585  * Control Group subsystem type.
586  * See Documentation/cgroup-v1/cgroups.txt for details
587  */
588 struct cgroup_subsys {
589 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
590 	int (*css_online)(struct cgroup_subsys_state *css);
591 	void (*css_offline)(struct cgroup_subsys_state *css);
592 	void (*css_released)(struct cgroup_subsys_state *css);
593 	void (*css_free)(struct cgroup_subsys_state *css);
594 	void (*css_reset)(struct cgroup_subsys_state *css);
595 	void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
596 	int (*css_extra_stat_show)(struct seq_file *seq,
597 				   struct cgroup_subsys_state *css);
598 
599 	int (*can_attach)(struct cgroup_taskset *tset);
600 	void (*cancel_attach)(struct cgroup_taskset *tset);
601 	void (*attach)(struct cgroup_taskset *tset);
602 	void (*post_attach)(void);
603 	int (*can_fork)(struct task_struct *task);
604 	void (*cancel_fork)(struct task_struct *task);
605 	void (*fork)(struct task_struct *task);
606 	void (*exit)(struct task_struct *task);
607 	void (*release)(struct task_struct *task);
608 	void (*bind)(struct cgroup_subsys_state *root_css);
609 
610 	bool early_init:1;
611 
612 	/*
613 	 * If %true, the controller, on the default hierarchy, doesn't show
614 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
615 	 * implicitly enabled on all cgroups on the default hierarchy, and
616 	 * bypasses the "no internal process" constraint.  This is for
617 	 * utility type controllers which is transparent to userland.
618 	 *
619 	 * An implicit controller can be stolen from the default hierarchy
620 	 * anytime and thus must be okay with offline csses from previous
621 	 * hierarchies coexisting with csses for the current one.
622 	 */
623 	bool implicit_on_dfl:1;
624 
625 	/*
626 	 * If %true, the controller, supports threaded mode on the default
627 	 * hierarchy.  In a threaded subtree, both process granularity and
628 	 * no-internal-process constraint are ignored and a threaded
629 	 * controllers should be able to handle that.
630 	 *
631 	 * Note that as an implicit controller is automatically enabled on
632 	 * all cgroups on the default hierarchy, it should also be
633 	 * threaded.  implicit && !threaded is not supported.
634 	 */
635 	bool threaded:1;
636 
637 	/*
638 	 * If %false, this subsystem is properly hierarchical -
639 	 * configuration, resource accounting and restriction on a parent
640 	 * cgroup cover those of its children.  If %true, hierarchy support
641 	 * is broken in some ways - some subsystems ignore hierarchy
642 	 * completely while others are only implemented half-way.
643 	 *
644 	 * It's now disallowed to create nested cgroups if the subsystem is
645 	 * broken and cgroup core will emit a warning message on such
646 	 * cases.  Eventually, all subsystems will be made properly
647 	 * hierarchical and this will go away.
648 	 */
649 	bool broken_hierarchy:1;
650 	bool warned_broken_hierarchy:1;
651 
652 	/* the following two fields are initialized automtically during boot */
653 	int id;
654 	const char *name;
655 
656 	/* optional, initialized automatically during boot if not set */
657 	const char *legacy_name;
658 
659 	/* link to parent, protected by cgroup_lock() */
660 	struct cgroup_root *root;
661 
662 	/* idr for css->id */
663 	struct idr css_idr;
664 
665 	/*
666 	 * List of cftypes.  Each entry is the first entry of an array
667 	 * terminated by zero length name.
668 	 */
669 	struct list_head cfts;
670 
671 	/*
672 	 * Base cftypes which are automatically registered.  The two can
673 	 * point to the same array.
674 	 */
675 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
676 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
677 
678 	/*
679 	 * A subsystem may depend on other subsystems.  When such subsystem
680 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
681 	 * together if available.  Subsystems enabled due to dependency are
682 	 * not visible to userland until explicitly enabled.  The following
683 	 * specifies the mask of subsystems that this one depends on.
684 	 */
685 	unsigned int depends_on;
686 };
687 
688 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
689 
690 /**
691  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
692  * @tsk: target task
693  *
694  * Allows cgroup operations to synchronize against threadgroup changes
695  * using a percpu_rw_semaphore.
696  */
cgroup_threadgroup_change_begin(struct task_struct * tsk)697 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
698 {
699 	percpu_down_read(&cgroup_threadgroup_rwsem);
700 }
701 
702 /**
703  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
704  * @tsk: target task
705  *
706  * Counterpart of cgroup_threadcgroup_change_begin().
707  */
cgroup_threadgroup_change_end(struct task_struct * tsk)708 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
709 {
710 	percpu_up_read(&cgroup_threadgroup_rwsem);
711 }
712 
713 #else	/* CONFIG_CGROUPS */
714 
715 #define CGROUP_SUBSYS_COUNT 0
716 
cgroup_threadgroup_change_begin(struct task_struct * tsk)717 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
718 {
719 	might_sleep();
720 }
721 
cgroup_threadgroup_change_end(struct task_struct * tsk)722 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
723 
724 #endif	/* CONFIG_CGROUPS */
725 
726 #ifdef CONFIG_SOCK_CGROUP_DATA
727 
728 /*
729  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
730  * per-socket cgroup information except for memcg association.
731  *
732  * On legacy hierarchies, net_prio and net_cls controllers directly set
733  * attributes on each sock which can then be tested by the network layer.
734  * On the default hierarchy, each sock is associated with the cgroup it was
735  * created in and the networking layer can match the cgroup directly.
736  *
737  * To avoid carrying all three cgroup related fields separately in sock,
738  * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
739  * On boot, sock_cgroup_data records the cgroup that the sock was created
740  * in so that cgroup2 matches can be made; however, once either net_prio or
741  * net_cls starts being used, the area is overriden to carry prioidx and/or
742  * classid.  The two modes are distinguished by whether the lowest bit is
743  * set.  Clear bit indicates cgroup pointer while set bit prioidx and
744  * classid.
745  *
746  * While userland may start using net_prio or net_cls at any time, once
747  * either is used, cgroup2 matching no longer works.  There is no reason to
748  * mix the two and this is in line with how legacy and v2 compatibility is
749  * handled.  On mode switch, cgroup references which are already being
750  * pointed to by socks may be leaked.  While this can be remedied by adding
751  * synchronization around sock_cgroup_data, given that the number of leaked
752  * cgroups is bound and highly unlikely to be high, this seems to be the
753  * better trade-off.
754  */
755 struct sock_cgroup_data {
756 	union {
757 #ifdef __LITTLE_ENDIAN
758 		struct {
759 			u8	is_data : 1;
760 			u8	no_refcnt : 1;
761 			u8	unused : 6;
762 			u8	padding;
763 			u16	prioidx;
764 			u32	classid;
765 		} __packed;
766 #else
767 		struct {
768 			u32	classid;
769 			u16	prioidx;
770 			u8	padding;
771 			u8	unused : 6;
772 			u8	no_refcnt : 1;
773 			u8	is_data : 1;
774 		} __packed;
775 #endif
776 		u64		val;
777 	};
778 };
779 
780 /*
781  * There's a theoretical window where the following accessors race with
782  * updaters and return part of the previous pointer as the prioidx or
783  * classid.  Such races are short-lived and the result isn't critical.
784  */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)785 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
786 {
787 	/* fallback to 1 which is always the ID of the root cgroup */
788 	return (skcd->is_data & 1) ? skcd->prioidx : 1;
789 }
790 
sock_cgroup_classid(const struct sock_cgroup_data * skcd)791 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
792 {
793 	/* fallback to 0 which is the unconfigured default classid */
794 	return (skcd->is_data & 1) ? skcd->classid : 0;
795 }
796 
797 /*
798  * If invoked concurrently, the updaters may clobber each other.  The
799  * caller is responsible for synchronization.
800  */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)801 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
802 					   u16 prioidx)
803 {
804 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
805 
806 	if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
807 		return;
808 
809 	if (!(skcd_buf.is_data & 1)) {
810 		skcd_buf.val = 0;
811 		skcd_buf.is_data = 1;
812 	}
813 
814 	skcd_buf.prioidx = prioidx;
815 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
816 }
817 
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)818 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
819 					   u32 classid)
820 {
821 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
822 
823 	if (sock_cgroup_classid(&skcd_buf) == classid)
824 		return;
825 
826 	if (!(skcd_buf.is_data & 1)) {
827 		skcd_buf.val = 0;
828 		skcd_buf.is_data = 1;
829 	}
830 
831 	skcd_buf.classid = classid;
832 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
833 }
834 
835 #else	/* CONFIG_SOCK_CGROUP_DATA */
836 
837 struct sock_cgroup_data {
838 };
839 
840 #endif	/* CONFIG_SOCK_CGROUP_DATA */
841 
842 #endif	/* _LINUX_CGROUP_DEFS_H */
843