1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 };
34
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/jump_label_ratelimit.h>
53 #include <linux/atomic.h>
54 #include <linux/sysfs.h>
55 #include <linux/perf_regs.h>
56 #include <linux/workqueue.h>
57 #include <linux/cgroup.h>
58 #include <asm/local.h>
59
60 struct perf_callchain_entry {
61 __u64 nr;
62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
63 };
64
65 struct perf_callchain_entry_ctx {
66 struct perf_callchain_entry *entry;
67 u32 max_stack;
68 u32 nr;
69 short contexts;
70 bool contexts_maxed;
71 };
72
73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
74 unsigned long off, unsigned long len);
75
76 struct perf_raw_frag {
77 union {
78 struct perf_raw_frag *next;
79 unsigned long pad;
80 };
81 perf_copy_f copy;
82 void *data;
83 u32 size;
84 } __packed;
85
86 struct perf_raw_record {
87 struct perf_raw_frag frag;
88 u32 size;
89 };
90
91 /*
92 * branch stack layout:
93 * nr: number of taken branches stored in entries[]
94 *
95 * Note that nr can vary from sample to sample
96 * branches (to, from) are stored from most recent
97 * to least recent, i.e., entries[0] contains the most
98 * recent branch.
99 */
100 struct perf_branch_stack {
101 __u64 nr;
102 struct perf_branch_entry entries[0];
103 };
104
105 struct task_struct;
106
107 /*
108 * extra PMU register associated with an event
109 */
110 struct hw_perf_event_extra {
111 u64 config; /* register value */
112 unsigned int reg; /* register address or index */
113 int alloc; /* extra register already allocated */
114 int idx; /* index in shared_regs->regs[] */
115 };
116
117 /**
118 * struct hw_perf_event - performance event hardware details:
119 */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122 union {
123 struct { /* hardware */
124 u64 config;
125 u64 last_tag;
126 unsigned long config_base;
127 unsigned long event_base;
128 int event_base_rdpmc;
129 int idx;
130 int last_cpu;
131 int flags;
132
133 struct hw_perf_event_extra extra_reg;
134 struct hw_perf_event_extra branch_reg;
135 };
136 struct { /* software */
137 struct hrtimer hrtimer;
138 };
139 struct { /* tracepoint */
140 /* for tp_event->class */
141 struct list_head tp_list;
142 };
143 struct { /* amd_power */
144 u64 pwr_acc;
145 u64 ptsc;
146 };
147 #ifdef CONFIG_HAVE_HW_BREAKPOINT
148 struct { /* breakpoint */
149 /*
150 * Crufty hack to avoid the chicken and egg
151 * problem hw_breakpoint has with context
152 * creation and event initalization.
153 */
154 struct arch_hw_breakpoint info;
155 struct list_head bp_list;
156 };
157 #endif
158 struct { /* amd_iommu */
159 u8 iommu_bank;
160 u8 iommu_cntr;
161 u16 padding;
162 u64 conf;
163 u64 conf1;
164 };
165 };
166 /*
167 * If the event is a per task event, this will point to the task in
168 * question. See the comment in perf_event_alloc().
169 */
170 struct task_struct *target;
171
172 /*
173 * PMU would store hardware filter configuration
174 * here.
175 */
176 void *addr_filters;
177
178 /* Last sync'ed generation of filters */
179 unsigned long addr_filters_gen;
180
181 /*
182 * hw_perf_event::state flags; used to track the PERF_EF_* state.
183 */
184 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
185 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
186 #define PERF_HES_ARCH 0x04
187
188 int state;
189
190 /*
191 * The last observed hardware counter value, updated with a
192 * local64_cmpxchg() such that pmu::read() can be called nested.
193 */
194 local64_t prev_count;
195
196 /*
197 * The period to start the next sample with.
198 */
199 u64 sample_period;
200
201 /*
202 * The period we started this sample with.
203 */
204 u64 last_period;
205
206 /*
207 * However much is left of the current period; note that this is
208 * a full 64bit value and allows for generation of periods longer
209 * than hardware might allow.
210 */
211 local64_t period_left;
212
213 /*
214 * State for throttling the event, see __perf_event_overflow() and
215 * perf_adjust_freq_unthr_context().
216 */
217 u64 interrupts_seq;
218 u64 interrupts;
219
220 /*
221 * State for freq target events, see __perf_event_overflow() and
222 * perf_adjust_freq_unthr_context().
223 */
224 u64 freq_time_stamp;
225 u64 freq_count_stamp;
226 #endif
227 };
228
229 struct perf_event;
230
231 /*
232 * Common implementation detail of pmu::{start,commit,cancel}_txn
233 */
234 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
235 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
236
237 /**
238 * pmu::capabilities flags
239 */
240 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
241 #define PERF_PMU_CAP_NO_NMI 0x02
242 #define PERF_PMU_CAP_AUX_NO_SG 0x04
243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
244 #define PERF_PMU_CAP_EXCLUSIVE 0x10
245 #define PERF_PMU_CAP_ITRACE 0x20
246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
247
248 /**
249 * struct pmu - generic performance monitoring unit
250 */
251 struct pmu {
252 struct list_head entry;
253
254 struct module *module;
255 struct device *dev;
256 const struct attribute_group **attr_groups;
257 const char *name;
258 int type;
259
260 /*
261 * various common per-pmu feature flags
262 */
263 int capabilities;
264
265 int * __percpu pmu_disable_count;
266 struct perf_cpu_context * __percpu pmu_cpu_context;
267 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
268 int task_ctx_nr;
269 int hrtimer_interval_ms;
270
271 /* number of address filters this PMU can do */
272 unsigned int nr_addr_filters;
273
274 /*
275 * Fully disable/enable this PMU, can be used to protect from the PMI
276 * as well as for lazy/batch writing of the MSRs.
277 */
278 void (*pmu_enable) (struct pmu *pmu); /* optional */
279 void (*pmu_disable) (struct pmu *pmu); /* optional */
280
281 /*
282 * Try and initialize the event for this PMU.
283 *
284 * Returns:
285 * -ENOENT -- @event is not for this PMU
286 *
287 * -ENODEV -- @event is for this PMU but PMU not present
288 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
289 * -EINVAL -- @event is for this PMU but @event is not valid
290 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
291 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
292 *
293 * 0 -- @event is for this PMU and valid
294 *
295 * Other error return values are allowed.
296 */
297 int (*event_init) (struct perf_event *event);
298
299 /*
300 * Notification that the event was mapped or unmapped. Called
301 * in the context of the mapping task.
302 */
303 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
304 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
305
306 /*
307 * Flags for ->add()/->del()/ ->start()/->stop(). There are
308 * matching hw_perf_event::state flags.
309 */
310 #define PERF_EF_START 0x01 /* start the counter when adding */
311 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
312 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
313
314 /*
315 * Adds/Removes a counter to/from the PMU, can be done inside a
316 * transaction, see the ->*_txn() methods.
317 *
318 * The add/del callbacks will reserve all hardware resources required
319 * to service the event, this includes any counter constraint
320 * scheduling etc.
321 *
322 * Called with IRQs disabled and the PMU disabled on the CPU the event
323 * is on.
324 *
325 * ->add() called without PERF_EF_START should result in the same state
326 * as ->add() followed by ->stop().
327 *
328 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
329 * ->stop() that must deal with already being stopped without
330 * PERF_EF_UPDATE.
331 */
332 int (*add) (struct perf_event *event, int flags);
333 void (*del) (struct perf_event *event, int flags);
334
335 /*
336 * Starts/Stops a counter present on the PMU.
337 *
338 * The PMI handler should stop the counter when perf_event_overflow()
339 * returns !0. ->start() will be used to continue.
340 *
341 * Also used to change the sample period.
342 *
343 * Called with IRQs disabled and the PMU disabled on the CPU the event
344 * is on -- will be called from NMI context with the PMU generates
345 * NMIs.
346 *
347 * ->stop() with PERF_EF_UPDATE will read the counter and update
348 * period/count values like ->read() would.
349 *
350 * ->start() with PERF_EF_RELOAD will reprogram the the counter
351 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
352 */
353 void (*start) (struct perf_event *event, int flags);
354 void (*stop) (struct perf_event *event, int flags);
355
356 /*
357 * Updates the counter value of the event.
358 *
359 * For sampling capable PMUs this will also update the software period
360 * hw_perf_event::period_left field.
361 */
362 void (*read) (struct perf_event *event);
363
364 /*
365 * Group events scheduling is treated as a transaction, add
366 * group events as a whole and perform one schedulability test.
367 * If the test fails, roll back the whole group
368 *
369 * Start the transaction, after this ->add() doesn't need to
370 * do schedulability tests.
371 *
372 * Optional.
373 */
374 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
375 /*
376 * If ->start_txn() disabled the ->add() schedulability test
377 * then ->commit_txn() is required to perform one. On success
378 * the transaction is closed. On error the transaction is kept
379 * open until ->cancel_txn() is called.
380 *
381 * Optional.
382 */
383 int (*commit_txn) (struct pmu *pmu);
384 /*
385 * Will cancel the transaction, assumes ->del() is called
386 * for each successful ->add() during the transaction.
387 *
388 * Optional.
389 */
390 void (*cancel_txn) (struct pmu *pmu);
391
392 /*
393 * Will return the value for perf_event_mmap_page::index for this event,
394 * if no implementation is provided it will default to: event->hw.idx + 1.
395 */
396 int (*event_idx) (struct perf_event *event); /*optional */
397
398 /*
399 * context-switches callback
400 */
401 void (*sched_task) (struct perf_event_context *ctx,
402 bool sched_in);
403 /*
404 * PMU specific data size
405 */
406 size_t task_ctx_size;
407
408
409 /*
410 * Set up pmu-private data structures for an AUX area
411 */
412 void *(*setup_aux) (struct perf_event *event, void **pages,
413 int nr_pages, bool overwrite);
414 /* optional */
415
416 /*
417 * Free pmu-private AUX data structures
418 */
419 void (*free_aux) (void *aux); /* optional */
420
421 /*
422 * Validate address range filters: make sure the HW supports the
423 * requested configuration and number of filters; return 0 if the
424 * supplied filters are valid, -errno otherwise.
425 *
426 * Runs in the context of the ioctl()ing process and is not serialized
427 * with the rest of the PMU callbacks.
428 */
429 int (*addr_filters_validate) (struct list_head *filters);
430 /* optional */
431
432 /*
433 * Synchronize address range filter configuration:
434 * translate hw-agnostic filters into hardware configuration in
435 * event::hw::addr_filters.
436 *
437 * Runs as a part of filter sync sequence that is done in ->start()
438 * callback by calling perf_event_addr_filters_sync().
439 *
440 * May (and should) traverse event::addr_filters::list, for which its
441 * caller provides necessary serialization.
442 */
443 void (*addr_filters_sync) (struct perf_event *event);
444 /* optional */
445
446 /*
447 * Filter events for PMU-specific reasons.
448 */
449 int (*filter_match) (struct perf_event *event); /* optional */
450
451 /*
452 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
453 */
454 int (*check_period) (struct perf_event *event, u64 value); /* optional */
455 };
456
457 enum perf_addr_filter_action_t {
458 PERF_ADDR_FILTER_ACTION_STOP = 0,
459 PERF_ADDR_FILTER_ACTION_START,
460 PERF_ADDR_FILTER_ACTION_FILTER,
461 };
462
463 /**
464 * struct perf_addr_filter - address range filter definition
465 * @entry: event's filter list linkage
466 * @inode: object file's inode for file-based filters
467 * @offset: filter range offset
468 * @size: filter range size (size==0 means single address trigger)
469 * @action: filter/start/stop
470 *
471 * This is a hardware-agnostic filter configuration as specified by the user.
472 */
473 struct perf_addr_filter {
474 struct list_head entry;
475 struct path path;
476 unsigned long offset;
477 unsigned long size;
478 enum perf_addr_filter_action_t action;
479 };
480
481 /**
482 * struct perf_addr_filters_head - container for address range filters
483 * @list: list of filters for this event
484 * @lock: spinlock that serializes accesses to the @list and event's
485 * (and its children's) filter generations.
486 * @nr_file_filters: number of file-based filters
487 *
488 * A child event will use parent's @list (and therefore @lock), so they are
489 * bundled together; see perf_event_addr_filters().
490 */
491 struct perf_addr_filters_head {
492 struct list_head list;
493 raw_spinlock_t lock;
494 unsigned int nr_file_filters;
495 };
496
497 struct perf_addr_filter_range {
498 unsigned long start;
499 unsigned long size;
500 };
501
502 /**
503 * enum perf_event_state - the states of an event:
504 */
505 enum perf_event_state {
506 PERF_EVENT_STATE_DEAD = -4,
507 PERF_EVENT_STATE_EXIT = -3,
508 PERF_EVENT_STATE_ERROR = -2,
509 PERF_EVENT_STATE_OFF = -1,
510 PERF_EVENT_STATE_INACTIVE = 0,
511 PERF_EVENT_STATE_ACTIVE = 1,
512 };
513
514 struct file;
515 struct perf_sample_data;
516
517 typedef void (*perf_overflow_handler_t)(struct perf_event *,
518 struct perf_sample_data *,
519 struct pt_regs *regs);
520
521 /*
522 * Event capabilities. For event_caps and groups caps.
523 *
524 * PERF_EV_CAP_SOFTWARE: Is a software event.
525 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
526 * from any CPU in the package where it is active.
527 */
528 #define PERF_EV_CAP_SOFTWARE BIT(0)
529 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
530
531 #define SWEVENT_HLIST_BITS 8
532 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
533
534 struct swevent_hlist {
535 struct hlist_head heads[SWEVENT_HLIST_SIZE];
536 struct rcu_head rcu_head;
537 };
538
539 #define PERF_ATTACH_CONTEXT 0x01
540 #define PERF_ATTACH_GROUP 0x02
541 #define PERF_ATTACH_TASK 0x04
542 #define PERF_ATTACH_TASK_DATA 0x08
543 #define PERF_ATTACH_ITRACE 0x10
544
545 struct perf_cgroup;
546 struct ring_buffer;
547
548 struct pmu_event_list {
549 raw_spinlock_t lock;
550 struct list_head list;
551 };
552
553 #define for_each_sibling_event(sibling, event) \
554 if ((event)->group_leader == (event)) \
555 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
556
557 /**
558 * struct perf_event - performance event kernel representation:
559 */
560 struct perf_event {
561 #ifdef CONFIG_PERF_EVENTS
562 /*
563 * entry onto perf_event_context::event_list;
564 * modifications require ctx->lock
565 * RCU safe iterations.
566 */
567 struct list_head event_entry;
568
569 /*
570 * Locked for modification by both ctx->mutex and ctx->lock; holding
571 * either sufficies for read.
572 */
573 struct list_head sibling_list;
574 struct list_head active_list;
575 /*
576 * Node on the pinned or flexible tree located at the event context;
577 */
578 struct rb_node group_node;
579 u64 group_index;
580 /*
581 * We need storage to track the entries in perf_pmu_migrate_context; we
582 * cannot use the event_entry because of RCU and we want to keep the
583 * group in tact which avoids us using the other two entries.
584 */
585 struct list_head migrate_entry;
586
587 struct hlist_node hlist_entry;
588 struct list_head active_entry;
589 int nr_siblings;
590
591 /* Not serialized. Only written during event initialization. */
592 int event_caps;
593 /* The cumulative AND of all event_caps for events in this group. */
594 int group_caps;
595
596 struct perf_event *group_leader;
597 struct pmu *pmu;
598 void *pmu_private;
599
600 enum perf_event_state state;
601 unsigned int attach_state;
602 local64_t count;
603 atomic64_t child_count;
604
605 /*
606 * These are the total time in nanoseconds that the event
607 * has been enabled (i.e. eligible to run, and the task has
608 * been scheduled in, if this is a per-task event)
609 * and running (scheduled onto the CPU), respectively.
610 */
611 u64 total_time_enabled;
612 u64 total_time_running;
613 u64 tstamp;
614
615 /*
616 * timestamp shadows the actual context timing but it can
617 * be safely used in NMI interrupt context. It reflects the
618 * context time as it was when the event was last scheduled in.
619 *
620 * ctx_time already accounts for ctx->timestamp. Therefore to
621 * compute ctx_time for a sample, simply add perf_clock().
622 */
623 u64 shadow_ctx_time;
624
625 struct perf_event_attr attr;
626 u16 header_size;
627 u16 id_header_size;
628 u16 read_size;
629 struct hw_perf_event hw;
630
631 struct perf_event_context *ctx;
632 atomic_long_t refcount;
633
634 /*
635 * These accumulate total time (in nanoseconds) that children
636 * events have been enabled and running, respectively.
637 */
638 atomic64_t child_total_time_enabled;
639 atomic64_t child_total_time_running;
640
641 /*
642 * Protect attach/detach and child_list:
643 */
644 struct mutex child_mutex;
645 struct list_head child_list;
646 struct perf_event *parent;
647
648 int oncpu;
649 int cpu;
650
651 struct list_head owner_entry;
652 struct task_struct *owner;
653
654 /* mmap bits */
655 struct mutex mmap_mutex;
656 atomic_t mmap_count;
657
658 struct ring_buffer *rb;
659 struct list_head rb_entry;
660 unsigned long rcu_batches;
661 int rcu_pending;
662
663 /* poll related */
664 wait_queue_head_t waitq;
665 struct fasync_struct *fasync;
666
667 /* delayed work for NMIs and such */
668 int pending_wakeup;
669 int pending_kill;
670 int pending_disable;
671 struct irq_work pending;
672
673 atomic_t event_limit;
674
675 /* address range filters */
676 struct perf_addr_filters_head addr_filters;
677 /* vma address array for file-based filders */
678 struct perf_addr_filter_range *addr_filter_ranges;
679 unsigned long addr_filters_gen;
680
681 void (*destroy)(struct perf_event *);
682 struct rcu_head rcu_head;
683
684 struct pid_namespace *ns;
685 u64 id;
686
687 u64 (*clock)(void);
688 perf_overflow_handler_t overflow_handler;
689 void *overflow_handler_context;
690 #ifdef CONFIG_BPF_SYSCALL
691 perf_overflow_handler_t orig_overflow_handler;
692 struct bpf_prog *prog;
693 #endif
694
695 #ifdef CONFIG_EVENT_TRACING
696 struct trace_event_call *tp_event;
697 struct event_filter *filter;
698 #ifdef CONFIG_FUNCTION_TRACER
699 struct ftrace_ops ftrace_ops;
700 #endif
701 #endif
702
703 #ifdef CONFIG_CGROUP_PERF
704 struct perf_cgroup *cgrp; /* cgroup event is attach to */
705 #endif
706
707 struct list_head sb_list;
708 #endif /* CONFIG_PERF_EVENTS */
709 };
710
711
712 struct perf_event_groups {
713 struct rb_root tree;
714 u64 index;
715 };
716
717 /**
718 * struct perf_event_context - event context structure
719 *
720 * Used as a container for task events and CPU events as well:
721 */
722 struct perf_event_context {
723 struct pmu *pmu;
724 /*
725 * Protect the states of the events in the list,
726 * nr_active, and the list:
727 */
728 raw_spinlock_t lock;
729 /*
730 * Protect the list of events. Locking either mutex or lock
731 * is sufficient to ensure the list doesn't change; to change
732 * the list you need to lock both the mutex and the spinlock.
733 */
734 struct mutex mutex;
735
736 struct list_head active_ctx_list;
737 struct perf_event_groups pinned_groups;
738 struct perf_event_groups flexible_groups;
739 struct list_head event_list;
740
741 struct list_head pinned_active;
742 struct list_head flexible_active;
743
744 int nr_events;
745 int nr_active;
746 int is_active;
747 int nr_stat;
748 int nr_freq;
749 int rotate_disable;
750 /*
751 * Set when nr_events != nr_active, except tolerant to events not
752 * necessary to be active due to scheduling constraints, such as cgroups.
753 */
754 int rotate_necessary;
755 atomic_t refcount;
756 struct task_struct *task;
757
758 /*
759 * Context clock, runs when context enabled.
760 */
761 u64 time;
762 u64 timestamp;
763
764 /*
765 * These fields let us detect when two contexts have both
766 * been cloned (inherited) from a common ancestor.
767 */
768 struct perf_event_context *parent_ctx;
769 u64 parent_gen;
770 u64 generation;
771 int pin_count;
772 #ifdef CONFIG_CGROUP_PERF
773 int nr_cgroups; /* cgroup evts */
774 #endif
775 void *task_ctx_data; /* pmu specific data */
776 struct rcu_head rcu_head;
777 };
778
779 /*
780 * Number of contexts where an event can trigger:
781 * task, softirq, hardirq, nmi.
782 */
783 #define PERF_NR_CONTEXTS 4
784
785 /**
786 * struct perf_event_cpu_context - per cpu event context structure
787 */
788 struct perf_cpu_context {
789 struct perf_event_context ctx;
790 struct perf_event_context *task_ctx;
791 int active_oncpu;
792 int exclusive;
793
794 raw_spinlock_t hrtimer_lock;
795 struct hrtimer hrtimer;
796 ktime_t hrtimer_interval;
797 unsigned int hrtimer_active;
798
799 #ifdef CONFIG_CGROUP_PERF
800 struct perf_cgroup *cgrp;
801 struct list_head cgrp_cpuctx_entry;
802 #endif
803
804 struct list_head sched_cb_entry;
805 int sched_cb_usage;
806
807 int online;
808 };
809
810 struct perf_output_handle {
811 struct perf_event *event;
812 struct ring_buffer *rb;
813 unsigned long wakeup;
814 unsigned long size;
815 u64 aux_flags;
816 union {
817 void *addr;
818 unsigned long head;
819 };
820 int page;
821 };
822
823 struct bpf_perf_event_data_kern {
824 bpf_user_pt_regs_t *regs;
825 struct perf_sample_data *data;
826 struct perf_event *event;
827 };
828
829 #ifdef CONFIG_CGROUP_PERF
830
831 /*
832 * perf_cgroup_info keeps track of time_enabled for a cgroup.
833 * This is a per-cpu dynamically allocated data structure.
834 */
835 struct perf_cgroup_info {
836 u64 time;
837 u64 timestamp;
838 };
839
840 struct perf_cgroup {
841 struct cgroup_subsys_state css;
842 struct perf_cgroup_info __percpu *info;
843 };
844
845 /*
846 * Must ensure cgroup is pinned (css_get) before calling
847 * this function. In other words, we cannot call this function
848 * if there is no cgroup event for the current CPU context.
849 */
850 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)851 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
852 {
853 return container_of(task_css_check(task, perf_event_cgrp_id,
854 ctx ? lockdep_is_held(&ctx->lock)
855 : true),
856 struct perf_cgroup, css);
857 }
858 #endif /* CONFIG_CGROUP_PERF */
859
860 #ifdef CONFIG_PERF_EVENTS
861
862 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
863 struct perf_event *event);
864 extern void perf_aux_output_end(struct perf_output_handle *handle,
865 unsigned long size);
866 extern int perf_aux_output_skip(struct perf_output_handle *handle,
867 unsigned long size);
868 extern void *perf_get_aux(struct perf_output_handle *handle);
869 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
870 extern void perf_event_itrace_started(struct perf_event *event);
871
872 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
873 extern void perf_pmu_unregister(struct pmu *pmu);
874
875 extern int perf_num_counters(void);
876 extern const char *perf_pmu_name(void);
877 extern void __perf_event_task_sched_in(struct task_struct *prev,
878 struct task_struct *task);
879 extern void __perf_event_task_sched_out(struct task_struct *prev,
880 struct task_struct *next);
881 extern int perf_event_init_task(struct task_struct *child);
882 extern void perf_event_exit_task(struct task_struct *child);
883 extern void perf_event_free_task(struct task_struct *task);
884 extern void perf_event_delayed_put(struct task_struct *task);
885 extern struct file *perf_event_get(unsigned int fd);
886 extern const struct perf_event *perf_get_event(struct file *file);
887 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
888 extern void perf_event_print_debug(void);
889 extern void perf_pmu_disable(struct pmu *pmu);
890 extern void perf_pmu_enable(struct pmu *pmu);
891 extern void perf_sched_cb_dec(struct pmu *pmu);
892 extern void perf_sched_cb_inc(struct pmu *pmu);
893 extern int perf_event_task_disable(void);
894 extern int perf_event_task_enable(void);
895 extern int perf_event_refresh(struct perf_event *event, int refresh);
896 extern void perf_event_update_userpage(struct perf_event *event);
897 extern int perf_event_release_kernel(struct perf_event *event);
898 extern struct perf_event *
899 perf_event_create_kernel_counter(struct perf_event_attr *attr,
900 int cpu,
901 struct task_struct *task,
902 perf_overflow_handler_t callback,
903 void *context);
904 extern void perf_pmu_migrate_context(struct pmu *pmu,
905 int src_cpu, int dst_cpu);
906 int perf_event_read_local(struct perf_event *event, u64 *value,
907 u64 *enabled, u64 *running);
908 extern u64 perf_event_read_value(struct perf_event *event,
909 u64 *enabled, u64 *running);
910
911
912 struct perf_sample_data {
913 /*
914 * Fields set by perf_sample_data_init(), group so as to
915 * minimize the cachelines touched.
916 */
917 u64 addr;
918 struct perf_raw_record *raw;
919 struct perf_branch_stack *br_stack;
920 u64 period;
921 u64 weight;
922 u64 txn;
923 union perf_mem_data_src data_src;
924
925 /*
926 * The other fields, optionally {set,used} by
927 * perf_{prepare,output}_sample().
928 */
929 u64 type;
930 u64 ip;
931 struct {
932 u32 pid;
933 u32 tid;
934 } tid_entry;
935 u64 time;
936 u64 id;
937 u64 stream_id;
938 struct {
939 u32 cpu;
940 u32 reserved;
941 } cpu_entry;
942 struct perf_callchain_entry *callchain;
943
944 /*
945 * regs_user may point to task_pt_regs or to regs_user_copy, depending
946 * on arch details.
947 */
948 struct perf_regs regs_user;
949 struct pt_regs regs_user_copy;
950
951 struct perf_regs regs_intr;
952 u64 stack_user_size;
953
954 u64 phys_addr;
955 } ____cacheline_aligned;
956
957 /* default value for data source */
958 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
959 PERF_MEM_S(LVL, NA) |\
960 PERF_MEM_S(SNOOP, NA) |\
961 PERF_MEM_S(LOCK, NA) |\
962 PERF_MEM_S(TLB, NA))
963
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)964 static inline void perf_sample_data_init(struct perf_sample_data *data,
965 u64 addr, u64 period)
966 {
967 /* remaining struct members initialized in perf_prepare_sample() */
968 data->addr = addr;
969 data->raw = NULL;
970 data->br_stack = NULL;
971 data->period = period;
972 data->weight = 0;
973 data->data_src.val = PERF_MEM_NA;
974 data->txn = 0;
975 }
976
977 extern void perf_output_sample(struct perf_output_handle *handle,
978 struct perf_event_header *header,
979 struct perf_sample_data *data,
980 struct perf_event *event);
981 extern void perf_prepare_sample(struct perf_event_header *header,
982 struct perf_sample_data *data,
983 struct perf_event *event,
984 struct pt_regs *regs);
985
986 extern int perf_event_overflow(struct perf_event *event,
987 struct perf_sample_data *data,
988 struct pt_regs *regs);
989
990 extern void perf_event_output_forward(struct perf_event *event,
991 struct perf_sample_data *data,
992 struct pt_regs *regs);
993 extern void perf_event_output_backward(struct perf_event *event,
994 struct perf_sample_data *data,
995 struct pt_regs *regs);
996 extern void perf_event_output(struct perf_event *event,
997 struct perf_sample_data *data,
998 struct pt_regs *regs);
999
1000 static inline bool
__is_default_overflow_handler(perf_overflow_handler_t overflow_handler)1001 __is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1002 {
1003 if (likely(overflow_handler == perf_event_output_forward))
1004 return true;
1005 if (unlikely(overflow_handler == perf_event_output_backward))
1006 return true;
1007 return false;
1008 }
1009
1010 #define is_default_overflow_handler(event) \
1011 __is_default_overflow_handler((event)->overflow_handler)
1012
1013 #ifdef CONFIG_BPF_SYSCALL
uses_default_overflow_handler(struct perf_event * event)1014 static inline bool uses_default_overflow_handler(struct perf_event *event)
1015 {
1016 if (likely(is_default_overflow_handler(event)))
1017 return true;
1018
1019 return __is_default_overflow_handler(event->orig_overflow_handler);
1020 }
1021 #else
1022 #define uses_default_overflow_handler(event) \
1023 is_default_overflow_handler(event)
1024 #endif
1025
1026 extern void
1027 perf_event_header__init_id(struct perf_event_header *header,
1028 struct perf_sample_data *data,
1029 struct perf_event *event);
1030 extern void
1031 perf_event__output_id_sample(struct perf_event *event,
1032 struct perf_output_handle *handle,
1033 struct perf_sample_data *sample);
1034
1035 extern void
1036 perf_log_lost_samples(struct perf_event *event, u64 lost);
1037
is_sampling_event(struct perf_event * event)1038 static inline bool is_sampling_event(struct perf_event *event)
1039 {
1040 return event->attr.sample_period != 0;
1041 }
1042
1043 /*
1044 * Return 1 for a software event, 0 for a hardware event
1045 */
is_software_event(struct perf_event * event)1046 static inline int is_software_event(struct perf_event *event)
1047 {
1048 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1049 }
1050
1051 /*
1052 * Return 1 for event in sw context, 0 for event in hw context
1053 */
in_software_context(struct perf_event * event)1054 static inline int in_software_context(struct perf_event *event)
1055 {
1056 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1057 }
1058
is_exclusive_pmu(struct pmu * pmu)1059 static inline int is_exclusive_pmu(struct pmu *pmu)
1060 {
1061 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1062 }
1063
1064 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1065
1066 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1067 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1068
1069 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1070 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1071 #endif
1072
1073 /*
1074 * Take a snapshot of the regs. Skip ip and frame pointer to
1075 * the nth caller. We only need a few of the regs:
1076 * - ip for PERF_SAMPLE_IP
1077 * - cs for user_mode() tests
1078 * - bp for callchains
1079 * - eflags, for future purposes, just in case
1080 */
perf_fetch_caller_regs(struct pt_regs * regs)1081 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1082 {
1083 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1084 }
1085
1086 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1087 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1088 {
1089 if (static_key_false(&perf_swevent_enabled[event_id]))
1090 __perf_sw_event(event_id, nr, regs, addr);
1091 }
1092
1093 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1094
1095 /*
1096 * 'Special' version for the scheduler, it hard assumes no recursion,
1097 * which is guaranteed by us not actually scheduling inside other swevents
1098 * because those disable preemption.
1099 */
1100 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1101 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1102 {
1103 if (static_key_false(&perf_swevent_enabled[event_id])) {
1104 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1105
1106 perf_fetch_caller_regs(regs);
1107 ___perf_sw_event(event_id, nr, regs, addr);
1108 }
1109 }
1110
1111 extern struct static_key_false perf_sched_events;
1112
1113 static __always_inline bool
perf_sw_migrate_enabled(void)1114 perf_sw_migrate_enabled(void)
1115 {
1116 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1117 return true;
1118 return false;
1119 }
1120
perf_event_task_migrate(struct task_struct * task)1121 static inline void perf_event_task_migrate(struct task_struct *task)
1122 {
1123 if (perf_sw_migrate_enabled())
1124 task->sched_migrated = 1;
1125 }
1126
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1127 static inline void perf_event_task_sched_in(struct task_struct *prev,
1128 struct task_struct *task)
1129 {
1130 if (static_branch_unlikely(&perf_sched_events))
1131 __perf_event_task_sched_in(prev, task);
1132
1133 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1134 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1135
1136 perf_fetch_caller_regs(regs);
1137 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1138 task->sched_migrated = 0;
1139 }
1140 }
1141
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1142 static inline void perf_event_task_sched_out(struct task_struct *prev,
1143 struct task_struct *next)
1144 {
1145 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1146
1147 if (static_branch_unlikely(&perf_sched_events))
1148 __perf_event_task_sched_out(prev, next);
1149 }
1150
1151 extern void perf_event_mmap(struct vm_area_struct *vma);
1152 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1153 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1154 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1155
1156 extern void perf_event_exec(void);
1157 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1158 extern void perf_event_namespaces(struct task_struct *tsk);
1159 extern void perf_event_fork(struct task_struct *tsk);
1160
1161 /* Callchains */
1162 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1163
1164 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1165 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1166 extern struct perf_callchain_entry *
1167 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1168 u32 max_stack, bool crosstask, bool add_mark);
1169 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1170 extern int get_callchain_buffers(int max_stack);
1171 extern void put_callchain_buffers(void);
1172
1173 extern int sysctl_perf_event_max_stack;
1174 extern int sysctl_perf_event_max_contexts_per_stack;
1175
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1176 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1177 {
1178 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1179 struct perf_callchain_entry *entry = ctx->entry;
1180 entry->ip[entry->nr++] = ip;
1181 ++ctx->contexts;
1182 return 0;
1183 } else {
1184 ctx->contexts_maxed = true;
1185 return -1; /* no more room, stop walking the stack */
1186 }
1187 }
1188
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1189 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1190 {
1191 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1192 struct perf_callchain_entry *entry = ctx->entry;
1193 entry->ip[entry->nr++] = ip;
1194 ++ctx->nr;
1195 return 0;
1196 } else {
1197 return -1; /* no more room, stop walking the stack */
1198 }
1199 }
1200
1201 extern int sysctl_perf_event_paranoid;
1202 extern int sysctl_perf_event_mlock;
1203 extern int sysctl_perf_event_sample_rate;
1204 extern int sysctl_perf_cpu_time_max_percent;
1205
1206 extern void perf_sample_event_took(u64 sample_len_ns);
1207
1208 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1209 void __user *buffer, size_t *lenp,
1210 loff_t *ppos);
1211 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1212 void __user *buffer, size_t *lenp,
1213 loff_t *ppos);
1214
1215 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1216 void __user *buffer, size_t *lenp, loff_t *ppos);
1217
perf_paranoid_tracepoint_raw(void)1218 static inline bool perf_paranoid_tracepoint_raw(void)
1219 {
1220 return sysctl_perf_event_paranoid > -1;
1221 }
1222
perf_paranoid_cpu(void)1223 static inline bool perf_paranoid_cpu(void)
1224 {
1225 return sysctl_perf_event_paranoid > 0;
1226 }
1227
perf_paranoid_kernel(void)1228 static inline bool perf_paranoid_kernel(void)
1229 {
1230 return sysctl_perf_event_paranoid > 1;
1231 }
1232
1233 extern void perf_event_init(void);
1234 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1235 int entry_size, struct pt_regs *regs,
1236 struct hlist_head *head, int rctx,
1237 struct task_struct *task);
1238 extern void perf_bp_event(struct perf_event *event, void *data);
1239
1240 #ifndef perf_misc_flags
1241 # define perf_misc_flags(regs) \
1242 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1243 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1244 #endif
1245 #ifndef perf_arch_bpf_user_pt_regs
1246 # define perf_arch_bpf_user_pt_regs(regs) regs
1247 #endif
1248
has_branch_stack(struct perf_event * event)1249 static inline bool has_branch_stack(struct perf_event *event)
1250 {
1251 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1252 }
1253
needs_branch_stack(struct perf_event * event)1254 static inline bool needs_branch_stack(struct perf_event *event)
1255 {
1256 return event->attr.branch_sample_type != 0;
1257 }
1258
has_aux(struct perf_event * event)1259 static inline bool has_aux(struct perf_event *event)
1260 {
1261 return event->pmu->setup_aux;
1262 }
1263
is_write_backward(struct perf_event * event)1264 static inline bool is_write_backward(struct perf_event *event)
1265 {
1266 return !!event->attr.write_backward;
1267 }
1268
has_addr_filter(struct perf_event * event)1269 static inline bool has_addr_filter(struct perf_event *event)
1270 {
1271 return event->pmu->nr_addr_filters;
1272 }
1273
1274 /*
1275 * An inherited event uses parent's filters
1276 */
1277 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1278 perf_event_addr_filters(struct perf_event *event)
1279 {
1280 struct perf_addr_filters_head *ifh = &event->addr_filters;
1281
1282 if (event->parent)
1283 ifh = &event->parent->addr_filters;
1284
1285 return ifh;
1286 }
1287
1288 extern void perf_event_addr_filters_sync(struct perf_event *event);
1289
1290 extern int perf_output_begin(struct perf_output_handle *handle,
1291 struct perf_event *event, unsigned int size);
1292 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1293 struct perf_event *event,
1294 unsigned int size);
1295 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1296 struct perf_event *event,
1297 unsigned int size);
1298
1299 extern void perf_output_end(struct perf_output_handle *handle);
1300 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1301 const void *buf, unsigned int len);
1302 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1303 unsigned int len);
1304 extern int perf_swevent_get_recursion_context(void);
1305 extern void perf_swevent_put_recursion_context(int rctx);
1306 extern u64 perf_swevent_set_period(struct perf_event *event);
1307 extern void perf_event_enable(struct perf_event *event);
1308 extern void perf_event_disable(struct perf_event *event);
1309 extern void perf_event_disable_local(struct perf_event *event);
1310 extern void perf_event_disable_inatomic(struct perf_event *event);
1311 extern void perf_event_task_tick(void);
1312 extern int perf_event_account_interrupt(struct perf_event *event);
1313 #else /* !CONFIG_PERF_EVENTS: */
1314 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1315 perf_aux_output_begin(struct perf_output_handle *handle,
1316 struct perf_event *event) { return NULL; }
1317 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1318 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1319 { }
1320 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1321 perf_aux_output_skip(struct perf_output_handle *handle,
1322 unsigned long size) { return -EINVAL; }
1323 static inline void *
perf_get_aux(struct perf_output_handle * handle)1324 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1325 static inline void
perf_event_task_migrate(struct task_struct * task)1326 perf_event_task_migrate(struct task_struct *task) { }
1327 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1328 perf_event_task_sched_in(struct task_struct *prev,
1329 struct task_struct *task) { }
1330 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1331 perf_event_task_sched_out(struct task_struct *prev,
1332 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1333 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1334 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1335 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1336 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1337 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1338 static inline const struct perf_event *perf_get_event(struct file *file)
1339 {
1340 return ERR_PTR(-EINVAL);
1341 }
perf_event_attrs(struct perf_event * event)1342 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1343 {
1344 return ERR_PTR(-EINVAL);
1345 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1346 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1347 u64 *enabled, u64 *running)
1348 {
1349 return -EINVAL;
1350 }
perf_event_print_debug(void)1351 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1352 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1353 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1354 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1355 {
1356 return -EINVAL;
1357 }
1358
1359 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1360 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1361 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1362 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1363 static inline void
perf_bp_event(struct perf_event * event,void * data)1364 perf_bp_event(struct perf_event *event, void *data) { }
1365
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1366 static inline int perf_register_guest_info_callbacks
1367 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1368 static inline int perf_unregister_guest_info_callbacks
1369 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1370
perf_event_mmap(struct vm_area_struct * vma)1371 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
perf_event_exec(void)1372 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1373 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1374 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1375 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_init(void)1376 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1377 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1378 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1379 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1380 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1381 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1382 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1383 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1384 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1385 #endif
1386
1387 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1388 extern void perf_restore_debug_store(void);
1389 #else
perf_restore_debug_store(void)1390 static inline void perf_restore_debug_store(void) { }
1391 #endif
1392
perf_raw_frag_last(const struct perf_raw_frag * frag)1393 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1394 {
1395 return frag->pad < sizeof(u64);
1396 }
1397
1398 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1399
1400 struct perf_pmu_events_attr {
1401 struct device_attribute attr;
1402 u64 id;
1403 const char *event_str;
1404 };
1405
1406 struct perf_pmu_events_ht_attr {
1407 struct device_attribute attr;
1408 u64 id;
1409 const char *event_str_ht;
1410 const char *event_str_noht;
1411 };
1412
1413 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1414 char *page);
1415
1416 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1417 static struct perf_pmu_events_attr _var = { \
1418 .attr = __ATTR(_name, 0444, _show, NULL), \
1419 .id = _id, \
1420 };
1421
1422 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1423 static struct perf_pmu_events_attr _var = { \
1424 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1425 .id = 0, \
1426 .event_str = _str, \
1427 };
1428
1429 #define PMU_FORMAT_ATTR(_name, _format) \
1430 static ssize_t \
1431 _name##_show(struct device *dev, \
1432 struct device_attribute *attr, \
1433 char *page) \
1434 { \
1435 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1436 return sprintf(page, _format "\n"); \
1437 } \
1438 \
1439 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1440
1441 /* Performance counter hotplug functions */
1442 #ifdef CONFIG_PERF_EVENTS
1443 int perf_event_init_cpu(unsigned int cpu);
1444 int perf_event_exit_cpu(unsigned int cpu);
1445 #else
1446 #define perf_event_init_cpu NULL
1447 #define perf_event_exit_cpu NULL
1448 #endif
1449
1450 #endif /* _LINUX_PERF_EVENT_H */
1451