1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
policy_is_inactive(struct cpufreq_policy * policy)36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)			 \
43 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 		if ((__active) == !policy_is_inactive(__policy))
45 
46 #define for_each_active_policy(__policy)		\
47 	for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)		\
49 	for_each_suitable_policy(__policy, false)
50 
51 #define for_each_policy(__policy)			\
52 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53 
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)				\
57 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58 
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
has_target(void)71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93 
94 static int off __read_mostly;
cpufreq_disabled(void)95 static int cpufreq_disabled(void)
96 {
97 	return off;
98 }
disable_cpufreq(void)99 void disable_cpufreq(void)
100 {
101 	off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104 
have_governor_per_policy(void)105 bool have_governor_per_policy(void)
106 {
107 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110 
get_governor_parent_kobj(struct cpufreq_policy * policy)111 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
112 {
113 	if (have_governor_per_policy())
114 		return &policy->kobj;
115 	else
116 		return cpufreq_global_kobject;
117 }
118 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
119 
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)120 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
121 {
122 	u64 idle_time;
123 	u64 cur_wall_time;
124 	u64 busy_time;
125 
126 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127 
128 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
129 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
130 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
131 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
132 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
133 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
134 
135 	idle_time = cur_wall_time - busy_time;
136 	if (wall)
137 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
138 
139 	return div_u64(idle_time, NSEC_PER_USEC);
140 }
141 
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)142 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
143 {
144 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
145 
146 	if (idle_time == -1ULL)
147 		return get_cpu_idle_time_jiffy(cpu, wall);
148 	else if (!io_busy)
149 		idle_time += get_cpu_iowait_time_us(cpu, wall);
150 
151 	return idle_time;
152 }
153 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
154 
arch_set_freq_scale(struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)155 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
156 		unsigned long max_freq)
157 {
158 }
159 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
160 
161 /*
162  * This is a generic cpufreq init() routine which can be used by cpufreq
163  * drivers of SMP systems. It will do following:
164  * - validate & show freq table passed
165  * - set policies transition latency
166  * - policy->cpus with all possible CPUs
167  */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)168 int cpufreq_generic_init(struct cpufreq_policy *policy,
169 		struct cpufreq_frequency_table *table,
170 		unsigned int transition_latency)
171 {
172 	policy->freq_table = table;
173 	policy->cpuinfo.transition_latency = transition_latency;
174 
175 	/*
176 	 * The driver only supports the SMP configuration where all processors
177 	 * share the clock and voltage and clock.
178 	 */
179 	cpumask_setall(policy->cpus);
180 
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
cpufreq_cpu_get_raw(unsigned int cpu)185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
cpufreq_generic_get(unsigned int cpu)193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
209  *
210  * @cpu: cpu to find policy for.
211  *
212  * This returns policy for 'cpu', returns NULL if it doesn't exist.
213  * It also increments the kobject reference count to mark it busy and so would
214  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
215  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
216  * freed as that depends on the kobj count.
217  *
218  * Return: A valid policy on success, otherwise NULL on failure.
219  */
cpufreq_cpu_get(unsigned int cpu)220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
221 {
222 	struct cpufreq_policy *policy = NULL;
223 	unsigned long flags;
224 
225 	if (WARN_ON(cpu >= nr_cpu_ids))
226 		return NULL;
227 
228 	/* get the cpufreq driver */
229 	read_lock_irqsave(&cpufreq_driver_lock, flags);
230 
231 	if (cpufreq_driver) {
232 		/* get the CPU */
233 		policy = cpufreq_cpu_get_raw(cpu);
234 		if (policy)
235 			kobject_get(&policy->kobj);
236 	}
237 
238 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
239 
240 	return policy;
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
243 
244 /**
245  * cpufreq_cpu_put: Decrements the usage count of a policy
246  *
247  * @policy: policy earlier returned by cpufreq_cpu_get().
248  *
249  * This decrements the kobject reference count incremented earlier by calling
250  * cpufreq_cpu_get().
251  */
cpufreq_cpu_put(struct cpufreq_policy * policy)252 void cpufreq_cpu_put(struct cpufreq_policy *policy)
253 {
254 	kobject_put(&policy->kobj);
255 }
256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
257 
258 /*********************************************************************
259  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
260  *********************************************************************/
261 
262 /**
263  * adjust_jiffies - adjust the system "loops_per_jiffy"
264  *
265  * This function alters the system "loops_per_jiffy" for the clock
266  * speed change. Note that loops_per_jiffy cannot be updated on SMP
267  * systems as each CPU might be scaled differently. So, use the arch
268  * per-CPU loops_per_jiffy value wherever possible.
269  */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)270 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
271 {
272 #ifndef CONFIG_SMP
273 	static unsigned long l_p_j_ref;
274 	static unsigned int l_p_j_ref_freq;
275 
276 	if (ci->flags & CPUFREQ_CONST_LOOPS)
277 		return;
278 
279 	if (!l_p_j_ref_freq) {
280 		l_p_j_ref = loops_per_jiffy;
281 		l_p_j_ref_freq = ci->old;
282 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
283 			 l_p_j_ref, l_p_j_ref_freq);
284 	}
285 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
286 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
287 								ci->new);
288 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
289 			 loops_per_jiffy, ci->new);
290 	}
291 #endif
292 }
293 
294 /**
295  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
296  * @policy: cpufreq policy to enable fast frequency switching for.
297  * @freqs: contain details of the frequency update.
298  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
299  *
300  * This function calls the transition notifiers and the "adjust_jiffies"
301  * function. It is called twice on all CPU frequency changes that have
302  * external effects.
303  */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)304 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
305 				      struct cpufreq_freqs *freqs,
306 				      unsigned int state)
307 {
308 	BUG_ON(irqs_disabled());
309 
310 	if (cpufreq_disabled())
311 		return;
312 
313 	freqs->flags = cpufreq_driver->flags;
314 	pr_debug("notification %u of frequency transition to %u kHz\n",
315 		 state, freqs->new);
316 
317 	switch (state) {
318 	case CPUFREQ_PRECHANGE:
319 		/*
320 		 * Detect if the driver reported a value as "old frequency"
321 		 * which is not equal to what the cpufreq core thinks is
322 		 * "old frequency".
323 		 */
324 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
325 			if (policy->cur && (policy->cur != freqs->old)) {
326 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 					 freqs->old, policy->cur);
328 				freqs->old = policy->cur;
329 			}
330 		}
331 
332 		for_each_cpu(freqs->cpu, policy->cpus) {
333 			srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
334 						 CPUFREQ_PRECHANGE, freqs);
335 		}
336 
337 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
338 		break;
339 
340 	case CPUFREQ_POSTCHANGE:
341 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
342 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
343 			 cpumask_pr_args(policy->cpus));
344 
345 		for_each_cpu(freqs->cpu, policy->cpus) {
346 			trace_cpu_frequency(freqs->new, freqs->cpu);
347 			srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
348 						 CPUFREQ_POSTCHANGE, freqs);
349 		}
350 
351 		cpufreq_stats_record_transition(policy, freqs->new);
352 		policy->cur = freqs->new;
353 	}
354 }
355 
356 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)357 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
358 		struct cpufreq_freqs *freqs, int transition_failed)
359 {
360 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
361 	if (!transition_failed)
362 		return;
363 
364 	swap(freqs->old, freqs->new);
365 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
366 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
367 }
368 
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)369 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
370 		struct cpufreq_freqs *freqs)
371 {
372 
373 	/*
374 	 * Catch double invocations of _begin() which lead to self-deadlock.
375 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
376 	 * doesn't invoke _begin() on their behalf, and hence the chances of
377 	 * double invocations are very low. Moreover, there are scenarios
378 	 * where these checks can emit false-positive warnings in these
379 	 * drivers; so we avoid that by skipping them altogether.
380 	 */
381 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
382 				&& current == policy->transition_task);
383 
384 wait:
385 	wait_event(policy->transition_wait, !policy->transition_ongoing);
386 
387 	spin_lock(&policy->transition_lock);
388 
389 	if (unlikely(policy->transition_ongoing)) {
390 		spin_unlock(&policy->transition_lock);
391 		goto wait;
392 	}
393 
394 	policy->transition_ongoing = true;
395 	policy->transition_task = current;
396 
397 	spin_unlock(&policy->transition_lock);
398 
399 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
402 
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)403 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
404 		struct cpufreq_freqs *freqs, int transition_failed)
405 {
406 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
407 		return;
408 
409 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
410 
411 	policy->transition_ongoing = false;
412 	policy->transition_task = NULL;
413 
414 	wake_up(&policy->transition_wait);
415 }
416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
417 
418 /*
419  * Fast frequency switching status count.  Positive means "enabled", negative
420  * means "disabled" and 0 means "not decided yet".
421  */
422 static int cpufreq_fast_switch_count;
423 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
424 
cpufreq_list_transition_notifiers(void)425 static void cpufreq_list_transition_notifiers(void)
426 {
427 	struct notifier_block *nb;
428 
429 	pr_info("Registered transition notifiers:\n");
430 
431 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
432 
433 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
434 		pr_info("%pF\n", nb->notifier_call);
435 
436 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
437 }
438 
439 /**
440  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
441  * @policy: cpufreq policy to enable fast frequency switching for.
442  *
443  * Try to enable fast frequency switching for @policy.
444  *
445  * The attempt will fail if there is at least one transition notifier registered
446  * at this point, as fast frequency switching is quite fundamentally at odds
447  * with transition notifiers.  Thus if successful, it will make registration of
448  * transition notifiers fail going forward.
449  */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)450 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
451 {
452 	lockdep_assert_held(&policy->rwsem);
453 
454 	if (!policy->fast_switch_possible)
455 		return;
456 
457 	mutex_lock(&cpufreq_fast_switch_lock);
458 	if (cpufreq_fast_switch_count >= 0) {
459 		cpufreq_fast_switch_count++;
460 		policy->fast_switch_enabled = true;
461 	} else {
462 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
463 			policy->cpu);
464 		cpufreq_list_transition_notifiers();
465 	}
466 	mutex_unlock(&cpufreq_fast_switch_lock);
467 }
468 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
469 
470 /**
471  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
472  * @policy: cpufreq policy to disable fast frequency switching for.
473  */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)474 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
475 {
476 	mutex_lock(&cpufreq_fast_switch_lock);
477 	if (policy->fast_switch_enabled) {
478 		policy->fast_switch_enabled = false;
479 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
480 			cpufreq_fast_switch_count--;
481 	}
482 	mutex_unlock(&cpufreq_fast_switch_lock);
483 }
484 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
485 
486 /**
487  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
488  * one.
489  * @target_freq: target frequency to resolve.
490  *
491  * The target to driver frequency mapping is cached in the policy.
492  *
493  * Return: Lowest driver-supported frequency greater than or equal to the
494  * given target_freq, subject to policy (min/max) and driver limitations.
495  */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)496 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
497 					 unsigned int target_freq)
498 {
499 	target_freq = clamp_val(target_freq, policy->min, policy->max);
500 	policy->cached_target_freq = target_freq;
501 
502 	if (cpufreq_driver->target_index) {
503 		int idx;
504 
505 		idx = cpufreq_frequency_table_target(policy, target_freq,
506 						     CPUFREQ_RELATION_L);
507 		policy->cached_resolved_idx = idx;
508 		return policy->freq_table[idx].frequency;
509 	}
510 
511 	if (cpufreq_driver->resolve_freq)
512 		return cpufreq_driver->resolve_freq(policy, target_freq);
513 
514 	return target_freq;
515 }
516 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
517 
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)518 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
519 {
520 	unsigned int latency;
521 
522 	if (policy->transition_delay_us)
523 		return policy->transition_delay_us;
524 
525 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
526 	if (latency) {
527 		/*
528 		 * For platforms that can change the frequency very fast (< 10
529 		 * us), the above formula gives a decent transition delay. But
530 		 * for platforms where transition_latency is in milliseconds, it
531 		 * ends up giving unrealistic values.
532 		 *
533 		 * Cap the default transition delay to 10 ms, which seems to be
534 		 * a reasonable amount of time after which we should reevaluate
535 		 * the frequency.
536 		 */
537 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
538 	}
539 
540 	return LATENCY_MULTIPLIER;
541 }
542 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
543 
544 /*********************************************************************
545  *                          SYSFS INTERFACE                          *
546  *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)547 static ssize_t show_boost(struct kobject *kobj,
548 			  struct kobj_attribute *attr, char *buf)
549 {
550 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
551 }
552 
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)553 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
554 			   const char *buf, size_t count)
555 {
556 	int ret, enable;
557 
558 	ret = sscanf(buf, "%d", &enable);
559 	if (ret != 1 || enable < 0 || enable > 1)
560 		return -EINVAL;
561 
562 	if (cpufreq_boost_trigger_state(enable)) {
563 		pr_err("%s: Cannot %s BOOST!\n",
564 		       __func__, enable ? "enable" : "disable");
565 		return -EINVAL;
566 	}
567 
568 	pr_debug("%s: cpufreq BOOST %s\n",
569 		 __func__, enable ? "enabled" : "disabled");
570 
571 	return count;
572 }
573 define_one_global_rw(boost);
574 
find_governor(const char * str_governor)575 static struct cpufreq_governor *find_governor(const char *str_governor)
576 {
577 	struct cpufreq_governor *t;
578 
579 	for_each_governor(t)
580 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
581 			return t;
582 
583 	return NULL;
584 }
585 
586 /**
587  * cpufreq_parse_governor - parse a governor string
588  */
cpufreq_parse_governor(char * str_governor,struct cpufreq_policy * policy)589 static int cpufreq_parse_governor(char *str_governor,
590 				  struct cpufreq_policy *policy)
591 {
592 	if (cpufreq_driver->setpolicy) {
593 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
594 			policy->policy = CPUFREQ_POLICY_PERFORMANCE;
595 			return 0;
596 		}
597 
598 		if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
599 			policy->policy = CPUFREQ_POLICY_POWERSAVE;
600 			return 0;
601 		}
602 	} else {
603 		struct cpufreq_governor *t;
604 
605 		mutex_lock(&cpufreq_governor_mutex);
606 
607 		t = find_governor(str_governor);
608 		if (!t) {
609 			int ret;
610 
611 			mutex_unlock(&cpufreq_governor_mutex);
612 
613 			ret = request_module("cpufreq_%s", str_governor);
614 			if (ret)
615 				return -EINVAL;
616 
617 			mutex_lock(&cpufreq_governor_mutex);
618 
619 			t = find_governor(str_governor);
620 		}
621 		if (t && !try_module_get(t->owner))
622 			t = NULL;
623 
624 		mutex_unlock(&cpufreq_governor_mutex);
625 
626 		if (t) {
627 			policy->governor = t;
628 			return 0;
629 		}
630 	}
631 
632 	return -EINVAL;
633 }
634 
635 /**
636  * cpufreq_per_cpu_attr_read() / show_##file_name() -
637  * print out cpufreq information
638  *
639  * Write out information from cpufreq_driver->policy[cpu]; object must be
640  * "unsigned int".
641  */
642 
643 #define show_one(file_name, object)			\
644 static ssize_t show_##file_name				\
645 (struct cpufreq_policy *policy, char *buf)		\
646 {							\
647 	return sprintf(buf, "%u\n", policy->object);	\
648 }
649 
650 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
651 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
652 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
653 show_one(scaling_min_freq, min);
654 show_one(scaling_max_freq, max);
655 
arch_freq_get_on_cpu(int cpu)656 __weak unsigned int arch_freq_get_on_cpu(int cpu)
657 {
658 	return 0;
659 }
660 
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)661 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
662 {
663 	ssize_t ret;
664 	unsigned int freq;
665 
666 	freq = arch_freq_get_on_cpu(policy->cpu);
667 	if (freq)
668 		ret = sprintf(buf, "%u\n", freq);
669 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
670 			cpufreq_driver->get)
671 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
672 	else
673 		ret = sprintf(buf, "%u\n", policy->cur);
674 	return ret;
675 }
676 
677 static int cpufreq_set_policy(struct cpufreq_policy *policy,
678 				struct cpufreq_policy *new_policy);
679 
680 /**
681  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
682  */
683 #define store_one(file_name, object)			\
684 static ssize_t store_##file_name					\
685 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
686 {									\
687 	int ret, temp;							\
688 	struct cpufreq_policy new_policy;				\
689 									\
690 	memcpy(&new_policy, policy, sizeof(*policy));			\
691 	new_policy.min = policy->user_policy.min;			\
692 	new_policy.max = policy->user_policy.max;			\
693 									\
694 	ret = sscanf(buf, "%u", &new_policy.object);			\
695 	if (ret != 1)							\
696 		return -EINVAL;						\
697 									\
698 	temp = new_policy.object;					\
699 	ret = cpufreq_set_policy(policy, &new_policy);		\
700 	if (!ret)							\
701 		policy->user_policy.object = temp;			\
702 									\
703 	return ret ? ret : count;					\
704 }
705 
706 store_one(scaling_min_freq, min);
707 store_one(scaling_max_freq, max);
708 
709 /**
710  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
711  */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)712 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
713 					char *buf)
714 {
715 	unsigned int cur_freq = __cpufreq_get(policy);
716 
717 	if (cur_freq)
718 		return sprintf(buf, "%u\n", cur_freq);
719 
720 	return sprintf(buf, "<unknown>\n");
721 }
722 
723 /**
724  * show_scaling_governor - show the current policy for the specified CPU
725  */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)726 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
727 {
728 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
729 		return sprintf(buf, "powersave\n");
730 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
731 		return sprintf(buf, "performance\n");
732 	else if (policy->governor)
733 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
734 				policy->governor->name);
735 	return -EINVAL;
736 }
737 
738 /**
739  * store_scaling_governor - store policy for the specified CPU
740  */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)741 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
742 					const char *buf, size_t count)
743 {
744 	int ret;
745 	char	str_governor[16];
746 	struct cpufreq_policy new_policy;
747 
748 	memcpy(&new_policy, policy, sizeof(*policy));
749 
750 	ret = sscanf(buf, "%15s", str_governor);
751 	if (ret != 1)
752 		return -EINVAL;
753 
754 	if (cpufreq_parse_governor(str_governor, &new_policy))
755 		return -EINVAL;
756 
757 	ret = cpufreq_set_policy(policy, &new_policy);
758 
759 	if (new_policy.governor)
760 		module_put(new_policy.governor->owner);
761 
762 	return ret ? ret : count;
763 }
764 
765 /**
766  * show_scaling_driver - show the cpufreq driver currently loaded
767  */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
769 {
770 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
771 }
772 
773 /**
774  * show_scaling_available_governors - show the available CPUfreq governors
775  */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
777 						char *buf)
778 {
779 	ssize_t i = 0;
780 	struct cpufreq_governor *t;
781 
782 	if (!has_target()) {
783 		i += sprintf(buf, "performance powersave");
784 		goto out;
785 	}
786 
787 	for_each_governor(t) {
788 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
789 		    - (CPUFREQ_NAME_LEN + 2)))
790 			goto out;
791 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
792 	}
793 out:
794 	i += sprintf(&buf[i], "\n");
795 	return i;
796 }
797 
cpufreq_show_cpus(const struct cpumask * mask,char * buf)798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
799 {
800 	ssize_t i = 0;
801 	unsigned int cpu;
802 
803 	for_each_cpu(cpu, mask) {
804 		if (i)
805 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
806 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
807 		if (i >= (PAGE_SIZE - 5))
808 			break;
809 	}
810 	i += sprintf(&buf[i], "\n");
811 	return i;
812 }
813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
814 
815 /**
816  * show_related_cpus - show the CPUs affected by each transition even if
817  * hw coordination is in use
818  */
show_related_cpus(struct cpufreq_policy * policy,char * buf)819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
820 {
821 	return cpufreq_show_cpus(policy->related_cpus, buf);
822 }
823 
824 /**
825  * show_affected_cpus - show the CPUs affected by each transition
826  */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
828 {
829 	return cpufreq_show_cpus(policy->cpus, buf);
830 }
831 
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
833 					const char *buf, size_t count)
834 {
835 	unsigned int freq = 0;
836 	unsigned int ret;
837 
838 	if (!policy->governor || !policy->governor->store_setspeed)
839 		return -EINVAL;
840 
841 	ret = sscanf(buf, "%u", &freq);
842 	if (ret != 1)
843 		return -EINVAL;
844 
845 	policy->governor->store_setspeed(policy, freq);
846 
847 	return count;
848 }
849 
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
851 {
852 	if (!policy->governor || !policy->governor->show_setspeed)
853 		return sprintf(buf, "<unsupported>\n");
854 
855 	return policy->governor->show_setspeed(policy, buf);
856 }
857 
858 /**
859  * show_bios_limit - show the current cpufreq HW/BIOS limitation
860  */
show_bios_limit(struct cpufreq_policy * policy,char * buf)861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
862 {
863 	unsigned int limit;
864 	int ret;
865 	if (cpufreq_driver->bios_limit) {
866 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
867 		if (!ret)
868 			return sprintf(buf, "%u\n", limit);
869 	}
870 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
871 }
872 
873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
874 cpufreq_freq_attr_ro(cpuinfo_min_freq);
875 cpufreq_freq_attr_ro(cpuinfo_max_freq);
876 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
877 cpufreq_freq_attr_ro(scaling_available_governors);
878 cpufreq_freq_attr_ro(scaling_driver);
879 cpufreq_freq_attr_ro(scaling_cur_freq);
880 cpufreq_freq_attr_ro(bios_limit);
881 cpufreq_freq_attr_ro(related_cpus);
882 cpufreq_freq_attr_ro(affected_cpus);
883 cpufreq_freq_attr_rw(scaling_min_freq);
884 cpufreq_freq_attr_rw(scaling_max_freq);
885 cpufreq_freq_attr_rw(scaling_governor);
886 cpufreq_freq_attr_rw(scaling_setspeed);
887 
888 static struct attribute *default_attrs[] = {
889 	&cpuinfo_min_freq.attr,
890 	&cpuinfo_max_freq.attr,
891 	&cpuinfo_transition_latency.attr,
892 	&scaling_min_freq.attr,
893 	&scaling_max_freq.attr,
894 	&affected_cpus.attr,
895 	&related_cpus.attr,
896 	&scaling_governor.attr,
897 	&scaling_driver.attr,
898 	&scaling_available_governors.attr,
899 	&scaling_setspeed.attr,
900 	NULL
901 };
902 
903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
904 #define to_attr(a) container_of(a, struct freq_attr, attr)
905 
show(struct kobject * kobj,struct attribute * attr,char * buf)906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
907 {
908 	struct cpufreq_policy *policy = to_policy(kobj);
909 	struct freq_attr *fattr = to_attr(attr);
910 	ssize_t ret;
911 
912 	if (!fattr->show)
913 		return -EIO;
914 
915 	down_read(&policy->rwsem);
916 	ret = fattr->show(policy, buf);
917 	up_read(&policy->rwsem);
918 
919 	return ret;
920 }
921 
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)922 static ssize_t store(struct kobject *kobj, struct attribute *attr,
923 		     const char *buf, size_t count)
924 {
925 	struct cpufreq_policy *policy = to_policy(kobj);
926 	struct freq_attr *fattr = to_attr(attr);
927 	ssize_t ret = -EINVAL;
928 
929 	if (!fattr->store)
930 		return -EIO;
931 
932 	/*
933 	 * cpus_read_trylock() is used here to work around a circular lock
934 	 * dependency problem with respect to the cpufreq_register_driver().
935 	 */
936 	if (!cpus_read_trylock())
937 		return -EBUSY;
938 
939 	if (cpu_online(policy->cpu)) {
940 		down_write(&policy->rwsem);
941 		ret = fattr->store(policy, buf, count);
942 		up_write(&policy->rwsem);
943 	}
944 
945 	cpus_read_unlock();
946 
947 	return ret;
948 }
949 
cpufreq_sysfs_release(struct kobject * kobj)950 static void cpufreq_sysfs_release(struct kobject *kobj)
951 {
952 	struct cpufreq_policy *policy = to_policy(kobj);
953 	pr_debug("last reference is dropped\n");
954 	complete(&policy->kobj_unregister);
955 }
956 
957 static const struct sysfs_ops sysfs_ops = {
958 	.show	= show,
959 	.store	= store,
960 };
961 
962 static struct kobj_type ktype_cpufreq = {
963 	.sysfs_ops	= &sysfs_ops,
964 	.default_attrs	= default_attrs,
965 	.release	= cpufreq_sysfs_release,
966 };
967 
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu)968 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
969 {
970 	struct device *dev = get_cpu_device(cpu);
971 
972 	if (!dev)
973 		return;
974 
975 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
976 		return;
977 
978 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
979 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
980 		dev_err(dev, "cpufreq symlink creation failed\n");
981 }
982 
remove_cpu_dev_symlink(struct cpufreq_policy * policy,struct device * dev)983 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
984 				   struct device *dev)
985 {
986 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
987 	sysfs_remove_link(&dev->kobj, "cpufreq");
988 }
989 
cpufreq_add_dev_interface(struct cpufreq_policy * policy)990 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
991 {
992 	struct freq_attr **drv_attr;
993 	int ret = 0;
994 
995 	/* set up files for this cpu device */
996 	drv_attr = cpufreq_driver->attr;
997 	while (drv_attr && *drv_attr) {
998 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
999 		if (ret)
1000 			return ret;
1001 		drv_attr++;
1002 	}
1003 	if (cpufreq_driver->get) {
1004 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1005 		if (ret)
1006 			return ret;
1007 	}
1008 
1009 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1010 	if (ret)
1011 		return ret;
1012 
1013 	if (cpufreq_driver->bios_limit) {
1014 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1015 		if (ret)
1016 			return ret;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
cpufreq_default_governor(void)1022 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1023 {
1024 	return NULL;
1025 }
1026 
cpufreq_init_policy(struct cpufreq_policy * policy)1027 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1028 {
1029 	struct cpufreq_governor *gov = NULL;
1030 	struct cpufreq_policy new_policy;
1031 
1032 	memcpy(&new_policy, policy, sizeof(*policy));
1033 
1034 	/* Update governor of new_policy to the governor used before hotplug */
1035 	gov = find_governor(policy->last_governor);
1036 	if (gov) {
1037 		pr_debug("Restoring governor %s for cpu %d\n",
1038 				policy->governor->name, policy->cpu);
1039 	} else {
1040 		gov = cpufreq_default_governor();
1041 		if (!gov)
1042 			return -ENODATA;
1043 	}
1044 
1045 	new_policy.governor = gov;
1046 
1047 	/* Use the default policy if there is no last_policy. */
1048 	if (cpufreq_driver->setpolicy) {
1049 		if (policy->last_policy)
1050 			new_policy.policy = policy->last_policy;
1051 		else
1052 			cpufreq_parse_governor(gov->name, &new_policy);
1053 	}
1054 	/* set default policy */
1055 	return cpufreq_set_policy(policy, &new_policy);
1056 }
1057 
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1058 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1059 {
1060 	int ret = 0;
1061 
1062 	/* Has this CPU been taken care of already? */
1063 	if (cpumask_test_cpu(cpu, policy->cpus))
1064 		return 0;
1065 
1066 	down_write(&policy->rwsem);
1067 	if (has_target())
1068 		cpufreq_stop_governor(policy);
1069 
1070 	cpumask_set_cpu(cpu, policy->cpus);
1071 
1072 	if (has_target()) {
1073 		ret = cpufreq_start_governor(policy);
1074 		if (ret)
1075 			pr_err("%s: Failed to start governor\n", __func__);
1076 	}
1077 	up_write(&policy->rwsem);
1078 	return ret;
1079 }
1080 
handle_update(struct work_struct * work)1081 static void handle_update(struct work_struct *work)
1082 {
1083 	struct cpufreq_policy *policy =
1084 		container_of(work, struct cpufreq_policy, update);
1085 	unsigned int cpu = policy->cpu;
1086 	pr_debug("handle_update for cpu %u called\n", cpu);
1087 	cpufreq_update_policy(cpu);
1088 }
1089 
cpufreq_policy_alloc(unsigned int cpu)1090 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1091 {
1092 	struct cpufreq_policy *policy;
1093 	int ret;
1094 
1095 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1096 	if (!policy)
1097 		return NULL;
1098 
1099 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1100 		goto err_free_policy;
1101 
1102 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1103 		goto err_free_cpumask;
1104 
1105 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1106 		goto err_free_rcpumask;
1107 
1108 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1109 				   cpufreq_global_kobject, "policy%u", cpu);
1110 	if (ret) {
1111 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1112 		kobject_put(&policy->kobj);
1113 		goto err_free_real_cpus;
1114 	}
1115 
1116 	INIT_LIST_HEAD(&policy->policy_list);
1117 	init_rwsem(&policy->rwsem);
1118 	spin_lock_init(&policy->transition_lock);
1119 	init_waitqueue_head(&policy->transition_wait);
1120 	init_completion(&policy->kobj_unregister);
1121 	INIT_WORK(&policy->update, handle_update);
1122 
1123 	policy->cpu = cpu;
1124 	return policy;
1125 
1126 err_free_real_cpus:
1127 	free_cpumask_var(policy->real_cpus);
1128 err_free_rcpumask:
1129 	free_cpumask_var(policy->related_cpus);
1130 err_free_cpumask:
1131 	free_cpumask_var(policy->cpus);
1132 err_free_policy:
1133 	kfree(policy);
1134 
1135 	return NULL;
1136 }
1137 
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1138 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1139 {
1140 	struct kobject *kobj;
1141 	struct completion *cmp;
1142 
1143 	down_write(&policy->rwsem);
1144 	cpufreq_stats_free_table(policy);
1145 	kobj = &policy->kobj;
1146 	cmp = &policy->kobj_unregister;
1147 	up_write(&policy->rwsem);
1148 	kobject_put(kobj);
1149 
1150 	/*
1151 	 * We need to make sure that the underlying kobj is
1152 	 * actually not referenced anymore by anybody before we
1153 	 * proceed with unloading.
1154 	 */
1155 	pr_debug("waiting for dropping of refcount\n");
1156 	wait_for_completion(cmp);
1157 	pr_debug("wait complete\n");
1158 }
1159 
cpufreq_policy_free(struct cpufreq_policy * policy)1160 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1161 {
1162 	unsigned long flags;
1163 	int cpu;
1164 
1165 	/* Remove policy from list */
1166 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1167 	list_del(&policy->policy_list);
1168 
1169 	for_each_cpu(cpu, policy->related_cpus)
1170 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1171 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1172 
1173 	cpufreq_policy_put_kobj(policy);
1174 	free_cpumask_var(policy->real_cpus);
1175 	free_cpumask_var(policy->related_cpus);
1176 	free_cpumask_var(policy->cpus);
1177 	kfree(policy);
1178 }
1179 
cpufreq_online(unsigned int cpu)1180 static int cpufreq_online(unsigned int cpu)
1181 {
1182 	struct cpufreq_policy *policy;
1183 	bool new_policy;
1184 	unsigned long flags;
1185 	unsigned int j;
1186 	int ret;
1187 
1188 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1189 
1190 	/* Check if this CPU already has a policy to manage it */
1191 	policy = per_cpu(cpufreq_cpu_data, cpu);
1192 	if (policy) {
1193 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1194 		if (!policy_is_inactive(policy))
1195 			return cpufreq_add_policy_cpu(policy, cpu);
1196 
1197 		/* This is the only online CPU for the policy.  Start over. */
1198 		new_policy = false;
1199 		down_write(&policy->rwsem);
1200 		policy->cpu = cpu;
1201 		policy->governor = NULL;
1202 		up_write(&policy->rwsem);
1203 	} else {
1204 		new_policy = true;
1205 		policy = cpufreq_policy_alloc(cpu);
1206 		if (!policy)
1207 			return -ENOMEM;
1208 	}
1209 
1210 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1211 
1212 	/* call driver. From then on the cpufreq must be able
1213 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1214 	 */
1215 	ret = cpufreq_driver->init(policy);
1216 	if (ret) {
1217 		pr_debug("initialization failed\n");
1218 		goto out_free_policy;
1219 	}
1220 
1221 	ret = cpufreq_table_validate_and_sort(policy);
1222 	if (ret)
1223 		goto out_exit_policy;
1224 
1225 	down_write(&policy->rwsem);
1226 
1227 	if (new_policy) {
1228 		/* related_cpus should at least include policy->cpus. */
1229 		cpumask_copy(policy->related_cpus, policy->cpus);
1230 	}
1231 
1232 	/*
1233 	 * affected cpus must always be the one, which are online. We aren't
1234 	 * managing offline cpus here.
1235 	 */
1236 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1237 
1238 	if (new_policy) {
1239 		policy->user_policy.min = policy->min;
1240 		policy->user_policy.max = policy->max;
1241 
1242 		for_each_cpu(j, policy->related_cpus) {
1243 			per_cpu(cpufreq_cpu_data, j) = policy;
1244 			add_cpu_dev_symlink(policy, j);
1245 		}
1246 	} else {
1247 		policy->min = policy->user_policy.min;
1248 		policy->max = policy->user_policy.max;
1249 	}
1250 
1251 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1252 		policy->cur = cpufreq_driver->get(policy->cpu);
1253 		if (!policy->cur) {
1254 			pr_err("%s: ->get() failed\n", __func__);
1255 			goto out_destroy_policy;
1256 		}
1257 	}
1258 
1259 	/*
1260 	 * Sometimes boot loaders set CPU frequency to a value outside of
1261 	 * frequency table present with cpufreq core. In such cases CPU might be
1262 	 * unstable if it has to run on that frequency for long duration of time
1263 	 * and so its better to set it to a frequency which is specified in
1264 	 * freq-table. This also makes cpufreq stats inconsistent as
1265 	 * cpufreq-stats would fail to register because current frequency of CPU
1266 	 * isn't found in freq-table.
1267 	 *
1268 	 * Because we don't want this change to effect boot process badly, we go
1269 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1270 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1271 	 * is initialized to zero).
1272 	 *
1273 	 * We are passing target-freq as "policy->cur - 1" otherwise
1274 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1275 	 * equal to target-freq.
1276 	 */
1277 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1278 	    && has_target()) {
1279 		/* Are we running at unknown frequency ? */
1280 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1281 		if (ret == -EINVAL) {
1282 			/* Warn user and fix it */
1283 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1284 				__func__, policy->cpu, policy->cur);
1285 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1286 				CPUFREQ_RELATION_L);
1287 
1288 			/*
1289 			 * Reaching here after boot in a few seconds may not
1290 			 * mean that system will remain stable at "unknown"
1291 			 * frequency for longer duration. Hence, a BUG_ON().
1292 			 */
1293 			BUG_ON(ret);
1294 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1295 				__func__, policy->cpu, policy->cur);
1296 		}
1297 	}
1298 
1299 	if (new_policy) {
1300 		ret = cpufreq_add_dev_interface(policy);
1301 		if (ret)
1302 			goto out_destroy_policy;
1303 
1304 		cpufreq_stats_create_table(policy);
1305 
1306 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1307 		list_add(&policy->policy_list, &cpufreq_policy_list);
1308 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1309 	}
1310 
1311 	ret = cpufreq_init_policy(policy);
1312 	if (ret) {
1313 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1314 		       __func__, cpu, ret);
1315 		/* cpufreq_policy_free() will notify based on this */
1316 		new_policy = false;
1317 		goto out_destroy_policy;
1318 	}
1319 
1320 	up_write(&policy->rwsem);
1321 
1322 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1323 
1324 	/* Callback for handling stuff after policy is ready */
1325 	if (cpufreq_driver->ready)
1326 		cpufreq_driver->ready(policy);
1327 
1328 	pr_debug("initialization complete\n");
1329 
1330 	return 0;
1331 
1332 out_destroy_policy:
1333 	for_each_cpu(j, policy->real_cpus)
1334 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1335 
1336 	up_write(&policy->rwsem);
1337 
1338 out_exit_policy:
1339 	if (cpufreq_driver->exit)
1340 		cpufreq_driver->exit(policy);
1341 
1342 out_free_policy:
1343 	cpufreq_policy_free(policy);
1344 	return ret;
1345 }
1346 
1347 /**
1348  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1349  * @dev: CPU device.
1350  * @sif: Subsystem interface structure pointer (not used)
1351  */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1352 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1353 {
1354 	struct cpufreq_policy *policy;
1355 	unsigned cpu = dev->id;
1356 	int ret;
1357 
1358 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1359 
1360 	if (cpu_online(cpu)) {
1361 		ret = cpufreq_online(cpu);
1362 		if (ret)
1363 			return ret;
1364 	}
1365 
1366 	/* Create sysfs link on CPU registration */
1367 	policy = per_cpu(cpufreq_cpu_data, cpu);
1368 	if (policy)
1369 		add_cpu_dev_symlink(policy, cpu);
1370 
1371 	return 0;
1372 }
1373 
cpufreq_offline(unsigned int cpu)1374 static int cpufreq_offline(unsigned int cpu)
1375 {
1376 	struct cpufreq_policy *policy;
1377 	int ret;
1378 
1379 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1380 
1381 	policy = cpufreq_cpu_get_raw(cpu);
1382 	if (!policy) {
1383 		pr_debug("%s: No cpu_data found\n", __func__);
1384 		return 0;
1385 	}
1386 
1387 	down_write(&policy->rwsem);
1388 	if (has_target())
1389 		cpufreq_stop_governor(policy);
1390 
1391 	cpumask_clear_cpu(cpu, policy->cpus);
1392 
1393 	if (policy_is_inactive(policy)) {
1394 		if (has_target())
1395 			strncpy(policy->last_governor, policy->governor->name,
1396 				CPUFREQ_NAME_LEN);
1397 		else
1398 			policy->last_policy = policy->policy;
1399 	} else if (cpu == policy->cpu) {
1400 		/* Nominate new CPU */
1401 		policy->cpu = cpumask_any(policy->cpus);
1402 	}
1403 
1404 	/* Start governor again for active policy */
1405 	if (!policy_is_inactive(policy)) {
1406 		if (has_target()) {
1407 			ret = cpufreq_start_governor(policy);
1408 			if (ret)
1409 				pr_err("%s: Failed to start governor\n", __func__);
1410 		}
1411 
1412 		goto unlock;
1413 	}
1414 
1415 	if (cpufreq_driver->stop_cpu)
1416 		cpufreq_driver->stop_cpu(policy);
1417 
1418 	if (has_target())
1419 		cpufreq_exit_governor(policy);
1420 
1421 	/*
1422 	 * Perform the ->exit() even during light-weight tear-down,
1423 	 * since this is a core component, and is essential for the
1424 	 * subsequent light-weight ->init() to succeed.
1425 	 */
1426 	if (cpufreq_driver->exit) {
1427 		cpufreq_driver->exit(policy);
1428 		policy->freq_table = NULL;
1429 	}
1430 
1431 unlock:
1432 	up_write(&policy->rwsem);
1433 	return 0;
1434 }
1435 
1436 /**
1437  * cpufreq_remove_dev - remove a CPU device
1438  *
1439  * Removes the cpufreq interface for a CPU device.
1440  */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1441 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1442 {
1443 	unsigned int cpu = dev->id;
1444 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1445 
1446 	if (!policy)
1447 		return;
1448 
1449 	if (cpu_online(cpu))
1450 		cpufreq_offline(cpu);
1451 
1452 	cpumask_clear_cpu(cpu, policy->real_cpus);
1453 	remove_cpu_dev_symlink(policy, dev);
1454 
1455 	if (cpumask_empty(policy->real_cpus))
1456 		cpufreq_policy_free(policy);
1457 }
1458 
1459 /**
1460  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1461  *	in deep trouble.
1462  *	@policy: policy managing CPUs
1463  *	@new_freq: CPU frequency the CPU actually runs at
1464  *
1465  *	We adjust to current frequency first, and need to clean up later.
1466  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1467  */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1468 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1469 				unsigned int new_freq)
1470 {
1471 	struct cpufreq_freqs freqs;
1472 
1473 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1474 		 policy->cur, new_freq);
1475 
1476 	freqs.old = policy->cur;
1477 	freqs.new = new_freq;
1478 
1479 	cpufreq_freq_transition_begin(policy, &freqs);
1480 	cpufreq_freq_transition_end(policy, &freqs, 0);
1481 }
1482 
1483 /**
1484  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1485  * @cpu: CPU number
1486  *
1487  * This is the last known freq, without actually getting it from the driver.
1488  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1489  */
cpufreq_quick_get(unsigned int cpu)1490 unsigned int cpufreq_quick_get(unsigned int cpu)
1491 {
1492 	struct cpufreq_policy *policy;
1493 	unsigned int ret_freq = 0;
1494 	unsigned long flags;
1495 
1496 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1497 
1498 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1499 		ret_freq = cpufreq_driver->get(cpu);
1500 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1501 		return ret_freq;
1502 	}
1503 
1504 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1505 
1506 	policy = cpufreq_cpu_get(cpu);
1507 	if (policy) {
1508 		ret_freq = policy->cur;
1509 		cpufreq_cpu_put(policy);
1510 	}
1511 
1512 	return ret_freq;
1513 }
1514 EXPORT_SYMBOL(cpufreq_quick_get);
1515 
1516 /**
1517  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1518  * @cpu: CPU number
1519  *
1520  * Just return the max possible frequency for a given CPU.
1521  */
cpufreq_quick_get_max(unsigned int cpu)1522 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1523 {
1524 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1525 	unsigned int ret_freq = 0;
1526 
1527 	if (policy) {
1528 		ret_freq = policy->max;
1529 		cpufreq_cpu_put(policy);
1530 	}
1531 
1532 	return ret_freq;
1533 }
1534 EXPORT_SYMBOL(cpufreq_quick_get_max);
1535 
__cpufreq_get(struct cpufreq_policy * policy)1536 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1537 {
1538 	unsigned int ret_freq = 0;
1539 
1540 	if (unlikely(policy_is_inactive(policy)) || !cpufreq_driver->get)
1541 		return ret_freq;
1542 
1543 	ret_freq = cpufreq_driver->get(policy->cpu);
1544 
1545 	/*
1546 	 * If fast frequency switching is used with the given policy, the check
1547 	 * against policy->cur is pointless, so skip it in that case too.
1548 	 */
1549 	if (policy->fast_switch_enabled)
1550 		return ret_freq;
1551 
1552 	if (ret_freq && policy->cur &&
1553 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1554 		/* verify no discrepancy between actual and
1555 					saved value exists */
1556 		if (unlikely(ret_freq != policy->cur)) {
1557 			cpufreq_out_of_sync(policy, ret_freq);
1558 			schedule_work(&policy->update);
1559 		}
1560 	}
1561 
1562 	return ret_freq;
1563 }
1564 
1565 /**
1566  * cpufreq_get - get the current CPU frequency (in kHz)
1567  * @cpu: CPU number
1568  *
1569  * Get the CPU current (static) CPU frequency
1570  */
cpufreq_get(unsigned int cpu)1571 unsigned int cpufreq_get(unsigned int cpu)
1572 {
1573 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1574 	unsigned int ret_freq = 0;
1575 
1576 	if (policy) {
1577 		down_read(&policy->rwsem);
1578 		ret_freq = __cpufreq_get(policy);
1579 		up_read(&policy->rwsem);
1580 
1581 		cpufreq_cpu_put(policy);
1582 	}
1583 
1584 	return ret_freq;
1585 }
1586 EXPORT_SYMBOL(cpufreq_get);
1587 
cpufreq_update_current_freq(struct cpufreq_policy * policy)1588 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1589 {
1590 	unsigned int new_freq;
1591 
1592 	new_freq = cpufreq_driver->get(policy->cpu);
1593 	if (!new_freq)
1594 		return 0;
1595 
1596 	if (!policy->cur) {
1597 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1598 		policy->cur = new_freq;
1599 	} else if (policy->cur != new_freq && has_target()) {
1600 		cpufreq_out_of_sync(policy, new_freq);
1601 	}
1602 
1603 	return new_freq;
1604 }
1605 
1606 static struct subsys_interface cpufreq_interface = {
1607 	.name		= "cpufreq",
1608 	.subsys		= &cpu_subsys,
1609 	.add_dev	= cpufreq_add_dev,
1610 	.remove_dev	= cpufreq_remove_dev,
1611 };
1612 
1613 /*
1614  * In case platform wants some specific frequency to be configured
1615  * during suspend..
1616  */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1617 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1618 {
1619 	int ret;
1620 
1621 	if (!policy->suspend_freq) {
1622 		pr_debug("%s: suspend_freq not defined\n", __func__);
1623 		return 0;
1624 	}
1625 
1626 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1627 			policy->suspend_freq);
1628 
1629 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1630 			CPUFREQ_RELATION_H);
1631 	if (ret)
1632 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1633 				__func__, policy->suspend_freq, ret);
1634 
1635 	return ret;
1636 }
1637 EXPORT_SYMBOL(cpufreq_generic_suspend);
1638 
1639 /**
1640  * cpufreq_suspend() - Suspend CPUFreq governors
1641  *
1642  * Called during system wide Suspend/Hibernate cycles for suspending governors
1643  * as some platforms can't change frequency after this point in suspend cycle.
1644  * Because some of the devices (like: i2c, regulators, etc) they use for
1645  * changing frequency are suspended quickly after this point.
1646  */
cpufreq_suspend(void)1647 void cpufreq_suspend(void)
1648 {
1649 	struct cpufreq_policy *policy;
1650 
1651 	if (!cpufreq_driver)
1652 		return;
1653 
1654 	if (!has_target() && !cpufreq_driver->suspend)
1655 		goto suspend;
1656 
1657 	pr_debug("%s: Suspending Governors\n", __func__);
1658 
1659 	for_each_active_policy(policy) {
1660 		if (has_target()) {
1661 			down_write(&policy->rwsem);
1662 			cpufreq_stop_governor(policy);
1663 			up_write(&policy->rwsem);
1664 		}
1665 
1666 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1667 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1668 				policy);
1669 	}
1670 
1671 suspend:
1672 	cpufreq_suspended = true;
1673 }
1674 
1675 /**
1676  * cpufreq_resume() - Resume CPUFreq governors
1677  *
1678  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1679  * are suspended with cpufreq_suspend().
1680  */
cpufreq_resume(void)1681 void cpufreq_resume(void)
1682 {
1683 	struct cpufreq_policy *policy;
1684 	int ret;
1685 
1686 	if (!cpufreq_driver)
1687 		return;
1688 
1689 	if (unlikely(!cpufreq_suspended))
1690 		return;
1691 
1692 	cpufreq_suspended = false;
1693 
1694 	if (!has_target() && !cpufreq_driver->resume)
1695 		return;
1696 
1697 	pr_debug("%s: Resuming Governors\n", __func__);
1698 
1699 	for_each_active_policy(policy) {
1700 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1701 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1702 				policy);
1703 		} else if (has_target()) {
1704 			down_write(&policy->rwsem);
1705 			ret = cpufreq_start_governor(policy);
1706 			up_write(&policy->rwsem);
1707 
1708 			if (ret)
1709 				pr_err("%s: Failed to start governor for policy: %p\n",
1710 				       __func__, policy);
1711 		}
1712 	}
1713 }
1714 
1715 /**
1716  *	cpufreq_get_current_driver - return current driver's name
1717  *
1718  *	Return the name string of the currently loaded cpufreq driver
1719  *	or NULL, if none.
1720  */
cpufreq_get_current_driver(void)1721 const char *cpufreq_get_current_driver(void)
1722 {
1723 	if (cpufreq_driver)
1724 		return cpufreq_driver->name;
1725 
1726 	return NULL;
1727 }
1728 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1729 
1730 /**
1731  *	cpufreq_get_driver_data - return current driver data
1732  *
1733  *	Return the private data of the currently loaded cpufreq
1734  *	driver, or NULL if no cpufreq driver is loaded.
1735  */
cpufreq_get_driver_data(void)1736 void *cpufreq_get_driver_data(void)
1737 {
1738 	if (cpufreq_driver)
1739 		return cpufreq_driver->driver_data;
1740 
1741 	return NULL;
1742 }
1743 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1744 
1745 /*********************************************************************
1746  *                     NOTIFIER LISTS INTERFACE                      *
1747  *********************************************************************/
1748 
1749 /**
1750  *	cpufreq_register_notifier - register a driver with cpufreq
1751  *	@nb: notifier function to register
1752  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1753  *
1754  *	Add a driver to one of two lists: either a list of drivers that
1755  *      are notified about clock rate changes (once before and once after
1756  *      the transition), or a list of drivers that are notified about
1757  *      changes in cpufreq policy.
1758  *
1759  *	This function may sleep, and has the same return conditions as
1760  *	blocking_notifier_chain_register.
1761  */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)1762 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1763 {
1764 	int ret;
1765 
1766 	if (cpufreq_disabled())
1767 		return -EINVAL;
1768 
1769 	switch (list) {
1770 	case CPUFREQ_TRANSITION_NOTIFIER:
1771 		mutex_lock(&cpufreq_fast_switch_lock);
1772 
1773 		if (cpufreq_fast_switch_count > 0) {
1774 			mutex_unlock(&cpufreq_fast_switch_lock);
1775 			return -EBUSY;
1776 		}
1777 		ret = srcu_notifier_chain_register(
1778 				&cpufreq_transition_notifier_list, nb);
1779 		if (!ret)
1780 			cpufreq_fast_switch_count--;
1781 
1782 		mutex_unlock(&cpufreq_fast_switch_lock);
1783 		break;
1784 	case CPUFREQ_POLICY_NOTIFIER:
1785 		ret = blocking_notifier_chain_register(
1786 				&cpufreq_policy_notifier_list, nb);
1787 		break;
1788 	default:
1789 		ret = -EINVAL;
1790 	}
1791 
1792 	return ret;
1793 }
1794 EXPORT_SYMBOL(cpufreq_register_notifier);
1795 
1796 /**
1797  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1798  *	@nb: notifier block to be unregistered
1799  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1800  *
1801  *	Remove a driver from the CPU frequency notifier list.
1802  *
1803  *	This function may sleep, and has the same return conditions as
1804  *	blocking_notifier_chain_unregister.
1805  */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)1806 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1807 {
1808 	int ret;
1809 
1810 	if (cpufreq_disabled())
1811 		return -EINVAL;
1812 
1813 	switch (list) {
1814 	case CPUFREQ_TRANSITION_NOTIFIER:
1815 		mutex_lock(&cpufreq_fast_switch_lock);
1816 
1817 		ret = srcu_notifier_chain_unregister(
1818 				&cpufreq_transition_notifier_list, nb);
1819 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1820 			cpufreq_fast_switch_count++;
1821 
1822 		mutex_unlock(&cpufreq_fast_switch_lock);
1823 		break;
1824 	case CPUFREQ_POLICY_NOTIFIER:
1825 		ret = blocking_notifier_chain_unregister(
1826 				&cpufreq_policy_notifier_list, nb);
1827 		break;
1828 	default:
1829 		ret = -EINVAL;
1830 	}
1831 
1832 	return ret;
1833 }
1834 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1835 
1836 
1837 /*********************************************************************
1838  *                              GOVERNORS                            *
1839  *********************************************************************/
1840 
1841 /**
1842  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1843  * @policy: cpufreq policy to switch the frequency for.
1844  * @target_freq: New frequency to set (may be approximate).
1845  *
1846  * Carry out a fast frequency switch without sleeping.
1847  *
1848  * The driver's ->fast_switch() callback invoked by this function must be
1849  * suitable for being called from within RCU-sched read-side critical sections
1850  * and it is expected to select the minimum available frequency greater than or
1851  * equal to @target_freq (CPUFREQ_RELATION_L).
1852  *
1853  * This function must not be called if policy->fast_switch_enabled is unset.
1854  *
1855  * Governors calling this function must guarantee that it will never be invoked
1856  * twice in parallel for the same policy and that it will never be called in
1857  * parallel with either ->target() or ->target_index() for the same policy.
1858  *
1859  * Returns the actual frequency set for the CPU.
1860  *
1861  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1862  * error condition, the hardware configuration must be preserved.
1863  */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)1864 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1865 					unsigned int target_freq)
1866 {
1867 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1868 
1869 	return cpufreq_driver->fast_switch(policy, target_freq);
1870 }
1871 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1872 
1873 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)1874 static int __target_intermediate(struct cpufreq_policy *policy,
1875 				 struct cpufreq_freqs *freqs, int index)
1876 {
1877 	int ret;
1878 
1879 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1880 
1881 	/* We don't need to switch to intermediate freq */
1882 	if (!freqs->new)
1883 		return 0;
1884 
1885 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1886 		 __func__, policy->cpu, freqs->old, freqs->new);
1887 
1888 	cpufreq_freq_transition_begin(policy, freqs);
1889 	ret = cpufreq_driver->target_intermediate(policy, index);
1890 	cpufreq_freq_transition_end(policy, freqs, ret);
1891 
1892 	if (ret)
1893 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1894 		       __func__, ret);
1895 
1896 	return ret;
1897 }
1898 
__target_index(struct cpufreq_policy * policy,int index)1899 static int __target_index(struct cpufreq_policy *policy, int index)
1900 {
1901 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1902 	unsigned int intermediate_freq = 0;
1903 	unsigned int newfreq = policy->freq_table[index].frequency;
1904 	int retval = -EINVAL;
1905 	bool notify;
1906 
1907 	if (newfreq == policy->cur)
1908 		return 0;
1909 
1910 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1911 	if (notify) {
1912 		/* Handle switching to intermediate frequency */
1913 		if (cpufreq_driver->get_intermediate) {
1914 			retval = __target_intermediate(policy, &freqs, index);
1915 			if (retval)
1916 				return retval;
1917 
1918 			intermediate_freq = freqs.new;
1919 			/* Set old freq to intermediate */
1920 			if (intermediate_freq)
1921 				freqs.old = freqs.new;
1922 		}
1923 
1924 		freqs.new = newfreq;
1925 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1926 			 __func__, policy->cpu, freqs.old, freqs.new);
1927 
1928 		cpufreq_freq_transition_begin(policy, &freqs);
1929 	}
1930 
1931 	retval = cpufreq_driver->target_index(policy, index);
1932 	if (retval)
1933 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1934 		       retval);
1935 
1936 	if (notify) {
1937 		cpufreq_freq_transition_end(policy, &freqs, retval);
1938 
1939 		/*
1940 		 * Failed after setting to intermediate freq? Driver should have
1941 		 * reverted back to initial frequency and so should we. Check
1942 		 * here for intermediate_freq instead of get_intermediate, in
1943 		 * case we haven't switched to intermediate freq at all.
1944 		 */
1945 		if (unlikely(retval && intermediate_freq)) {
1946 			freqs.old = intermediate_freq;
1947 			freqs.new = policy->restore_freq;
1948 			cpufreq_freq_transition_begin(policy, &freqs);
1949 			cpufreq_freq_transition_end(policy, &freqs, 0);
1950 		}
1951 	}
1952 
1953 	return retval;
1954 }
1955 
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1956 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1957 			    unsigned int target_freq,
1958 			    unsigned int relation)
1959 {
1960 	unsigned int old_target_freq = target_freq;
1961 	int index;
1962 
1963 	if (cpufreq_disabled())
1964 		return -ENODEV;
1965 
1966 	/* Make sure that target_freq is within supported range */
1967 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1968 
1969 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1970 		 policy->cpu, target_freq, relation, old_target_freq);
1971 
1972 	/*
1973 	 * This might look like a redundant call as we are checking it again
1974 	 * after finding index. But it is left intentionally for cases where
1975 	 * exactly same freq is called again and so we can save on few function
1976 	 * calls.
1977 	 */
1978 	if (target_freq == policy->cur)
1979 		return 0;
1980 
1981 	/* Save last value to restore later on errors */
1982 	policy->restore_freq = policy->cur;
1983 
1984 	if (cpufreq_driver->target)
1985 		return cpufreq_driver->target(policy, target_freq, relation);
1986 
1987 	if (!cpufreq_driver->target_index)
1988 		return -EINVAL;
1989 
1990 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1991 
1992 	return __target_index(policy, index);
1993 }
1994 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1995 
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1996 int cpufreq_driver_target(struct cpufreq_policy *policy,
1997 			  unsigned int target_freq,
1998 			  unsigned int relation)
1999 {
2000 	int ret = -EINVAL;
2001 
2002 	down_write(&policy->rwsem);
2003 
2004 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2005 
2006 	up_write(&policy->rwsem);
2007 
2008 	return ret;
2009 }
2010 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2011 
cpufreq_fallback_governor(void)2012 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2013 {
2014 	return NULL;
2015 }
2016 
cpufreq_init_governor(struct cpufreq_policy * policy)2017 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2018 {
2019 	int ret;
2020 
2021 	/* Don't start any governor operations if we are entering suspend */
2022 	if (cpufreq_suspended)
2023 		return 0;
2024 	/*
2025 	 * Governor might not be initiated here if ACPI _PPC changed
2026 	 * notification happened, so check it.
2027 	 */
2028 	if (!policy->governor)
2029 		return -EINVAL;
2030 
2031 	/* Platform doesn't want dynamic frequency switching ? */
2032 	if (policy->governor->dynamic_switching &&
2033 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2034 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2035 
2036 		if (gov) {
2037 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2038 				policy->governor->name, gov->name);
2039 			policy->governor = gov;
2040 		} else {
2041 			return -EINVAL;
2042 		}
2043 	}
2044 
2045 	if (!try_module_get(policy->governor->owner))
2046 		return -EINVAL;
2047 
2048 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2049 
2050 	if (policy->governor->init) {
2051 		ret = policy->governor->init(policy);
2052 		if (ret) {
2053 			module_put(policy->governor->owner);
2054 			return ret;
2055 		}
2056 	}
2057 
2058 	return 0;
2059 }
2060 
cpufreq_exit_governor(struct cpufreq_policy * policy)2061 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2062 {
2063 	if (cpufreq_suspended || !policy->governor)
2064 		return;
2065 
2066 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2067 
2068 	if (policy->governor->exit)
2069 		policy->governor->exit(policy);
2070 
2071 	module_put(policy->governor->owner);
2072 }
2073 
cpufreq_start_governor(struct cpufreq_policy * policy)2074 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2075 {
2076 	int ret;
2077 
2078 	if (cpufreq_suspended)
2079 		return 0;
2080 
2081 	if (!policy->governor)
2082 		return -EINVAL;
2083 
2084 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2085 
2086 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2087 		cpufreq_update_current_freq(policy);
2088 
2089 	if (policy->governor->start) {
2090 		ret = policy->governor->start(policy);
2091 		if (ret)
2092 			return ret;
2093 	}
2094 
2095 	if (policy->governor->limits)
2096 		policy->governor->limits(policy);
2097 
2098 	return 0;
2099 }
2100 
cpufreq_stop_governor(struct cpufreq_policy * policy)2101 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2102 {
2103 	if (cpufreq_suspended || !policy->governor)
2104 		return;
2105 
2106 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2107 
2108 	if (policy->governor->stop)
2109 		policy->governor->stop(policy);
2110 }
2111 
cpufreq_governor_limits(struct cpufreq_policy * policy)2112 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2113 {
2114 	if (cpufreq_suspended || !policy->governor)
2115 		return;
2116 
2117 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2118 
2119 	if (policy->governor->limits)
2120 		policy->governor->limits(policy);
2121 }
2122 
cpufreq_register_governor(struct cpufreq_governor * governor)2123 int cpufreq_register_governor(struct cpufreq_governor *governor)
2124 {
2125 	int err;
2126 
2127 	if (!governor)
2128 		return -EINVAL;
2129 
2130 	if (cpufreq_disabled())
2131 		return -ENODEV;
2132 
2133 	mutex_lock(&cpufreq_governor_mutex);
2134 
2135 	err = -EBUSY;
2136 	if (!find_governor(governor->name)) {
2137 		err = 0;
2138 		list_add(&governor->governor_list, &cpufreq_governor_list);
2139 	}
2140 
2141 	mutex_unlock(&cpufreq_governor_mutex);
2142 	return err;
2143 }
2144 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2145 
cpufreq_unregister_governor(struct cpufreq_governor * governor)2146 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2147 {
2148 	struct cpufreq_policy *policy;
2149 	unsigned long flags;
2150 
2151 	if (!governor)
2152 		return;
2153 
2154 	if (cpufreq_disabled())
2155 		return;
2156 
2157 	/* clear last_governor for all inactive policies */
2158 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2159 	for_each_inactive_policy(policy) {
2160 		if (!strcmp(policy->last_governor, governor->name)) {
2161 			policy->governor = NULL;
2162 			strcpy(policy->last_governor, "\0");
2163 		}
2164 	}
2165 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2166 
2167 	mutex_lock(&cpufreq_governor_mutex);
2168 	list_del(&governor->governor_list);
2169 	mutex_unlock(&cpufreq_governor_mutex);
2170 }
2171 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2172 
2173 
2174 /*********************************************************************
2175  *                          POLICY INTERFACE                         *
2176  *********************************************************************/
2177 
2178 /**
2179  * cpufreq_get_policy - get the current cpufreq_policy
2180  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2181  *	is written
2182  *
2183  * Reads the current cpufreq policy.
2184  */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2185 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2186 {
2187 	struct cpufreq_policy *cpu_policy;
2188 	if (!policy)
2189 		return -EINVAL;
2190 
2191 	cpu_policy = cpufreq_cpu_get(cpu);
2192 	if (!cpu_policy)
2193 		return -EINVAL;
2194 
2195 	memcpy(policy, cpu_policy, sizeof(*policy));
2196 
2197 	cpufreq_cpu_put(cpu_policy);
2198 	return 0;
2199 }
2200 EXPORT_SYMBOL(cpufreq_get_policy);
2201 
2202 /*
2203  * policy : current policy.
2204  * new_policy: policy to be set.
2205  */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_policy * new_policy)2206 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2207 				struct cpufreq_policy *new_policy)
2208 {
2209 	struct cpufreq_governor *old_gov;
2210 	int ret;
2211 
2212 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2213 		 new_policy->cpu, new_policy->min, new_policy->max);
2214 
2215 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2216 
2217 	/*
2218 	* This check works well when we store new min/max freq attributes,
2219 	* because new_policy is a copy of policy with one field updated.
2220 	*/
2221 	if (new_policy->min > new_policy->max)
2222 		return -EINVAL;
2223 
2224 	/* verify the cpu speed can be set within this limit */
2225 	ret = cpufreq_driver->verify(new_policy);
2226 	if (ret)
2227 		return ret;
2228 
2229 	/* adjust if necessary - all reasons */
2230 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2231 			CPUFREQ_ADJUST, new_policy);
2232 
2233 	/*
2234 	 * verify the cpu speed can be set within this limit, which might be
2235 	 * different to the first one
2236 	 */
2237 	ret = cpufreq_driver->verify(new_policy);
2238 	if (ret)
2239 		return ret;
2240 
2241 	/* notification of the new policy */
2242 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2243 			CPUFREQ_NOTIFY, new_policy);
2244 
2245 	policy->min = new_policy->min;
2246 	policy->max = new_policy->max;
2247 	trace_cpu_frequency_limits(policy);
2248 
2249 	policy->cached_target_freq = UINT_MAX;
2250 
2251 	pr_debug("new min and max freqs are %u - %u kHz\n",
2252 		 policy->min, policy->max);
2253 
2254 	if (cpufreq_driver->setpolicy) {
2255 		policy->policy = new_policy->policy;
2256 		pr_debug("setting range\n");
2257 		return cpufreq_driver->setpolicy(new_policy);
2258 	}
2259 
2260 	if (new_policy->governor == policy->governor) {
2261 		pr_debug("cpufreq: governor limits update\n");
2262 		cpufreq_governor_limits(policy);
2263 		return 0;
2264 	}
2265 
2266 	pr_debug("governor switch\n");
2267 
2268 	/* save old, working values */
2269 	old_gov = policy->governor;
2270 	/* end old governor */
2271 	if (old_gov) {
2272 		cpufreq_stop_governor(policy);
2273 		cpufreq_exit_governor(policy);
2274 	}
2275 
2276 	/* start new governor */
2277 	policy->governor = new_policy->governor;
2278 	ret = cpufreq_init_governor(policy);
2279 	if (!ret) {
2280 		ret = cpufreq_start_governor(policy);
2281 		if (!ret) {
2282 			pr_debug("cpufreq: governor change\n");
2283 			return 0;
2284 		}
2285 		cpufreq_exit_governor(policy);
2286 	}
2287 
2288 	/* new governor failed, so re-start old one */
2289 	pr_debug("starting governor %s failed\n", policy->governor->name);
2290 	if (old_gov) {
2291 		policy->governor = old_gov;
2292 		if (cpufreq_init_governor(policy))
2293 			policy->governor = NULL;
2294 		else
2295 			cpufreq_start_governor(policy);
2296 	}
2297 
2298 	return ret;
2299 }
2300 
2301 /**
2302  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2303  *	@cpu: CPU which shall be re-evaluated
2304  *
2305  *	Useful for policy notifiers which have different necessities
2306  *	at different times.
2307  */
cpufreq_update_policy(unsigned int cpu)2308 void cpufreq_update_policy(unsigned int cpu)
2309 {
2310 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2311 	struct cpufreq_policy new_policy;
2312 
2313 	if (!policy)
2314 		return;
2315 
2316 	down_write(&policy->rwsem);
2317 
2318 	if (policy_is_inactive(policy))
2319 		goto unlock;
2320 
2321 	pr_debug("updating policy for CPU %u\n", cpu);
2322 	memcpy(&new_policy, policy, sizeof(*policy));
2323 	new_policy.min = policy->user_policy.min;
2324 	new_policy.max = policy->user_policy.max;
2325 
2326 	/*
2327 	 * BIOS might change freq behind our back
2328 	 * -> ask driver for current freq and notify governors about a change
2329 	 */
2330 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2331 		if (cpufreq_suspended)
2332 			goto unlock;
2333 
2334 		new_policy.cur = cpufreq_update_current_freq(policy);
2335 		if (WARN_ON(!new_policy.cur))
2336 			goto unlock;
2337 	}
2338 
2339 	cpufreq_set_policy(policy, &new_policy);
2340 
2341 unlock:
2342 	up_write(&policy->rwsem);
2343 
2344 	cpufreq_cpu_put(policy);
2345 }
2346 EXPORT_SYMBOL(cpufreq_update_policy);
2347 
2348 /*********************************************************************
2349  *               BOOST						     *
2350  *********************************************************************/
cpufreq_boost_set_sw(int state)2351 static int cpufreq_boost_set_sw(int state)
2352 {
2353 	struct cpufreq_policy *policy;
2354 	int ret = -EINVAL;
2355 
2356 	for_each_active_policy(policy) {
2357 		if (!policy->freq_table)
2358 			continue;
2359 
2360 		ret = cpufreq_frequency_table_cpuinfo(policy,
2361 						      policy->freq_table);
2362 		if (ret) {
2363 			pr_err("%s: Policy frequency update failed\n",
2364 			       __func__);
2365 			break;
2366 		}
2367 
2368 		down_write(&policy->rwsem);
2369 		policy->user_policy.max = policy->max;
2370 		cpufreq_governor_limits(policy);
2371 		up_write(&policy->rwsem);
2372 	}
2373 
2374 	return ret;
2375 }
2376 
cpufreq_boost_trigger_state(int state)2377 int cpufreq_boost_trigger_state(int state)
2378 {
2379 	unsigned long flags;
2380 	int ret = 0;
2381 
2382 	if (cpufreq_driver->boost_enabled == state)
2383 		return 0;
2384 
2385 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2386 	cpufreq_driver->boost_enabled = state;
2387 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2388 
2389 	ret = cpufreq_driver->set_boost(state);
2390 	if (ret) {
2391 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2392 		cpufreq_driver->boost_enabled = !state;
2393 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2394 
2395 		pr_err("%s: Cannot %s BOOST\n",
2396 		       __func__, state ? "enable" : "disable");
2397 	}
2398 
2399 	return ret;
2400 }
2401 
cpufreq_boost_supported(void)2402 static bool cpufreq_boost_supported(void)
2403 {
2404 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2405 }
2406 
create_boost_sysfs_file(void)2407 static int create_boost_sysfs_file(void)
2408 {
2409 	int ret;
2410 
2411 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2412 	if (ret)
2413 		pr_err("%s: cannot register global BOOST sysfs file\n",
2414 		       __func__);
2415 
2416 	return ret;
2417 }
2418 
remove_boost_sysfs_file(void)2419 static void remove_boost_sysfs_file(void)
2420 {
2421 	if (cpufreq_boost_supported())
2422 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2423 }
2424 
cpufreq_enable_boost_support(void)2425 int cpufreq_enable_boost_support(void)
2426 {
2427 	if (!cpufreq_driver)
2428 		return -EINVAL;
2429 
2430 	if (cpufreq_boost_supported())
2431 		return 0;
2432 
2433 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2434 
2435 	/* This will get removed on driver unregister */
2436 	return create_boost_sysfs_file();
2437 }
2438 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2439 
cpufreq_boost_enabled(void)2440 int cpufreq_boost_enabled(void)
2441 {
2442 	return cpufreq_driver->boost_enabled;
2443 }
2444 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2445 
2446 /*********************************************************************
2447  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2448  *********************************************************************/
2449 static enum cpuhp_state hp_online;
2450 
cpuhp_cpufreq_online(unsigned int cpu)2451 static int cpuhp_cpufreq_online(unsigned int cpu)
2452 {
2453 	cpufreq_online(cpu);
2454 
2455 	return 0;
2456 }
2457 
cpuhp_cpufreq_offline(unsigned int cpu)2458 static int cpuhp_cpufreq_offline(unsigned int cpu)
2459 {
2460 	cpufreq_offline(cpu);
2461 
2462 	return 0;
2463 }
2464 
2465 /**
2466  * cpufreq_register_driver - register a CPU Frequency driver
2467  * @driver_data: A struct cpufreq_driver containing the values#
2468  * submitted by the CPU Frequency driver.
2469  *
2470  * Registers a CPU Frequency driver to this core code. This code
2471  * returns zero on success, -EEXIST when another driver got here first
2472  * (and isn't unregistered in the meantime).
2473  *
2474  */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2475 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2476 {
2477 	unsigned long flags;
2478 	int ret;
2479 
2480 	if (cpufreq_disabled())
2481 		return -ENODEV;
2482 
2483 	/*
2484 	 * The cpufreq core depends heavily on the availability of device
2485 	 * structure, make sure they are available before proceeding further.
2486 	 */
2487 	if (!get_cpu_device(0))
2488 		return -EPROBE_DEFER;
2489 
2490 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2491 	    !(driver_data->setpolicy || driver_data->target_index ||
2492 		    driver_data->target) ||
2493 	     (driver_data->setpolicy && (driver_data->target_index ||
2494 		    driver_data->target)) ||
2495 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2496 		return -EINVAL;
2497 
2498 	pr_debug("trying to register driver %s\n", driver_data->name);
2499 
2500 	/* Protect against concurrent CPU online/offline. */
2501 	cpus_read_lock();
2502 
2503 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2504 	if (cpufreq_driver) {
2505 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2506 		ret = -EEXIST;
2507 		goto out;
2508 	}
2509 	cpufreq_driver = driver_data;
2510 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2511 
2512 	if (driver_data->setpolicy)
2513 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2514 
2515 	if (cpufreq_boost_supported()) {
2516 		ret = create_boost_sysfs_file();
2517 		if (ret)
2518 			goto err_null_driver;
2519 	}
2520 
2521 	ret = subsys_interface_register(&cpufreq_interface);
2522 	if (ret)
2523 		goto err_boost_unreg;
2524 
2525 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2526 	    list_empty(&cpufreq_policy_list)) {
2527 		/* if all ->init() calls failed, unregister */
2528 		ret = -ENODEV;
2529 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2530 			 driver_data->name);
2531 		goto err_if_unreg;
2532 	}
2533 
2534 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2535 						   "cpufreq:online",
2536 						   cpuhp_cpufreq_online,
2537 						   cpuhp_cpufreq_offline);
2538 	if (ret < 0)
2539 		goto err_if_unreg;
2540 	hp_online = ret;
2541 	ret = 0;
2542 
2543 	pr_debug("driver %s up and running\n", driver_data->name);
2544 	goto out;
2545 
2546 err_if_unreg:
2547 	subsys_interface_unregister(&cpufreq_interface);
2548 err_boost_unreg:
2549 	remove_boost_sysfs_file();
2550 err_null_driver:
2551 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2552 	cpufreq_driver = NULL;
2553 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2554 out:
2555 	cpus_read_unlock();
2556 	return ret;
2557 }
2558 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2559 
2560 /**
2561  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2562  *
2563  * Unregister the current CPUFreq driver. Only call this if you have
2564  * the right to do so, i.e. if you have succeeded in initialising before!
2565  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2566  * currently not initialised.
2567  */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2568 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2569 {
2570 	unsigned long flags;
2571 
2572 	if (!cpufreq_driver || (driver != cpufreq_driver))
2573 		return -EINVAL;
2574 
2575 	pr_debug("unregistering driver %s\n", driver->name);
2576 
2577 	/* Protect against concurrent cpu hotplug */
2578 	cpus_read_lock();
2579 	subsys_interface_unregister(&cpufreq_interface);
2580 	remove_boost_sysfs_file();
2581 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2582 
2583 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2584 
2585 	cpufreq_driver = NULL;
2586 
2587 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2588 	cpus_read_unlock();
2589 
2590 	return 0;
2591 }
2592 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2593 
2594 struct kobject *cpufreq_global_kobject;
2595 EXPORT_SYMBOL(cpufreq_global_kobject);
2596 
cpufreq_core_init(void)2597 static int __init cpufreq_core_init(void)
2598 {
2599 	if (cpufreq_disabled())
2600 		return -ENODEV;
2601 
2602 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2603 	BUG_ON(!cpufreq_global_kobject);
2604 
2605 	return 0;
2606 }
2607 module_param(off, int, 0444);
2608 core_initcall(cpufreq_core_init);
2609