1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_JIFFIES_H
3 #define _LINUX_JIFFIES_H
4 
5 #include <linux/cache.h>
6 #include <linux/math64.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/time.h>
10 #include <linux/timex.h>
11 #include <asm/param.h>			/* for HZ */
12 #include <generated/timeconst.h>
13 
14 /*
15  * The following defines establish the engineering parameters of the PLL
16  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
17  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
18  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
19  * nearest power of two in order to avoid hardware multiply operations.
20  */
21 #if HZ >= 12 && HZ < 24
22 # define SHIFT_HZ	4
23 #elif HZ >= 24 && HZ < 48
24 # define SHIFT_HZ	5
25 #elif HZ >= 48 && HZ < 96
26 # define SHIFT_HZ	6
27 #elif HZ >= 96 && HZ < 192
28 # define SHIFT_HZ	7
29 #elif HZ >= 192 && HZ < 384
30 # define SHIFT_HZ	8
31 #elif HZ >= 384 && HZ < 768
32 # define SHIFT_HZ	9
33 #elif HZ >= 768 && HZ < 1536
34 # define SHIFT_HZ	10
35 #elif HZ >= 1536 && HZ < 3072
36 # define SHIFT_HZ	11
37 #elif HZ >= 3072 && HZ < 6144
38 # define SHIFT_HZ	12
39 #elif HZ >= 6144 && HZ < 12288
40 # define SHIFT_HZ	13
41 #else
42 # error Invalid value of HZ.
43 #endif
44 
45 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
46  * improve accuracy by shifting LSH bits, hence calculating:
47  *     (NOM << LSH) / DEN
48  * This however means trouble for large NOM, because (NOM << LSH) may no
49  * longer fit in 32 bits. The following way of calculating this gives us
50  * some slack, under the following conditions:
51  *   - (NOM / DEN) fits in (32 - LSH) bits.
52  *   - (NOM % DEN) fits in (32 - LSH) bits.
53  */
54 #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
55                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
56 
57 /* LATCH is used in the interval timer and ftape setup. */
58 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */
59 
60 extern int register_refined_jiffies(long clock_tick_rate);
61 
62 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
63 #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
64 
65 /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
66 #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
67 
68 /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
69 #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
70 
71 #ifndef __jiffy_arch_data
72 #define __jiffy_arch_data
73 #endif
74 
75 /*
76  * The 64-bit value is not atomic - you MUST NOT read it
77  * without sampling the sequence number in jiffies_lock.
78  * get_jiffies_64() will do this for you as appropriate.
79  */
80 extern u64 __cacheline_aligned_in_smp jiffies_64;
81 extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
82 
83 #if (BITS_PER_LONG < 64)
84 u64 get_jiffies_64(void);
85 #else
get_jiffies_64(void)86 static inline u64 get_jiffies_64(void)
87 {
88 	return (u64)jiffies;
89 }
90 #endif
91 
92 /*
93  *	These inlines deal with timer wrapping correctly. You are
94  *	strongly encouraged to use them
95  *	1. Because people otherwise forget
96  *	2. Because if the timer wrap changes in future you won't have to
97  *	   alter your driver code.
98  *
99  * time_after(a,b) returns true if the time a is after time b.
100  *
101  * Do this with "<0" and ">=0" to only test the sign of the result. A
102  * good compiler would generate better code (and a really good compiler
103  * wouldn't care). Gcc is currently neither.
104  */
105 #define time_after(a,b)		\
106 	(typecheck(unsigned long, a) && \
107 	 typecheck(unsigned long, b) && \
108 	 ((long)((b) - (a)) < 0))
109 #define time_before(a,b)	time_after(b,a)
110 
111 #define time_after_eq(a,b)	\
112 	(typecheck(unsigned long, a) && \
113 	 typecheck(unsigned long, b) && \
114 	 ((long)((a) - (b)) >= 0))
115 #define time_before_eq(a,b)	time_after_eq(b,a)
116 
117 /*
118  * Calculate whether a is in the range of [b, c].
119  */
120 #define time_in_range(a,b,c) \
121 	(time_after_eq(a,b) && \
122 	 time_before_eq(a,c))
123 
124 /*
125  * Calculate whether a is in the range of [b, c).
126  */
127 #define time_in_range_open(a,b,c) \
128 	(time_after_eq(a,b) && \
129 	 time_before(a,c))
130 
131 /* Same as above, but does so with platform independent 64bit types.
132  * These must be used when utilizing jiffies_64 (i.e. return value of
133  * get_jiffies_64() */
134 #define time_after64(a,b)	\
135 	(typecheck(__u64, a) &&	\
136 	 typecheck(__u64, b) && \
137 	 ((__s64)((b) - (a)) < 0))
138 #define time_before64(a,b)	time_after64(b,a)
139 
140 #define time_after_eq64(a,b)	\
141 	(typecheck(__u64, a) && \
142 	 typecheck(__u64, b) && \
143 	 ((__s64)((a) - (b)) >= 0))
144 #define time_before_eq64(a,b)	time_after_eq64(b,a)
145 
146 #define time_in_range64(a, b, c) \
147 	(time_after_eq64(a, b) && \
148 	 time_before_eq64(a, c))
149 
150 /*
151  * These four macros compare jiffies and 'a' for convenience.
152  */
153 
154 /* time_is_before_jiffies(a) return true if a is before jiffies */
155 #define time_is_before_jiffies(a) time_after(jiffies, a)
156 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
157 
158 /* time_is_after_jiffies(a) return true if a is after jiffies */
159 #define time_is_after_jiffies(a) time_before(jiffies, a)
160 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
161 
162 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
163 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
164 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
165 
166 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
167 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
168 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
169 
170 /*
171  * Have the 32 bit jiffies value wrap 5 minutes after boot
172  * so jiffies wrap bugs show up earlier.
173  */
174 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
175 
176 /*
177  * Change timeval to jiffies, trying to avoid the
178  * most obvious overflows..
179  *
180  * And some not so obvious.
181  *
182  * Note that we don't want to return LONG_MAX, because
183  * for various timeout reasons we often end up having
184  * to wait "jiffies+1" in order to guarantee that we wait
185  * at _least_ "jiffies" - so "jiffies+1" had better still
186  * be positive.
187  */
188 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
189 
190 extern unsigned long preset_lpj;
191 
192 /*
193  * We want to do realistic conversions of time so we need to use the same
194  * values the update wall clock code uses as the jiffies size.  This value
195  * is: TICK_NSEC (which is defined in timex.h).  This
196  * is a constant and is in nanoseconds.  We will use scaled math
197  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
198  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
199  * constants and so are computed at compile time.  SHIFT_HZ (computed in
200  * timex.h) adjusts the scaling for different HZ values.
201 
202  * Scaled math???  What is that?
203  *
204  * Scaled math is a way to do integer math on values that would,
205  * otherwise, either overflow, underflow, or cause undesired div
206  * instructions to appear in the execution path.  In short, we "scale"
207  * up the operands so they take more bits (more precision, less
208  * underflow), do the desired operation and then "scale" the result back
209  * by the same amount.  If we do the scaling by shifting we avoid the
210  * costly mpy and the dastardly div instructions.
211 
212  * Suppose, for example, we want to convert from seconds to jiffies
213  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
214  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
215  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
216  * might calculate at compile time, however, the result will only have
217  * about 3-4 bits of precision (less for smaller values of HZ).
218  *
219  * So, we scale as follows:
220  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
221  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
222  * Then we make SCALE a power of two so:
223  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
224  * Now we define:
225  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
226  * jiff = (sec * SEC_CONV) >> SCALE;
227  *
228  * Often the math we use will expand beyond 32-bits so we tell C how to
229  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
230  * which should take the result back to 32-bits.  We want this expansion
231  * to capture as much precision as possible.  At the same time we don't
232  * want to overflow so we pick the SCALE to avoid this.  In this file,
233  * that means using a different scale for each range of HZ values (as
234  * defined in timex.h).
235  *
236  * For those who want to know, gcc will give a 64-bit result from a "*"
237  * operator if the result is a long long AND at least one of the
238  * operands is cast to long long (usually just prior to the "*" so as
239  * not to confuse it into thinking it really has a 64-bit operand,
240  * which, buy the way, it can do, but it takes more code and at least 2
241  * mpys).
242 
243  * We also need to be aware that one second in nanoseconds is only a
244  * couple of bits away from overflowing a 32-bit word, so we MUST use
245  * 64-bits to get the full range time in nanoseconds.
246 
247  */
248 
249 /*
250  * Here are the scales we will use.  One for seconds, nanoseconds and
251  * microseconds.
252  *
253  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
254  * check if the sign bit is set.  If not, we bump the shift count by 1.
255  * (Gets an extra bit of precision where we can use it.)
256  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
257  * Haven't tested others.
258 
259  * Limits of cpp (for #if expressions) only long (no long long), but
260  * then we only need the most signicant bit.
261  */
262 
263 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
264 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
265 #undef SEC_JIFFIE_SC
266 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
267 #endif
268 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
269 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
270                                 TICK_NSEC -1) / (u64)TICK_NSEC))
271 
272 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
273                                         TICK_NSEC -1) / (u64)TICK_NSEC))
274 /*
275  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
276  * into seconds.  The 64-bit case will overflow if we are not careful,
277  * so use the messy SH_DIV macro to do it.  Still all constants.
278  */
279 #if BITS_PER_LONG < 64
280 # define MAX_SEC_IN_JIFFIES \
281 	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
282 #else	/* take care of overflow on 64 bits machines */
283 # define MAX_SEC_IN_JIFFIES \
284 	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
285 
286 #endif
287 
288 /*
289  * Convert various time units to each other:
290  */
291 extern unsigned int jiffies_to_msecs(const unsigned long j);
292 extern unsigned int jiffies_to_usecs(const unsigned long j);
293 
jiffies_to_nsecs(const unsigned long j)294 static inline u64 jiffies_to_nsecs(const unsigned long j)
295 {
296 	return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
297 }
298 
299 extern u64 jiffies64_to_nsecs(u64 j);
300 
301 extern unsigned long __msecs_to_jiffies(const unsigned int m);
302 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
303 /*
304  * HZ is equal to or smaller than 1000, and 1000 is a nice round
305  * multiple of HZ, divide with the factor between them, but round
306  * upwards:
307  */
_msecs_to_jiffies(const unsigned int m)308 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
309 {
310 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
311 }
312 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
313 /*
314  * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
315  * simply multiply with the factor between them.
316  *
317  * But first make sure the multiplication result cannot overflow:
318  */
_msecs_to_jiffies(const unsigned int m)319 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
320 {
321 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
322 		return MAX_JIFFY_OFFSET;
323 	return m * (HZ / MSEC_PER_SEC);
324 }
325 #else
326 /*
327  * Generic case - multiply, round and divide. But first check that if
328  * we are doing a net multiplication, that we wouldn't overflow:
329  */
_msecs_to_jiffies(const unsigned int m)330 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
331 {
332 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
333 		return MAX_JIFFY_OFFSET;
334 
335 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
336 }
337 #endif
338 /**
339  * msecs_to_jiffies: - convert milliseconds to jiffies
340  * @m:	time in milliseconds
341  *
342  * conversion is done as follows:
343  *
344  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
345  *
346  * - 'too large' values [that would result in larger than
347  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
348  *
349  * - all other values are converted to jiffies by either multiplying
350  *   the input value by a factor or dividing it with a factor and
351  *   handling any 32-bit overflows.
352  *   for the details see __msecs_to_jiffies()
353  *
354  * msecs_to_jiffies() checks for the passed in value being a constant
355  * via __builtin_constant_p() allowing gcc to eliminate most of the
356  * code, __msecs_to_jiffies() is called if the value passed does not
357  * allow constant folding and the actual conversion must be done at
358  * runtime.
359  * the HZ range specific helpers _msecs_to_jiffies() are called both
360  * directly here and from __msecs_to_jiffies() in the case where
361  * constant folding is not possible.
362  */
msecs_to_jiffies(const unsigned int m)363 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
364 {
365 	if (__builtin_constant_p(m)) {
366 		if ((int)m < 0)
367 			return MAX_JIFFY_OFFSET;
368 		return _msecs_to_jiffies(m);
369 	} else {
370 		return __msecs_to_jiffies(m);
371 	}
372 }
373 
374 extern unsigned long __usecs_to_jiffies(const unsigned int u);
375 #if !(USEC_PER_SEC % HZ)
_usecs_to_jiffies(const unsigned int u)376 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
377 {
378 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
379 }
380 #else
_usecs_to_jiffies(const unsigned int u)381 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
382 {
383 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
384 		>> USEC_TO_HZ_SHR32;
385 }
386 #endif
387 
388 /**
389  * usecs_to_jiffies: - convert microseconds to jiffies
390  * @u:	time in microseconds
391  *
392  * conversion is done as follows:
393  *
394  * - 'too large' values [that would result in larger than
395  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
396  *
397  * - all other values are converted to jiffies by either multiplying
398  *   the input value by a factor or dividing it with a factor and
399  *   handling any 32-bit overflows as for msecs_to_jiffies.
400  *
401  * usecs_to_jiffies() checks for the passed in value being a constant
402  * via __builtin_constant_p() allowing gcc to eliminate most of the
403  * code, __usecs_to_jiffies() is called if the value passed does not
404  * allow constant folding and the actual conversion must be done at
405  * runtime.
406  * the HZ range specific helpers _usecs_to_jiffies() are called both
407  * directly here and from __msecs_to_jiffies() in the case where
408  * constant folding is not possible.
409  */
usecs_to_jiffies(const unsigned int u)410 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
411 {
412 	if (__builtin_constant_p(u)) {
413 		if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
414 			return MAX_JIFFY_OFFSET;
415 		return _usecs_to_jiffies(u);
416 	} else {
417 		return __usecs_to_jiffies(u);
418 	}
419 }
420 
421 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
422 extern void jiffies_to_timespec64(const unsigned long jiffies,
423 				  struct timespec64 *value);
timespec_to_jiffies(const struct timespec * value)424 static inline unsigned long timespec_to_jiffies(const struct timespec *value)
425 {
426 	struct timespec64 ts = timespec_to_timespec64(*value);
427 
428 	return timespec64_to_jiffies(&ts);
429 }
430 
jiffies_to_timespec(const unsigned long jiffies,struct timespec * value)431 static inline void jiffies_to_timespec(const unsigned long jiffies,
432 				       struct timespec *value)
433 {
434 	struct timespec64 ts;
435 
436 	jiffies_to_timespec64(jiffies, &ts);
437 	*value = timespec64_to_timespec(ts);
438 }
439 
440 extern unsigned long timeval_to_jiffies(const struct timeval *value);
441 extern void jiffies_to_timeval(const unsigned long jiffies,
442 			       struct timeval *value);
443 
444 extern clock_t jiffies_to_clock_t(unsigned long x);
jiffies_delta_to_clock_t(long delta)445 static inline clock_t jiffies_delta_to_clock_t(long delta)
446 {
447 	return jiffies_to_clock_t(max(0L, delta));
448 }
449 
jiffies_delta_to_msecs(long delta)450 static inline unsigned int jiffies_delta_to_msecs(long delta)
451 {
452 	return jiffies_to_msecs(max(0L, delta));
453 }
454 
455 extern unsigned long clock_t_to_jiffies(unsigned long x);
456 extern u64 jiffies_64_to_clock_t(u64 x);
457 extern u64 nsec_to_clock_t(u64 x);
458 extern u64 nsecs_to_jiffies64(u64 n);
459 extern unsigned long nsecs_to_jiffies(u64 n);
460 
461 #define TIMESTAMP_SIZE	30
462 
463 #endif
464