1 /*
2  *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
3  *                        Steven J. Hill <sjhill@realitydiluted.com>
4  *		          Thomas Gleixner <tglx@linutronix.de>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * Info:
11  *	Contains standard defines and IDs for NAND flash devices
12  *
13  * Changelog:
14  *	See git changelog.
15  */
16 #ifndef __LINUX_MTD_RAWNAND_H
17 #define __LINUX_MTD_RAWNAND_H
18 
19 #include <linux/wait.h>
20 #include <linux/spinlock.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/flashchip.h>
23 #include <linux/mtd/bbm.h>
24 #include <linux/of.h>
25 #include <linux/types.h>
26 
27 struct nand_chip;
28 struct nand_flash_dev;
29 
30 /* Scan and identify a NAND device */
31 int nand_scan_with_ids(struct nand_chip *chip, int max_chips,
32 		       struct nand_flash_dev *ids);
33 
nand_scan(struct nand_chip * chip,int max_chips)34 static inline int nand_scan(struct nand_chip *chip, int max_chips)
35 {
36 	return nand_scan_with_ids(chip, max_chips, NULL);
37 }
38 
39 /* Internal helper for board drivers which need to override command function */
40 void nand_wait_ready(struct mtd_info *mtd);
41 
42 /* The maximum number of NAND chips in an array */
43 #define NAND_MAX_CHIPS		8
44 
45 /*
46  * Constants for hardware specific CLE/ALE/NCE function
47  *
48  * These are bits which can be or'ed to set/clear multiple
49  * bits in one go.
50  */
51 /* Select the chip by setting nCE to low */
52 #define NAND_NCE		0x01
53 /* Select the command latch by setting CLE to high */
54 #define NAND_CLE		0x02
55 /* Select the address latch by setting ALE to high */
56 #define NAND_ALE		0x04
57 
58 #define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
59 #define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
60 #define NAND_CTRL_CHANGE	0x80
61 
62 /*
63  * Standard NAND flash commands
64  */
65 #define NAND_CMD_READ0		0
66 #define NAND_CMD_READ1		1
67 #define NAND_CMD_RNDOUT		5
68 #define NAND_CMD_PAGEPROG	0x10
69 #define NAND_CMD_READOOB	0x50
70 #define NAND_CMD_ERASE1		0x60
71 #define NAND_CMD_STATUS		0x70
72 #define NAND_CMD_SEQIN		0x80
73 #define NAND_CMD_RNDIN		0x85
74 #define NAND_CMD_READID		0x90
75 #define NAND_CMD_ERASE2		0xd0
76 #define NAND_CMD_PARAM		0xec
77 #define NAND_CMD_GET_FEATURES	0xee
78 #define NAND_CMD_SET_FEATURES	0xef
79 #define NAND_CMD_RESET		0xff
80 
81 /* Extended commands for large page devices */
82 #define NAND_CMD_READSTART	0x30
83 #define NAND_CMD_RNDOUTSTART	0xE0
84 #define NAND_CMD_CACHEDPROG	0x15
85 
86 #define NAND_CMD_NONE		-1
87 
88 /* Status bits */
89 #define NAND_STATUS_FAIL	0x01
90 #define NAND_STATUS_FAIL_N1	0x02
91 #define NAND_STATUS_TRUE_READY	0x20
92 #define NAND_STATUS_READY	0x40
93 #define NAND_STATUS_WP		0x80
94 
95 #define NAND_DATA_IFACE_CHECK_ONLY	-1
96 
97 /*
98  * Constants for ECC_MODES
99  */
100 typedef enum {
101 	NAND_ECC_NONE,
102 	NAND_ECC_SOFT,
103 	NAND_ECC_HW,
104 	NAND_ECC_HW_SYNDROME,
105 	NAND_ECC_HW_OOB_FIRST,
106 	NAND_ECC_ON_DIE,
107 } nand_ecc_modes_t;
108 
109 enum nand_ecc_algo {
110 	NAND_ECC_UNKNOWN,
111 	NAND_ECC_HAMMING,
112 	NAND_ECC_BCH,
113 	NAND_ECC_RS,
114 };
115 
116 /*
117  * Constants for Hardware ECC
118  */
119 /* Reset Hardware ECC for read */
120 #define NAND_ECC_READ		0
121 /* Reset Hardware ECC for write */
122 #define NAND_ECC_WRITE		1
123 /* Enable Hardware ECC before syndrome is read back from flash */
124 #define NAND_ECC_READSYN	2
125 
126 /*
127  * Enable generic NAND 'page erased' check. This check is only done when
128  * ecc.correct() returns -EBADMSG.
129  * Set this flag if your implementation does not fix bitflips in erased
130  * pages and you want to rely on the default implementation.
131  */
132 #define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
133 #define NAND_ECC_MAXIMIZE		BIT(1)
134 
135 /* Bit mask for flags passed to do_nand_read_ecc */
136 #define NAND_GET_DEVICE		0x80
137 
138 
139 /*
140  * Option constants for bizarre disfunctionality and real
141  * features.
142  */
143 /* Buswidth is 16 bit */
144 #define NAND_BUSWIDTH_16	0x00000002
145 /* Chip has cache program function */
146 #define NAND_CACHEPRG		0x00000008
147 /*
148  * Chip requires ready check on read (for auto-incremented sequential read).
149  * True only for small page devices; large page devices do not support
150  * autoincrement.
151  */
152 #define NAND_NEED_READRDY	0x00000100
153 
154 /* Chip does not allow subpage writes */
155 #define NAND_NO_SUBPAGE_WRITE	0x00000200
156 
157 /* Device is one of 'new' xD cards that expose fake nand command set */
158 #define NAND_BROKEN_XD		0x00000400
159 
160 /* Device behaves just like nand, but is readonly */
161 #define NAND_ROM		0x00000800
162 
163 /* Device supports subpage reads */
164 #define NAND_SUBPAGE_READ	0x00001000
165 
166 /*
167  * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
168  * patterns.
169  */
170 #define NAND_NEED_SCRAMBLING	0x00002000
171 
172 /* Device needs 3rd row address cycle */
173 #define NAND_ROW_ADDR_3		0x00004000
174 
175 /* Options valid for Samsung large page devices */
176 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
177 
178 /* Macros to identify the above */
179 #define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
180 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
181 #define NAND_HAS_SUBPAGE_WRITE(chip) !((chip)->options & NAND_NO_SUBPAGE_WRITE)
182 
183 /* Non chip related options */
184 /* This option skips the bbt scan during initialization. */
185 #define NAND_SKIP_BBTSCAN	0x00010000
186 /* Chip may not exist, so silence any errors in scan */
187 #define NAND_SCAN_SILENT_NODEV	0x00040000
188 /*
189  * Autodetect nand buswidth with readid/onfi.
190  * This suppose the driver will configure the hardware in 8 bits mode
191  * when calling nand_scan_ident, and update its configuration
192  * before calling nand_scan_tail.
193  */
194 #define NAND_BUSWIDTH_AUTO      0x00080000
195 /*
196  * This option could be defined by controller drivers to protect against
197  * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
198  */
199 #define NAND_USE_BOUNCE_BUFFER	0x00100000
200 
201 /*
202  * In case your controller is implementing ->cmd_ctrl() and is relying on the
203  * default ->cmdfunc() implementation, you may want to let the core handle the
204  * tCCS delay which is required when a column change (RNDIN or RNDOUT) is
205  * requested.
206  * If your controller already takes care of this delay, you don't need to set
207  * this flag.
208  */
209 #define NAND_WAIT_TCCS		0x00200000
210 
211 /*
212  * Whether the NAND chip is a boot medium. Drivers might use this information
213  * to select ECC algorithms supported by the boot ROM or similar restrictions.
214  */
215 #define NAND_IS_BOOT_MEDIUM	0x00400000
216 
217 /* Options set by nand scan */
218 /* Nand scan has allocated controller struct */
219 #define NAND_CONTROLLER_ALLOC	0x80000000
220 
221 /* Cell info constants */
222 #define NAND_CI_CHIPNR_MSK	0x03
223 #define NAND_CI_CELLTYPE_MSK	0x0C
224 #define NAND_CI_CELLTYPE_SHIFT	2
225 
226 /* Keep gcc happy */
227 struct nand_chip;
228 
229 /* ONFI version bits */
230 #define ONFI_VERSION_1_0		BIT(1)
231 #define ONFI_VERSION_2_0		BIT(2)
232 #define ONFI_VERSION_2_1		BIT(3)
233 #define ONFI_VERSION_2_2		BIT(4)
234 #define ONFI_VERSION_2_3		BIT(5)
235 #define ONFI_VERSION_3_0		BIT(6)
236 #define ONFI_VERSION_3_1		BIT(7)
237 #define ONFI_VERSION_3_2		BIT(8)
238 #define ONFI_VERSION_4_0		BIT(9)
239 
240 /* ONFI features */
241 #define ONFI_FEATURE_16_BIT_BUS		(1 << 0)
242 #define ONFI_FEATURE_EXT_PARAM_PAGE	(1 << 7)
243 
244 /* ONFI timing mode, used in both asynchronous and synchronous mode */
245 #define ONFI_TIMING_MODE_0		(1 << 0)
246 #define ONFI_TIMING_MODE_1		(1 << 1)
247 #define ONFI_TIMING_MODE_2		(1 << 2)
248 #define ONFI_TIMING_MODE_3		(1 << 3)
249 #define ONFI_TIMING_MODE_4		(1 << 4)
250 #define ONFI_TIMING_MODE_5		(1 << 5)
251 #define ONFI_TIMING_MODE_UNKNOWN	(1 << 6)
252 
253 /* ONFI feature number/address */
254 #define ONFI_FEATURE_NUMBER		256
255 #define ONFI_FEATURE_ADDR_TIMING_MODE	0x1
256 
257 /* Vendor-specific feature address (Micron) */
258 #define ONFI_FEATURE_ADDR_READ_RETRY	0x89
259 #define ONFI_FEATURE_ON_DIE_ECC		0x90
260 #define   ONFI_FEATURE_ON_DIE_ECC_EN	BIT(3)
261 
262 /* ONFI subfeature parameters length */
263 #define ONFI_SUBFEATURE_PARAM_LEN	4
264 
265 /* ONFI optional commands SET/GET FEATURES supported? */
266 #define ONFI_OPT_CMD_SET_GET_FEATURES	(1 << 2)
267 
268 struct nand_onfi_params {
269 	/* rev info and features block */
270 	/* 'O' 'N' 'F' 'I'  */
271 	u8 sig[4];
272 	__le16 revision;
273 	__le16 features;
274 	__le16 opt_cmd;
275 	u8 reserved0[2];
276 	__le16 ext_param_page_length; /* since ONFI 2.1 */
277 	u8 num_of_param_pages;        /* since ONFI 2.1 */
278 	u8 reserved1[17];
279 
280 	/* manufacturer information block */
281 	char manufacturer[12];
282 	char model[20];
283 	u8 jedec_id;
284 	__le16 date_code;
285 	u8 reserved2[13];
286 
287 	/* memory organization block */
288 	__le32 byte_per_page;
289 	__le16 spare_bytes_per_page;
290 	__le32 data_bytes_per_ppage;
291 	__le16 spare_bytes_per_ppage;
292 	__le32 pages_per_block;
293 	__le32 blocks_per_lun;
294 	u8 lun_count;
295 	u8 addr_cycles;
296 	u8 bits_per_cell;
297 	__le16 bb_per_lun;
298 	__le16 block_endurance;
299 	u8 guaranteed_good_blocks;
300 	__le16 guaranteed_block_endurance;
301 	u8 programs_per_page;
302 	u8 ppage_attr;
303 	u8 ecc_bits;
304 	u8 interleaved_bits;
305 	u8 interleaved_ops;
306 	u8 reserved3[13];
307 
308 	/* electrical parameter block */
309 	u8 io_pin_capacitance_max;
310 	__le16 async_timing_mode;
311 	__le16 program_cache_timing_mode;
312 	__le16 t_prog;
313 	__le16 t_bers;
314 	__le16 t_r;
315 	__le16 t_ccs;
316 	__le16 src_sync_timing_mode;
317 	u8 src_ssync_features;
318 	__le16 clk_pin_capacitance_typ;
319 	__le16 io_pin_capacitance_typ;
320 	__le16 input_pin_capacitance_typ;
321 	u8 input_pin_capacitance_max;
322 	u8 driver_strength_support;
323 	__le16 t_int_r;
324 	__le16 t_adl;
325 	u8 reserved4[8];
326 
327 	/* vendor */
328 	__le16 vendor_revision;
329 	u8 vendor[88];
330 
331 	__le16 crc;
332 } __packed;
333 
334 #define ONFI_CRC_BASE	0x4F4E
335 
336 /* Extended ECC information Block Definition (since ONFI 2.1) */
337 struct onfi_ext_ecc_info {
338 	u8 ecc_bits;
339 	u8 codeword_size;
340 	__le16 bb_per_lun;
341 	__le16 block_endurance;
342 	u8 reserved[2];
343 } __packed;
344 
345 #define ONFI_SECTION_TYPE_0	0	/* Unused section. */
346 #define ONFI_SECTION_TYPE_1	1	/* for additional sections. */
347 #define ONFI_SECTION_TYPE_2	2	/* for ECC information. */
348 struct onfi_ext_section {
349 	u8 type;
350 	u8 length;
351 } __packed;
352 
353 #define ONFI_EXT_SECTION_MAX 8
354 
355 /* Extended Parameter Page Definition (since ONFI 2.1) */
356 struct onfi_ext_param_page {
357 	__le16 crc;
358 	u8 sig[4];             /* 'E' 'P' 'P' 'S' */
359 	u8 reserved0[10];
360 	struct onfi_ext_section sections[ONFI_EXT_SECTION_MAX];
361 
362 	/*
363 	 * The actual size of the Extended Parameter Page is in
364 	 * @ext_param_page_length of nand_onfi_params{}.
365 	 * The following are the variable length sections.
366 	 * So we do not add any fields below. Please see the ONFI spec.
367 	 */
368 } __packed;
369 
370 struct jedec_ecc_info {
371 	u8 ecc_bits;
372 	u8 codeword_size;
373 	__le16 bb_per_lun;
374 	__le16 block_endurance;
375 	u8 reserved[2];
376 } __packed;
377 
378 /* JEDEC features */
379 #define JEDEC_FEATURE_16_BIT_BUS	(1 << 0)
380 
381 struct nand_jedec_params {
382 	/* rev info and features block */
383 	/* 'J' 'E' 'S' 'D'  */
384 	u8 sig[4];
385 	__le16 revision;
386 	__le16 features;
387 	u8 opt_cmd[3];
388 	__le16 sec_cmd;
389 	u8 num_of_param_pages;
390 	u8 reserved0[18];
391 
392 	/* manufacturer information block */
393 	char manufacturer[12];
394 	char model[20];
395 	u8 jedec_id[6];
396 	u8 reserved1[10];
397 
398 	/* memory organization block */
399 	__le32 byte_per_page;
400 	__le16 spare_bytes_per_page;
401 	u8 reserved2[6];
402 	__le32 pages_per_block;
403 	__le32 blocks_per_lun;
404 	u8 lun_count;
405 	u8 addr_cycles;
406 	u8 bits_per_cell;
407 	u8 programs_per_page;
408 	u8 multi_plane_addr;
409 	u8 multi_plane_op_attr;
410 	u8 reserved3[38];
411 
412 	/* electrical parameter block */
413 	__le16 async_sdr_speed_grade;
414 	__le16 toggle_ddr_speed_grade;
415 	__le16 sync_ddr_speed_grade;
416 	u8 async_sdr_features;
417 	u8 toggle_ddr_features;
418 	u8 sync_ddr_features;
419 	__le16 t_prog;
420 	__le16 t_bers;
421 	__le16 t_r;
422 	__le16 t_r_multi_plane;
423 	__le16 t_ccs;
424 	__le16 io_pin_capacitance_typ;
425 	__le16 input_pin_capacitance_typ;
426 	__le16 clk_pin_capacitance_typ;
427 	u8 driver_strength_support;
428 	__le16 t_adl;
429 	u8 reserved4[36];
430 
431 	/* ECC and endurance block */
432 	u8 guaranteed_good_blocks;
433 	__le16 guaranteed_block_endurance;
434 	struct jedec_ecc_info ecc_info[4];
435 	u8 reserved5[29];
436 
437 	/* reserved */
438 	u8 reserved6[148];
439 
440 	/* vendor */
441 	__le16 vendor_rev_num;
442 	u8 reserved7[88];
443 
444 	/* CRC for Parameter Page */
445 	__le16 crc;
446 } __packed;
447 
448 /**
449  * struct onfi_params - ONFI specific parameters that will be reused
450  * @version: ONFI version (BCD encoded), 0 if ONFI is not supported
451  * @tPROG: Page program time
452  * @tBERS: Block erase time
453  * @tR: Page read time
454  * @tCCS: Change column setup time
455  * @async_timing_mode: Supported asynchronous timing mode
456  * @vendor_revision: Vendor specific revision number
457  * @vendor: Vendor specific data
458  */
459 struct onfi_params {
460 	int version;
461 	u16 tPROG;
462 	u16 tBERS;
463 	u16 tR;
464 	u16 tCCS;
465 	u16 async_timing_mode;
466 	u16 vendor_revision;
467 	u8 vendor[88];
468 };
469 
470 /**
471  * struct nand_parameters - NAND generic parameters from the parameter page
472  * @model: Model name
473  * @supports_set_get_features: The NAND chip supports setting/getting features
474  * @set_feature_list: Bitmap of features that can be set
475  * @get_feature_list: Bitmap of features that can be get
476  * @onfi: ONFI specific parameters
477  */
478 struct nand_parameters {
479 	/* Generic parameters */
480 	const char *model;
481 	bool supports_set_get_features;
482 	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
483 	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
484 
485 	/* ONFI parameters */
486 	struct onfi_params *onfi;
487 };
488 
489 /* The maximum expected count of bytes in the NAND ID sequence */
490 #define NAND_MAX_ID_LEN 8
491 
492 /**
493  * struct nand_id - NAND id structure
494  * @data: buffer containing the id bytes.
495  * @len: ID length.
496  */
497 struct nand_id {
498 	u8 data[NAND_MAX_ID_LEN];
499 	int len;
500 };
501 
502 /**
503  * struct nand_controller_ops - Controller operations
504  *
505  * @attach_chip: this method is called after the NAND detection phase after
506  *		 flash ID and MTD fields such as erase size, page size and OOB
507  *		 size have been set up. ECC requirements are available if
508  *		 provided by the NAND chip or device tree. Typically used to
509  *		 choose the appropriate ECC configuration and allocate
510  *		 associated resources.
511  *		 This hook is optional.
512  * @detach_chip: free all resources allocated/claimed in
513  *		 nand_controller_ops->attach_chip().
514  *		 This hook is optional.
515  */
516 struct nand_controller_ops {
517 	int (*attach_chip)(struct nand_chip *chip);
518 	void (*detach_chip)(struct nand_chip *chip);
519 };
520 
521 /**
522  * struct nand_controller - Structure used to describe a NAND controller
523  *
524  * @lock:               protection lock
525  * @active:		the mtd device which holds the controller currently
526  * @wq:			wait queue to sleep on if a NAND operation is in
527  *			progress used instead of the per chip wait queue
528  *			when a hw controller is available.
529  * @ops:		NAND controller operations.
530  */
531 struct nand_controller {
532 	spinlock_t lock;
533 	struct nand_chip *active;
534 	wait_queue_head_t wq;
535 	const struct nand_controller_ops *ops;
536 };
537 
nand_controller_init(struct nand_controller * nfc)538 static inline void nand_controller_init(struct nand_controller *nfc)
539 {
540 	nfc->active = NULL;
541 	spin_lock_init(&nfc->lock);
542 	init_waitqueue_head(&nfc->wq);
543 }
544 
545 /**
546  * struct nand_ecc_step_info - ECC step information of ECC engine
547  * @stepsize: data bytes per ECC step
548  * @strengths: array of supported strengths
549  * @nstrengths: number of supported strengths
550  */
551 struct nand_ecc_step_info {
552 	int stepsize;
553 	const int *strengths;
554 	int nstrengths;
555 };
556 
557 /**
558  * struct nand_ecc_caps - capability of ECC engine
559  * @stepinfos: array of ECC step information
560  * @nstepinfos: number of ECC step information
561  * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
562  */
563 struct nand_ecc_caps {
564 	const struct nand_ecc_step_info *stepinfos;
565 	int nstepinfos;
566 	int (*calc_ecc_bytes)(int step_size, int strength);
567 };
568 
569 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
570 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
571 static const int __name##_strengths[] = { __VA_ARGS__ };	\
572 static const struct nand_ecc_step_info __name##_stepinfo = {	\
573 	.stepsize = __step,					\
574 	.strengths = __name##_strengths,			\
575 	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
576 };								\
577 static const struct nand_ecc_caps __name = {			\
578 	.stepinfos = &__name##_stepinfo,			\
579 	.nstepinfos = 1,					\
580 	.calc_ecc_bytes = __calc,				\
581 }
582 
583 /**
584  * struct nand_ecc_ctrl - Control structure for ECC
585  * @mode:	ECC mode
586  * @algo:	ECC algorithm
587  * @steps:	number of ECC steps per page
588  * @size:	data bytes per ECC step
589  * @bytes:	ECC bytes per step
590  * @strength:	max number of correctible bits per ECC step
591  * @total:	total number of ECC bytes per page
592  * @prepad:	padding information for syndrome based ECC generators
593  * @postpad:	padding information for syndrome based ECC generators
594  * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
595  * @priv:	pointer to private ECC control data
596  * @calc_buf:	buffer for calculated ECC, size is oobsize.
597  * @code_buf:	buffer for ECC read from flash, size is oobsize.
598  * @hwctl:	function to control hardware ECC generator. Must only
599  *		be provided if an hardware ECC is available
600  * @calculate:	function for ECC calculation or readback from ECC hardware
601  * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
602  *		Should return a positive number representing the number of
603  *		corrected bitflips, -EBADMSG if the number of bitflips exceed
604  *		ECC strength, or any other error code if the error is not
605  *		directly related to correction.
606  *		If -EBADMSG is returned the input buffers should be left
607  *		untouched.
608  * @read_page_raw:	function to read a raw page without ECC. This function
609  *			should hide the specific layout used by the ECC
610  *			controller and always return contiguous in-band and
611  *			out-of-band data even if they're not stored
612  *			contiguously on the NAND chip (e.g.
613  *			NAND_ECC_HW_SYNDROME interleaves in-band and
614  *			out-of-band data).
615  * @write_page_raw:	function to write a raw page without ECC. This function
616  *			should hide the specific layout used by the ECC
617  *			controller and consider the passed data as contiguous
618  *			in-band and out-of-band data. ECC controller is
619  *			responsible for doing the appropriate transformations
620  *			to adapt to its specific layout (e.g.
621  *			NAND_ECC_HW_SYNDROME interleaves in-band and
622  *			out-of-band data).
623  * @read_page:	function to read a page according to the ECC generator
624  *		requirements; returns maximum number of bitflips corrected in
625  *		any single ECC step, -EIO hw error
626  * @read_subpage:	function to read parts of the page covered by ECC;
627  *			returns same as read_page()
628  * @write_subpage:	function to write parts of the page covered by ECC.
629  * @write_page:	function to write a page according to the ECC generator
630  *		requirements.
631  * @write_oob_raw:	function to write chip OOB data without ECC
632  * @read_oob_raw:	function to read chip OOB data without ECC
633  * @read_oob:	function to read chip OOB data
634  * @write_oob:	function to write chip OOB data
635  */
636 struct nand_ecc_ctrl {
637 	nand_ecc_modes_t mode;
638 	enum nand_ecc_algo algo;
639 	int steps;
640 	int size;
641 	int bytes;
642 	int total;
643 	int strength;
644 	int prepad;
645 	int postpad;
646 	unsigned int options;
647 	void *priv;
648 	u8 *calc_buf;
649 	u8 *code_buf;
650 	void (*hwctl)(struct mtd_info *mtd, int mode);
651 	int (*calculate)(struct mtd_info *mtd, const uint8_t *dat,
652 			uint8_t *ecc_code);
653 	int (*correct)(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc,
654 			uint8_t *calc_ecc);
655 	int (*read_page_raw)(struct mtd_info *mtd, struct nand_chip *chip,
656 			uint8_t *buf, int oob_required, int page);
657 	int (*write_page_raw)(struct mtd_info *mtd, struct nand_chip *chip,
658 			const uint8_t *buf, int oob_required, int page);
659 	int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
660 			uint8_t *buf, int oob_required, int page);
661 	int (*read_subpage)(struct mtd_info *mtd, struct nand_chip *chip,
662 			uint32_t offs, uint32_t len, uint8_t *buf, int page);
663 	int (*write_subpage)(struct mtd_info *mtd, struct nand_chip *chip,
664 			uint32_t offset, uint32_t data_len,
665 			const uint8_t *data_buf, int oob_required, int page);
666 	int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
667 			const uint8_t *buf, int oob_required, int page);
668 	int (*write_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip,
669 			int page);
670 	int (*read_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip,
671 			int page);
672 	int (*read_oob)(struct mtd_info *mtd, struct nand_chip *chip, int page);
673 	int (*write_oob)(struct mtd_info *mtd, struct nand_chip *chip,
674 			int page);
675 };
676 
677 /**
678  * struct nand_sdr_timings - SDR NAND chip timings
679  *
680  * This struct defines the timing requirements of a SDR NAND chip.
681  * These information can be found in every NAND datasheets and the timings
682  * meaning are described in the ONFI specifications:
683  * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
684  * Parameters)
685  *
686  * All these timings are expressed in picoseconds.
687  *
688  * @tBERS_max: Block erase time
689  * @tCCS_min: Change column setup time
690  * @tPROG_max: Page program time
691  * @tR_max: Page read time
692  * @tALH_min: ALE hold time
693  * @tADL_min: ALE to data loading time
694  * @tALS_min: ALE setup time
695  * @tAR_min: ALE to RE# delay
696  * @tCEA_max: CE# access time
697  * @tCEH_min: CE# high hold time
698  * @tCH_min:  CE# hold time
699  * @tCHZ_max: CE# high to output hi-Z
700  * @tCLH_min: CLE hold time
701  * @tCLR_min: CLE to RE# delay
702  * @tCLS_min: CLE setup time
703  * @tCOH_min: CE# high to output hold
704  * @tCS_min: CE# setup time
705  * @tDH_min: Data hold time
706  * @tDS_min: Data setup time
707  * @tFEAT_max: Busy time for Set Features and Get Features
708  * @tIR_min: Output hi-Z to RE# low
709  * @tITC_max: Interface and Timing Mode Change time
710  * @tRC_min: RE# cycle time
711  * @tREA_max: RE# access time
712  * @tREH_min: RE# high hold time
713  * @tRHOH_min: RE# high to output hold
714  * @tRHW_min: RE# high to WE# low
715  * @tRHZ_max: RE# high to output hi-Z
716  * @tRLOH_min: RE# low to output hold
717  * @tRP_min: RE# pulse width
718  * @tRR_min: Ready to RE# low (data only)
719  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
720  *	      rising edge of R/B#.
721  * @tWB_max: WE# high to SR[6] low
722  * @tWC_min: WE# cycle time
723  * @tWH_min: WE# high hold time
724  * @tWHR_min: WE# high to RE# low
725  * @tWP_min: WE# pulse width
726  * @tWW_min: WP# transition to WE# low
727  */
728 struct nand_sdr_timings {
729 	u64 tBERS_max;
730 	u32 tCCS_min;
731 	u64 tPROG_max;
732 	u64 tR_max;
733 	u32 tALH_min;
734 	u32 tADL_min;
735 	u32 tALS_min;
736 	u32 tAR_min;
737 	u32 tCEA_max;
738 	u32 tCEH_min;
739 	u32 tCH_min;
740 	u32 tCHZ_max;
741 	u32 tCLH_min;
742 	u32 tCLR_min;
743 	u32 tCLS_min;
744 	u32 tCOH_min;
745 	u32 tCS_min;
746 	u32 tDH_min;
747 	u32 tDS_min;
748 	u32 tFEAT_max;
749 	u32 tIR_min;
750 	u32 tITC_max;
751 	u32 tRC_min;
752 	u32 tREA_max;
753 	u32 tREH_min;
754 	u32 tRHOH_min;
755 	u32 tRHW_min;
756 	u32 tRHZ_max;
757 	u32 tRLOH_min;
758 	u32 tRP_min;
759 	u32 tRR_min;
760 	u64 tRST_max;
761 	u32 tWB_max;
762 	u32 tWC_min;
763 	u32 tWH_min;
764 	u32 tWHR_min;
765 	u32 tWP_min;
766 	u32 tWW_min;
767 };
768 
769 /**
770  * enum nand_data_interface_type - NAND interface timing type
771  * @NAND_SDR_IFACE:	Single Data Rate interface
772  */
773 enum nand_data_interface_type {
774 	NAND_SDR_IFACE,
775 };
776 
777 /**
778  * struct nand_data_interface - NAND interface timing
779  * @type:	 type of the timing
780  * @timings:	 The timing, type according to @type
781  * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
782  */
783 struct nand_data_interface {
784 	enum nand_data_interface_type type;
785 	union {
786 		struct nand_sdr_timings sdr;
787 	} timings;
788 };
789 
790 /**
791  * nand_get_sdr_timings - get SDR timing from data interface
792  * @conf:	The data interface
793  */
794 static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_data_interface * conf)795 nand_get_sdr_timings(const struct nand_data_interface *conf)
796 {
797 	if (conf->type != NAND_SDR_IFACE)
798 		return ERR_PTR(-EINVAL);
799 
800 	return &conf->timings.sdr;
801 }
802 
803 /**
804  * struct nand_manufacturer_ops - NAND Manufacturer operations
805  * @detect: detect the NAND memory organization and capabilities
806  * @init: initialize all vendor specific fields (like the ->read_retry()
807  *	  implementation) if any.
808  * @cleanup: the ->init() function may have allocated resources, ->cleanup()
809  *	     is here to let vendor specific code release those resources.
810  * @fixup_onfi_param_page: apply vendor specific fixups to the ONFI parameter
811  *			   page. This is called after the checksum is verified.
812  */
813 struct nand_manufacturer_ops {
814 	void (*detect)(struct nand_chip *chip);
815 	int (*init)(struct nand_chip *chip);
816 	void (*cleanup)(struct nand_chip *chip);
817 	void (*fixup_onfi_param_page)(struct nand_chip *chip,
818 				      struct nand_onfi_params *p);
819 };
820 
821 /**
822  * struct nand_op_cmd_instr - Definition of a command instruction
823  * @opcode: the command to issue in one cycle
824  */
825 struct nand_op_cmd_instr {
826 	u8 opcode;
827 };
828 
829 /**
830  * struct nand_op_addr_instr - Definition of an address instruction
831  * @naddrs: length of the @addrs array
832  * @addrs: array containing the address cycles to issue
833  */
834 struct nand_op_addr_instr {
835 	unsigned int naddrs;
836 	const u8 *addrs;
837 };
838 
839 /**
840  * struct nand_op_data_instr - Definition of a data instruction
841  * @len: number of data bytes to move
842  * @buf: buffer to fill
843  * @buf.in: buffer to fill when reading from the NAND chip
844  * @buf.out: buffer to read from when writing to the NAND chip
845  * @force_8bit: force 8-bit access
846  *
847  * Please note that "in" and "out" are inverted from the ONFI specification
848  * and are from the controller perspective, so a "in" is a read from the NAND
849  * chip while a "out" is a write to the NAND chip.
850  */
851 struct nand_op_data_instr {
852 	unsigned int len;
853 	union {
854 		void *in;
855 		const void *out;
856 	} buf;
857 	bool force_8bit;
858 };
859 
860 /**
861  * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
862  * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
863  */
864 struct nand_op_waitrdy_instr {
865 	unsigned int timeout_ms;
866 };
867 
868 /**
869  * enum nand_op_instr_type - Definition of all instruction types
870  * @NAND_OP_CMD_INSTR: command instruction
871  * @NAND_OP_ADDR_INSTR: address instruction
872  * @NAND_OP_DATA_IN_INSTR: data in instruction
873  * @NAND_OP_DATA_OUT_INSTR: data out instruction
874  * @NAND_OP_WAITRDY_INSTR: wait ready instruction
875  */
876 enum nand_op_instr_type {
877 	NAND_OP_CMD_INSTR,
878 	NAND_OP_ADDR_INSTR,
879 	NAND_OP_DATA_IN_INSTR,
880 	NAND_OP_DATA_OUT_INSTR,
881 	NAND_OP_WAITRDY_INSTR,
882 };
883 
884 /**
885  * struct nand_op_instr - Instruction object
886  * @type: the instruction type
887  * @ctx:  extra data associated to the instruction. You'll have to use the
888  *        appropriate element depending on @type
889  * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
890  * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
891  * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
892  *	      or %NAND_OP_DATA_OUT_INSTR
893  * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
894  * @delay_ns: delay the controller should apply after the instruction has been
895  *	      issued on the bus. Most modern controllers have internal timings
896  *	      control logic, and in this case, the controller driver can ignore
897  *	      this field.
898  */
899 struct nand_op_instr {
900 	enum nand_op_instr_type type;
901 	union {
902 		struct nand_op_cmd_instr cmd;
903 		struct nand_op_addr_instr addr;
904 		struct nand_op_data_instr data;
905 		struct nand_op_waitrdy_instr waitrdy;
906 	} ctx;
907 	unsigned int delay_ns;
908 };
909 
910 /*
911  * Special handling must be done for the WAITRDY timeout parameter as it usually
912  * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
913  * tBERS (during an erase) which all of them are u64 values that cannot be
914  * divided by usual kernel macros and must be handled with the special
915  * DIV_ROUND_UP_ULL() macro.
916  *
917  * Cast to type of dividend is needed here to guarantee that the result won't
918  * be an unsigned long long when the dividend is an unsigned long (or smaller),
919  * which is what the compiler does when it sees ternary operator with 2
920  * different return types (picks the largest type to make sure there's no
921  * loss).
922  */
923 #define __DIVIDE(dividend, divisor) ({						\
924 	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
925 			       DIV_ROUND_UP(dividend, divisor) :		\
926 			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
927 	})
928 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
929 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
930 
931 #define NAND_OP_CMD(id, ns)						\
932 	{								\
933 		.type = NAND_OP_CMD_INSTR,				\
934 		.ctx.cmd.opcode = id,					\
935 		.delay_ns = ns,						\
936 	}
937 
938 #define NAND_OP_ADDR(ncycles, cycles, ns)				\
939 	{								\
940 		.type = NAND_OP_ADDR_INSTR,				\
941 		.ctx.addr = {						\
942 			.naddrs = ncycles,				\
943 			.addrs = cycles,				\
944 		},							\
945 		.delay_ns = ns,						\
946 	}
947 
948 #define NAND_OP_DATA_IN(l, b, ns)					\
949 	{								\
950 		.type = NAND_OP_DATA_IN_INSTR,				\
951 		.ctx.data = {						\
952 			.len = l,					\
953 			.buf.in = b,					\
954 			.force_8bit = false,				\
955 		},							\
956 		.delay_ns = ns,						\
957 	}
958 
959 #define NAND_OP_DATA_OUT(l, b, ns)					\
960 	{								\
961 		.type = NAND_OP_DATA_OUT_INSTR,				\
962 		.ctx.data = {						\
963 			.len = l,					\
964 			.buf.out = b,					\
965 			.force_8bit = false,				\
966 		},							\
967 		.delay_ns = ns,						\
968 	}
969 
970 #define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
971 	{								\
972 		.type = NAND_OP_DATA_IN_INSTR,				\
973 		.ctx.data = {						\
974 			.len = l,					\
975 			.buf.in = b,					\
976 			.force_8bit = true,				\
977 		},							\
978 		.delay_ns = ns,						\
979 	}
980 
981 #define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
982 	{								\
983 		.type = NAND_OP_DATA_OUT_INSTR,				\
984 		.ctx.data = {						\
985 			.len = l,					\
986 			.buf.out = b,					\
987 			.force_8bit = true,				\
988 		},							\
989 		.delay_ns = ns,						\
990 	}
991 
992 #define NAND_OP_WAIT_RDY(tout_ms, ns)					\
993 	{								\
994 		.type = NAND_OP_WAITRDY_INSTR,				\
995 		.ctx.waitrdy.timeout_ms = tout_ms,			\
996 		.delay_ns = ns,						\
997 	}
998 
999 /**
1000  * struct nand_subop - a sub operation
1001  * @instrs: array of instructions
1002  * @ninstrs: length of the @instrs array
1003  * @first_instr_start_off: offset to start from for the first instruction
1004  *			   of the sub-operation
1005  * @last_instr_end_off: offset to end at (excluded) for the last instruction
1006  *			of the sub-operation
1007  *
1008  * Both @first_instr_start_off and @last_instr_end_off only apply to data or
1009  * address instructions.
1010  *
1011  * When an operation cannot be handled as is by the NAND controller, it will
1012  * be split by the parser into sub-operations which will be passed to the
1013  * controller driver.
1014  */
1015 struct nand_subop {
1016 	const struct nand_op_instr *instrs;
1017 	unsigned int ninstrs;
1018 	unsigned int first_instr_start_off;
1019 	unsigned int last_instr_end_off;
1020 };
1021 
1022 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
1023 					   unsigned int op_id);
1024 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
1025 					 unsigned int op_id);
1026 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
1027 					   unsigned int op_id);
1028 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
1029 				     unsigned int op_id);
1030 
1031 /**
1032  * struct nand_op_parser_addr_constraints - Constraints for address instructions
1033  * @maxcycles: maximum number of address cycles the controller can issue in a
1034  *	       single step
1035  */
1036 struct nand_op_parser_addr_constraints {
1037 	unsigned int maxcycles;
1038 };
1039 
1040 /**
1041  * struct nand_op_parser_data_constraints - Constraints for data instructions
1042  * @maxlen: maximum data length that the controller can handle in a single step
1043  */
1044 struct nand_op_parser_data_constraints {
1045 	unsigned int maxlen;
1046 };
1047 
1048 /**
1049  * struct nand_op_parser_pattern_elem - One element of a pattern
1050  * @type: the instructuction type
1051  * @optional: whether this element of the pattern is optional or mandatory
1052  * @ctx: address or data constraint
1053  * @ctx.addr: address constraint (number of cycles)
1054  * @ctx.data: data constraint (data length)
1055  */
1056 struct nand_op_parser_pattern_elem {
1057 	enum nand_op_instr_type type;
1058 	bool optional;
1059 	union {
1060 		struct nand_op_parser_addr_constraints addr;
1061 		struct nand_op_parser_data_constraints data;
1062 	} ctx;
1063 };
1064 
1065 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
1066 	{							\
1067 		.type = NAND_OP_CMD_INSTR,			\
1068 		.optional = _opt,				\
1069 	}
1070 
1071 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
1072 	{							\
1073 		.type = NAND_OP_ADDR_INSTR,			\
1074 		.optional = _opt,				\
1075 		.ctx.addr.maxcycles = _maxcycles,		\
1076 	}
1077 
1078 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
1079 	{							\
1080 		.type = NAND_OP_DATA_IN_INSTR,			\
1081 		.optional = _opt,				\
1082 		.ctx.data.maxlen = _maxlen,			\
1083 	}
1084 
1085 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
1086 	{							\
1087 		.type = NAND_OP_DATA_OUT_INSTR,			\
1088 		.optional = _opt,				\
1089 		.ctx.data.maxlen = _maxlen,			\
1090 	}
1091 
1092 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
1093 	{							\
1094 		.type = NAND_OP_WAITRDY_INSTR,			\
1095 		.optional = _opt,				\
1096 	}
1097 
1098 /**
1099  * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
1100  * @elems: array of pattern elements
1101  * @nelems: number of pattern elements in @elems array
1102  * @exec: the function that will issue a sub-operation
1103  *
1104  * A pattern is a list of elements, each element reprensenting one instruction
1105  * with its constraints. The pattern itself is used by the core to match NAND
1106  * chip operation with NAND controller operations.
1107  * Once a match between a NAND controller operation pattern and a NAND chip
1108  * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
1109  * hook is called so that the controller driver can issue the operation on the
1110  * bus.
1111  *
1112  * Controller drivers should declare as many patterns as they support and pass
1113  * this list of patterns (created with the help of the following macro) to
1114  * the nand_op_parser_exec_op() helper.
1115  */
1116 struct nand_op_parser_pattern {
1117 	const struct nand_op_parser_pattern_elem *elems;
1118 	unsigned int nelems;
1119 	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
1120 };
1121 
1122 #define NAND_OP_PARSER_PATTERN(_exec, ...)							\
1123 	{											\
1124 		.exec = _exec,									\
1125 		.elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
1126 		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
1127 			  sizeof(struct nand_op_parser_pattern_elem),				\
1128 	}
1129 
1130 /**
1131  * struct nand_op_parser - NAND controller operation parser descriptor
1132  * @patterns: array of supported patterns
1133  * @npatterns: length of the @patterns array
1134  *
1135  * The parser descriptor is just an array of supported patterns which will be
1136  * iterated by nand_op_parser_exec_op() everytime it tries to execute an
1137  * NAND operation (or tries to determine if a specific operation is supported).
1138  *
1139  * It is worth mentioning that patterns will be tested in their declaration
1140  * order, and the first match will be taken, so it's important to order patterns
1141  * appropriately so that simple/inefficient patterns are placed at the end of
1142  * the list. Usually, this is where you put single instruction patterns.
1143  */
1144 struct nand_op_parser {
1145 	const struct nand_op_parser_pattern *patterns;
1146 	unsigned int npatterns;
1147 };
1148 
1149 #define NAND_OP_PARSER(...)									\
1150 	{											\
1151 		.patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ },			\
1152 		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
1153 			     sizeof(struct nand_op_parser_pattern),				\
1154 	}
1155 
1156 /**
1157  * struct nand_operation - NAND operation descriptor
1158  * @instrs: array of instructions to execute
1159  * @ninstrs: length of the @instrs array
1160  *
1161  * The actual operation structure that will be passed to chip->exec_op().
1162  */
1163 struct nand_operation {
1164 	const struct nand_op_instr *instrs;
1165 	unsigned int ninstrs;
1166 };
1167 
1168 #define NAND_OPERATION(_instrs)					\
1169 	{							\
1170 		.instrs = _instrs,				\
1171 		.ninstrs = ARRAY_SIZE(_instrs),			\
1172 	}
1173 
1174 int nand_op_parser_exec_op(struct nand_chip *chip,
1175 			   const struct nand_op_parser *parser,
1176 			   const struct nand_operation *op, bool check_only);
1177 
1178 /**
1179  * struct nand_chip - NAND Private Flash Chip Data
1180  * @mtd:		MTD device registered to the MTD framework
1181  * @IO_ADDR_R:		[BOARDSPECIFIC] address to read the 8 I/O lines of the
1182  *			flash device
1183  * @IO_ADDR_W:		[BOARDSPECIFIC] address to write the 8 I/O lines of the
1184  *			flash device.
1185  * @read_byte:		[REPLACEABLE] read one byte from the chip
1186  * @read_word:		[REPLACEABLE] read one word from the chip
1187  * @write_byte:		[REPLACEABLE] write a single byte to the chip on the
1188  *			low 8 I/O lines
1189  * @write_buf:		[REPLACEABLE] write data from the buffer to the chip
1190  * @read_buf:		[REPLACEABLE] read data from the chip into the buffer
1191  * @select_chip:	[REPLACEABLE] select chip nr
1192  * @block_bad:		[REPLACEABLE] check if a block is bad, using OOB markers
1193  * @block_markbad:	[REPLACEABLE] mark a block bad
1194  * @cmd_ctrl:		[BOARDSPECIFIC] hardwarespecific function for controlling
1195  *			ALE/CLE/nCE. Also used to write command and address
1196  * @dev_ready:		[BOARDSPECIFIC] hardwarespecific function for accessing
1197  *			device ready/busy line. If set to NULL no access to
1198  *			ready/busy is available and the ready/busy information
1199  *			is read from the chip status register.
1200  * @cmdfunc:		[REPLACEABLE] hardwarespecific function for writing
1201  *			commands to the chip.
1202  * @waitfunc:		[REPLACEABLE] hardwarespecific function for wait on
1203  *			ready.
1204  * @exec_op:		controller specific method to execute NAND operations.
1205  *			This method replaces ->cmdfunc(),
1206  *			->{read,write}_{buf,byte,word}(), ->dev_ready() and
1207  *			->waifunc().
1208  * @setup_read_retry:	[FLASHSPECIFIC] flash (vendor) specific function for
1209  *			setting the read-retry mode. Mostly needed for MLC NAND.
1210  * @ecc:		[BOARDSPECIFIC] ECC control structure
1211  * @buf_align:		minimum buffer alignment required by a platform
1212  * @dummy_controller:	dummy controller implementation for drivers that can
1213  *			only control a single chip
1214  * @erase:		[REPLACEABLE] erase function
1215  * @chip_delay:		[BOARDSPECIFIC] chip dependent delay for transferring
1216  *			data from array to read regs (tR).
1217  * @state:		[INTERN] the current state of the NAND device
1218  * @oob_poi:		"poison value buffer," used for laying out OOB data
1219  *			before writing
1220  * @page_shift:		[INTERN] number of address bits in a page (column
1221  *			address bits).
1222  * @phys_erase_shift:	[INTERN] number of address bits in a physical eraseblock
1223  * @bbt_erase_shift:	[INTERN] number of address bits in a bbt entry
1224  * @chip_shift:		[INTERN] number of address bits in one chip
1225  * @options:		[BOARDSPECIFIC] various chip options. They can partly
1226  *			be set to inform nand_scan about special functionality.
1227  *			See the defines for further explanation.
1228  * @bbt_options:	[INTERN] bad block specific options. All options used
1229  *			here must come from bbm.h. By default, these options
1230  *			will be copied to the appropriate nand_bbt_descr's.
1231  * @badblockpos:	[INTERN] position of the bad block marker in the oob
1232  *			area.
1233  * @badblockbits:	[INTERN] minimum number of set bits in a good block's
1234  *			bad block marker position; i.e., BBM == 11110111b is
1235  *			not bad when badblockbits == 7
1236  * @bits_per_cell:	[INTERN] number of bits per cell. i.e., 1 means SLC.
1237  * @ecc_strength_ds:	[INTERN] ECC correctability from the datasheet.
1238  *			Minimum amount of bit errors per @ecc_step_ds guaranteed
1239  *			to be correctable. If unknown, set to zero.
1240  * @ecc_step_ds:	[INTERN] ECC step required by the @ecc_strength_ds,
1241  *			also from the datasheet. It is the recommended ECC step
1242  *			size, if known; if unknown, set to zero.
1243  * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1244  *			      set to the actually used ONFI mode if the chip is
1245  *			      ONFI compliant or deduced from the datasheet if
1246  *			      the NAND chip is not ONFI compliant.
1247  * @numchips:		[INTERN] number of physical chips
1248  * @chipsize:		[INTERN] the size of one chip for multichip arrays
1249  * @pagemask:		[INTERN] page number mask = number of (pages / chip) - 1
1250  * @data_buf:		[INTERN] buffer for data, size is (page size + oobsize).
1251  * @pagebuf:		[INTERN] holds the pagenumber which is currently in
1252  *			data_buf.
1253  * @pagebuf_bitflips:	[INTERN] holds the bitflip count for the page which is
1254  *			currently in data_buf.
1255  * @subpagesize:	[INTERN] holds the subpagesize
1256  * @id:			[INTERN] holds NAND ID
1257  * @parameters:		[INTERN] holds generic parameters under an easily
1258  *			readable form.
1259  * @max_bb_per_die:	[INTERN] the max number of bad blocks each die of a
1260  *			this nand device will encounter their life times.
1261  * @blocks_per_die:	[INTERN] The number of PEBs in a die
1262  * @data_interface:	[INTERN] NAND interface timing information
1263  * @read_retries:	[INTERN] the number of read retry modes supported
1264  * @set_features:	[REPLACEABLE] set the NAND chip features
1265  * @get_features:	[REPLACEABLE] get the NAND chip features
1266  * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If
1267  *			  chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
1268  *			  means the configuration should not be applied but
1269  *			  only checked.
1270  * @bbt:		[INTERN] bad block table pointer
1271  * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash
1272  *			lookup.
1273  * @bbt_md:		[REPLACEABLE] bad block table mirror descriptor
1274  * @badblock_pattern:	[REPLACEABLE] bad block scan pattern used for initial
1275  *			bad block scan.
1276  * @controller:		[REPLACEABLE] a pointer to a hardware controller
1277  *			structure which is shared among multiple independent
1278  *			devices.
1279  * @priv:		[OPTIONAL] pointer to private chip data
1280  * @manufacturer:	[INTERN] Contains manufacturer information
1281  * @manufacturer.desc:	[INTERN] Contains manufacturer's description
1282  * @manufacturer.priv:	[INTERN] Contains manufacturer private information
1283  */
1284 
1285 struct nand_chip {
1286 	struct mtd_info mtd;
1287 	void __iomem *IO_ADDR_R;
1288 	void __iomem *IO_ADDR_W;
1289 
1290 	uint8_t (*read_byte)(struct mtd_info *mtd);
1291 	u16 (*read_word)(struct mtd_info *mtd);
1292 	void (*write_byte)(struct mtd_info *mtd, uint8_t byte);
1293 	void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
1294 	void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
1295 	void (*select_chip)(struct mtd_info *mtd, int chip);
1296 	int (*block_bad)(struct mtd_info *mtd, loff_t ofs);
1297 	int (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
1298 	void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl);
1299 	int (*dev_ready)(struct mtd_info *mtd);
1300 	void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column,
1301 			int page_addr);
1302 	int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this);
1303 	int (*exec_op)(struct nand_chip *chip,
1304 		       const struct nand_operation *op,
1305 		       bool check_only);
1306 	int (*erase)(struct mtd_info *mtd, int page);
1307 	int (*set_features)(struct mtd_info *mtd, struct nand_chip *chip,
1308 			    int feature_addr, uint8_t *subfeature_para);
1309 	int (*get_features)(struct mtd_info *mtd, struct nand_chip *chip,
1310 			    int feature_addr, uint8_t *subfeature_para);
1311 	int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode);
1312 	int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
1313 				    const struct nand_data_interface *conf);
1314 
1315 	int chip_delay;
1316 	unsigned int options;
1317 	unsigned int bbt_options;
1318 
1319 	int page_shift;
1320 	int phys_erase_shift;
1321 	int bbt_erase_shift;
1322 	int chip_shift;
1323 	int numchips;
1324 	uint64_t chipsize;
1325 	int pagemask;
1326 	u8 *data_buf;
1327 	int pagebuf;
1328 	unsigned int pagebuf_bitflips;
1329 	int subpagesize;
1330 	uint8_t bits_per_cell;
1331 	uint16_t ecc_strength_ds;
1332 	uint16_t ecc_step_ds;
1333 	int onfi_timing_mode_default;
1334 	int badblockpos;
1335 	int badblockbits;
1336 
1337 	struct nand_id id;
1338 	struct nand_parameters parameters;
1339 	u16 max_bb_per_die;
1340 	u32 blocks_per_die;
1341 
1342 	struct nand_data_interface data_interface;
1343 
1344 	int read_retries;
1345 
1346 	flstate_t state;
1347 
1348 	uint8_t *oob_poi;
1349 	struct nand_controller *controller;
1350 
1351 	struct nand_ecc_ctrl ecc;
1352 	unsigned long buf_align;
1353 	struct nand_controller dummy_controller;
1354 
1355 	uint8_t *bbt;
1356 	struct nand_bbt_descr *bbt_td;
1357 	struct nand_bbt_descr *bbt_md;
1358 
1359 	struct nand_bbt_descr *badblock_pattern;
1360 
1361 	void *priv;
1362 
1363 	struct {
1364 		const struct nand_manufacturer *desc;
1365 		void *priv;
1366 	} manufacturer;
1367 };
1368 
nand_exec_op(struct nand_chip * chip,const struct nand_operation * op)1369 static inline int nand_exec_op(struct nand_chip *chip,
1370 			       const struct nand_operation *op)
1371 {
1372 	if (!chip->exec_op)
1373 		return -ENOTSUPP;
1374 
1375 	return chip->exec_op(chip, op, false);
1376 }
1377 
1378 extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1379 extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1380 
nand_set_flash_node(struct nand_chip * chip,struct device_node * np)1381 static inline void nand_set_flash_node(struct nand_chip *chip,
1382 				       struct device_node *np)
1383 {
1384 	mtd_set_of_node(&chip->mtd, np);
1385 }
1386 
nand_get_flash_node(struct nand_chip * chip)1387 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1388 {
1389 	return mtd_get_of_node(&chip->mtd);
1390 }
1391 
mtd_to_nand(struct mtd_info * mtd)1392 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1393 {
1394 	return container_of(mtd, struct nand_chip, mtd);
1395 }
1396 
nand_to_mtd(struct nand_chip * chip)1397 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1398 {
1399 	return &chip->mtd;
1400 }
1401 
nand_get_controller_data(struct nand_chip * chip)1402 static inline void *nand_get_controller_data(struct nand_chip *chip)
1403 {
1404 	return chip->priv;
1405 }
1406 
nand_set_controller_data(struct nand_chip * chip,void * priv)1407 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1408 {
1409 	chip->priv = priv;
1410 }
1411 
nand_set_manufacturer_data(struct nand_chip * chip,void * priv)1412 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1413 					      void *priv)
1414 {
1415 	chip->manufacturer.priv = priv;
1416 }
1417 
nand_get_manufacturer_data(struct nand_chip * chip)1418 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1419 {
1420 	return chip->manufacturer.priv;
1421 }
1422 
1423 /*
1424  * NAND Flash Manufacturer ID Codes
1425  */
1426 #define NAND_MFR_TOSHIBA	0x98
1427 #define NAND_MFR_ESMT		0xc8
1428 #define NAND_MFR_SAMSUNG	0xec
1429 #define NAND_MFR_FUJITSU	0x04
1430 #define NAND_MFR_NATIONAL	0x8f
1431 #define NAND_MFR_RENESAS	0x07
1432 #define NAND_MFR_STMICRO	0x20
1433 #define NAND_MFR_HYNIX		0xad
1434 #define NAND_MFR_MICRON		0x2c
1435 #define NAND_MFR_AMD		0x01
1436 #define NAND_MFR_MACRONIX	0xc2
1437 #define NAND_MFR_EON		0x92
1438 #define NAND_MFR_SANDISK	0x45
1439 #define NAND_MFR_INTEL		0x89
1440 #define NAND_MFR_ATO		0x9b
1441 #define NAND_MFR_WINBOND	0xef
1442 
1443 
1444 /*
1445  * A helper for defining older NAND chips where the second ID byte fully
1446  * defined the chip, including the geometry (chip size, eraseblock size, page
1447  * size). All these chips have 512 bytes NAND page size.
1448  */
1449 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1450 	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1451 	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1452 
1453 /*
1454  * A helper for defining newer chips which report their page size and
1455  * eraseblock size via the extended ID bytes.
1456  *
1457  * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1458  * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1459  * device ID now only represented a particular total chip size (and voltage,
1460  * buswidth), and the page size, eraseblock size, and OOB size could vary while
1461  * using the same device ID.
1462  */
1463 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1464 	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1465 	  .options = (opts) }
1466 
1467 #define NAND_ECC_INFO(_strength, _step)	\
1468 			{ .strength_ds = (_strength), .step_ds = (_step) }
1469 #define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
1470 #define NAND_ECC_STEP(type)		((type)->ecc.step_ds)
1471 
1472 /**
1473  * struct nand_flash_dev - NAND Flash Device ID Structure
1474  * @name: a human-readable name of the NAND chip
1475  * @dev_id: the device ID (the second byte of the full chip ID array)
1476  * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
1477  *          memory address as @id[0])
1478  * @dev_id: device ID part of the full chip ID array (refers the same memory
1479  *          address as @id[1])
1480  * @id: full device ID array
1481  * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1482  *            well as the eraseblock size) is determined from the extended NAND
1483  *            chip ID array)
1484  * @chipsize: total chip size in MiB
1485  * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1486  * @options: stores various chip bit options
1487  * @id_len: The valid length of the @id.
1488  * @oobsize: OOB size
1489  * @ecc: ECC correctability and step information from the datasheet.
1490  * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1491  *                   @ecc_strength_ds in nand_chip{}.
1492  * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1493  *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1494  *               For example, the "4bit ECC for each 512Byte" can be set with
1495  *               NAND_ECC_INFO(4, 512).
1496  * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
1497  *			      reset. Should be deduced from timings described
1498  *			      in the datasheet.
1499  *
1500  */
1501 struct nand_flash_dev {
1502 	char *name;
1503 	union {
1504 		struct {
1505 			uint8_t mfr_id;
1506 			uint8_t dev_id;
1507 		};
1508 		uint8_t id[NAND_MAX_ID_LEN];
1509 	};
1510 	unsigned int pagesize;
1511 	unsigned int chipsize;
1512 	unsigned int erasesize;
1513 	unsigned int options;
1514 	uint16_t id_len;
1515 	uint16_t oobsize;
1516 	struct {
1517 		uint16_t strength_ds;
1518 		uint16_t step_ds;
1519 	} ecc;
1520 	int onfi_timing_mode_default;
1521 };
1522 
1523 /**
1524  * struct nand_manufacturer - NAND Flash Manufacturer structure
1525  * @name:	Manufacturer name
1526  * @id:		manufacturer ID code of device.
1527  * @ops:	manufacturer operations
1528 */
1529 struct nand_manufacturer {
1530 	int id;
1531 	char *name;
1532 	const struct nand_manufacturer_ops *ops;
1533 };
1534 
1535 const struct nand_manufacturer *nand_get_manufacturer(u8 id);
1536 
1537 static inline const char *
nand_manufacturer_name(const struct nand_manufacturer * manufacturer)1538 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
1539 {
1540 	return manufacturer ? manufacturer->name : "Unknown";
1541 }
1542 
1543 extern struct nand_flash_dev nand_flash_ids[];
1544 
1545 extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops;
1546 extern const struct nand_manufacturer_ops samsung_nand_manuf_ops;
1547 extern const struct nand_manufacturer_ops hynix_nand_manuf_ops;
1548 extern const struct nand_manufacturer_ops micron_nand_manuf_ops;
1549 extern const struct nand_manufacturer_ops amd_nand_manuf_ops;
1550 extern const struct nand_manufacturer_ops macronix_nand_manuf_ops;
1551 
1552 int nand_create_bbt(struct nand_chip *chip);
1553 int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs);
1554 int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs);
1555 int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt);
1556 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1557 		    int allowbbt);
1558 
1559 /**
1560  * struct platform_nand_chip - chip level device structure
1561  * @nr_chips:		max. number of chips to scan for
1562  * @chip_offset:	chip number offset
1563  * @nr_partitions:	number of partitions pointed to by partitions (or zero)
1564  * @partitions:		mtd partition list
1565  * @chip_delay:		R/B delay value in us
1566  * @options:		Option flags, e.g. 16bit buswidth
1567  * @bbt_options:	BBT option flags, e.g. NAND_BBT_USE_FLASH
1568  * @part_probe_types:	NULL-terminated array of probe types
1569  */
1570 struct platform_nand_chip {
1571 	int nr_chips;
1572 	int chip_offset;
1573 	int nr_partitions;
1574 	struct mtd_partition *partitions;
1575 	int chip_delay;
1576 	unsigned int options;
1577 	unsigned int bbt_options;
1578 	const char **part_probe_types;
1579 };
1580 
1581 /* Keep gcc happy */
1582 struct platform_device;
1583 
1584 /**
1585  * struct platform_nand_ctrl - controller level device structure
1586  * @probe:		platform specific function to probe/setup hardware
1587  * @remove:		platform specific function to remove/teardown hardware
1588  * @dev_ready:		platform specific function to read ready/busy pin
1589  * @select_chip:	platform specific chip select function
1590  * @cmd_ctrl:		platform specific function for controlling
1591  *			ALE/CLE/nCE. Also used to write command and address
1592  * @write_buf:		platform specific function for write buffer
1593  * @read_buf:		platform specific function for read buffer
1594  * @priv:		private data to transport driver specific settings
1595  *
1596  * All fields are optional and depend on the hardware driver requirements
1597  */
1598 struct platform_nand_ctrl {
1599 	int (*probe)(struct platform_device *pdev);
1600 	void (*remove)(struct platform_device *pdev);
1601 	int (*dev_ready)(struct mtd_info *mtd);
1602 	void (*select_chip)(struct mtd_info *mtd, int chip);
1603 	void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl);
1604 	void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
1605 	void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
1606 	void *priv;
1607 };
1608 
1609 /**
1610  * struct platform_nand_data - container structure for platform-specific data
1611  * @chip:		chip level chip structure
1612  * @ctrl:		controller level device structure
1613  */
1614 struct platform_nand_data {
1615 	struct platform_nand_chip chip;
1616 	struct platform_nand_ctrl ctrl;
1617 };
1618 
1619 /* return the supported asynchronous timing mode. */
onfi_get_async_timing_mode(struct nand_chip * chip)1620 static inline int onfi_get_async_timing_mode(struct nand_chip *chip)
1621 {
1622 	if (!chip->parameters.onfi)
1623 		return ONFI_TIMING_MODE_UNKNOWN;
1624 
1625 	return chip->parameters.onfi->async_timing_mode;
1626 }
1627 
1628 int onfi_fill_data_interface(struct nand_chip *chip,
1629 			     enum nand_data_interface_type type,
1630 			     int timing_mode);
1631 
1632 /*
1633  * Check if it is a SLC nand.
1634  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1635  * We do not distinguish the MLC and TLC now.
1636  */
nand_is_slc(struct nand_chip * chip)1637 static inline bool nand_is_slc(struct nand_chip *chip)
1638 {
1639 	WARN(chip->bits_per_cell == 0,
1640 	     "chip->bits_per_cell is used uninitialized\n");
1641 	return chip->bits_per_cell == 1;
1642 }
1643 
1644 /**
1645  * Check if the opcode's address should be sent only on the lower 8 bits
1646  * @command: opcode to check
1647  */
nand_opcode_8bits(unsigned int command)1648 static inline int nand_opcode_8bits(unsigned int command)
1649 {
1650 	switch (command) {
1651 	case NAND_CMD_READID:
1652 	case NAND_CMD_PARAM:
1653 	case NAND_CMD_GET_FEATURES:
1654 	case NAND_CMD_SET_FEATURES:
1655 		return 1;
1656 	default:
1657 		break;
1658 	}
1659 	return 0;
1660 }
1661 
1662 /* get timing characteristics from ONFI timing mode. */
1663 const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode);
1664 
1665 int nand_check_erased_ecc_chunk(void *data, int datalen,
1666 				void *ecc, int ecclen,
1667 				void *extraoob, int extraooblen,
1668 				int threshold);
1669 
1670 int nand_ecc_choose_conf(struct nand_chip *chip,
1671 			 const struct nand_ecc_caps *caps, int oobavail);
1672 
1673 /* Default write_oob implementation */
1674 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
1675 
1676 /* Default write_oob syndrome implementation */
1677 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1678 			    int page);
1679 
1680 /* Default read_oob implementation */
1681 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
1682 
1683 /* Default read_oob syndrome implementation */
1684 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1685 			   int page);
1686 
1687 /* Wrapper to use in order for controllers/vendors to GET/SET FEATURES */
1688 int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
1689 int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
1690 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1691 int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
1692 				  int addr, u8 *subfeature_param);
1693 
1694 /* Default read_page_raw implementation */
1695 int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1696 		       uint8_t *buf, int oob_required, int page);
1697 int nand_read_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
1698 			       u8 *buf, int oob_required, int page);
1699 
1700 /* Default write_page_raw implementation */
1701 int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1702 			const uint8_t *buf, int oob_required, int page);
1703 int nand_write_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
1704 				const u8 *buf, int oob_required, int page);
1705 
1706 /* Reset and initialize a NAND device */
1707 int nand_reset(struct nand_chip *chip, int chipnr);
1708 
1709 /* NAND operation helpers */
1710 int nand_reset_op(struct nand_chip *chip);
1711 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1712 		   unsigned int len);
1713 int nand_status_op(struct nand_chip *chip, u8 *status);
1714 int nand_exit_status_op(struct nand_chip *chip);
1715 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1716 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1717 		      unsigned int offset_in_page, void *buf, unsigned int len);
1718 int nand_change_read_column_op(struct nand_chip *chip,
1719 			       unsigned int offset_in_page, void *buf,
1720 			       unsigned int len, bool force_8bit);
1721 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1722 		     unsigned int offset_in_page, void *buf, unsigned int len);
1723 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1724 			    unsigned int offset_in_page, const void *buf,
1725 			    unsigned int len);
1726 int nand_prog_page_end_op(struct nand_chip *chip);
1727 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1728 		      unsigned int offset_in_page, const void *buf,
1729 		      unsigned int len);
1730 int nand_change_write_column_op(struct nand_chip *chip,
1731 				unsigned int offset_in_page, const void *buf,
1732 				unsigned int len, bool force_8bit);
1733 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1734 		      bool force_8bit);
1735 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1736 		       unsigned int len, bool force_8bit);
1737 
1738 /*
1739  * Free resources held by the NAND device, must be called on error after a
1740  * sucessful nand_scan().
1741  */
1742 void nand_cleanup(struct nand_chip *chip);
1743 /* Unregister the MTD device and calls nand_cleanup() */
1744 void nand_release(struct nand_chip *chip);
1745 
1746 /* Default extended ID decoding function */
1747 void nand_decode_ext_id(struct nand_chip *chip);
1748 
1749 /*
1750  * External helper for controller drivers that have to implement the WAITRDY
1751  * instruction and have no physical pin to check it.
1752  */
1753 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1754 
1755 #endif /* __LINUX_MTD_RAWNAND_H */
1756