1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __NET_SCHED_RED_H
3 #define __NET_SCHED_RED_H
4
5 #include <linux/types.h>
6 #include <linux/bug.h>
7 #include <net/pkt_sched.h>
8 #include <net/inet_ecn.h>
9 #include <net/dsfield.h>
10 #include <linux/reciprocal_div.h>
11
12 /* Random Early Detection (RED) algorithm.
13 =======================================
14
15 Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
16 for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
17
18 This file codes a "divisionless" version of RED algorithm
19 as written down in Fig.17 of the paper.
20
21 Short description.
22 ------------------
23
24 When a new packet arrives we calculate the average queue length:
25
26 avg = (1-W)*avg + W*current_queue_len,
27
28 W is the filter time constant (chosen as 2^(-Wlog)), it controls
29 the inertia of the algorithm. To allow larger bursts, W should be
30 decreased.
31
32 if (avg > th_max) -> packet marked (dropped).
33 if (avg < th_min) -> packet passes.
34 if (th_min < avg < th_max) we calculate probability:
35
36 Pb = max_P * (avg - th_min)/(th_max-th_min)
37
38 and mark (drop) packet with this probability.
39 Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
40 max_P should be small (not 1), usually 0.01..0.02 is good value.
41
42 max_P is chosen as a number, so that max_P/(th_max-th_min)
43 is a negative power of two in order arithmetics to contain
44 only shifts.
45
46
47 Parameters, settable by user:
48 -----------------------------
49
50 qth_min - bytes (should be < qth_max/2)
51 qth_max - bytes (should be at least 2*qth_min and less limit)
52 Wlog - bits (<32) log(1/W).
53 Plog - bits (<32)
54
55 Plog is related to max_P by formula:
56
57 max_P = (qth_max-qth_min)/2^Plog;
58
59 F.e. if qth_max=128K and qth_min=32K, then Plog=22
60 corresponds to max_P=0.02
61
62 Scell_log
63 Stab
64
65 Lookup table for log((1-W)^(t/t_ave).
66
67
68 NOTES:
69
70 Upper bound on W.
71 -----------------
72
73 If you want to allow bursts of L packets of size S,
74 you should choose W:
75
76 L + 1 - th_min/S < (1-(1-W)^L)/W
77
78 th_min/S = 32 th_min/S = 4
79
80 log(W) L
81 -1 33
82 -2 35
83 -3 39
84 -4 46
85 -5 57
86 -6 75
87 -7 101
88 -8 135
89 -9 190
90 etc.
91 */
92
93 /*
94 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
95 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
96 *
97 * Every 500 ms:
98 * if (avg > target and max_p <= 0.5)
99 * increase max_p : max_p += alpha;
100 * else if (avg < target and max_p >= 0.01)
101 * decrease max_p : max_p *= beta;
102 *
103 * target :[qth_min + 0.4*(qth_min - qth_max),
104 * qth_min + 0.6*(qth_min - qth_max)].
105 * alpha : min(0.01, max_p / 4)
106 * beta : 0.9
107 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
108 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
109 */
110 #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
111
112 #define MAX_P_MIN (1 * RED_ONE_PERCENT)
113 #define MAX_P_MAX (50 * RED_ONE_PERCENT)
114 #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
115
116 #define RED_STAB_SIZE 256
117 #define RED_STAB_MASK (RED_STAB_SIZE - 1)
118
119 struct red_stats {
120 u32 prob_drop; /* Early probability drops */
121 u32 prob_mark; /* Early probability marks */
122 u32 forced_drop; /* Forced drops, qavg > max_thresh */
123 u32 forced_mark; /* Forced marks, qavg > max_thresh */
124 u32 pdrop; /* Drops due to queue limits */
125 u32 other; /* Drops due to drop() calls */
126 };
127
128 struct red_parms {
129 /* Parameters */
130 u32 qth_min; /* Min avg length threshold: Wlog scaled */
131 u32 qth_max; /* Max avg length threshold: Wlog scaled */
132 u32 Scell_max;
133 u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
134 /* reciprocal_value(max_P / qth_delta) */
135 struct reciprocal_value max_P_reciprocal;
136 u32 qth_delta; /* max_th - min_th */
137 u32 target_min; /* min_th + 0.4*(max_th - min_th) */
138 u32 target_max; /* min_th + 0.6*(max_th - min_th) */
139 u8 Scell_log;
140 u8 Wlog; /* log(W) */
141 u8 Plog; /* random number bits */
142 u8 Stab[RED_STAB_SIZE];
143 };
144
145 struct red_vars {
146 /* Variables */
147 int qcount; /* Number of packets since last random
148 number generation */
149 u32 qR; /* Cached random number */
150
151 unsigned long qavg; /* Average queue length: Wlog scaled */
152 ktime_t qidlestart; /* Start of current idle period */
153 };
154
red_maxp(u8 Plog)155 static inline u32 red_maxp(u8 Plog)
156 {
157 return Plog < 32 ? (~0U >> Plog) : ~0U;
158 }
159
red_set_vars(struct red_vars * v)160 static inline void red_set_vars(struct red_vars *v)
161 {
162 /* Reset average queue length, the value is strictly bound
163 * to the parameters below, reseting hurts a bit but leaving
164 * it might result in an unreasonable qavg for a while. --TGR
165 */
166 v->qavg = 0;
167
168 v->qcount = -1;
169 }
170
red_check_params(u32 qth_min,u32 qth_max,u8 Wlog,u8 Scell_log,u8 * stab)171 static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog,
172 u8 Scell_log, u8 *stab)
173 {
174 if (fls(qth_min) + Wlog >= 32)
175 return false;
176 if (fls(qth_max) + Wlog >= 32)
177 return false;
178 if (Scell_log >= 32)
179 return false;
180 if (qth_max < qth_min)
181 return false;
182 if (stab) {
183 int i;
184
185 for (i = 0; i < RED_STAB_SIZE; i++)
186 if (stab[i] >= 32)
187 return false;
188 }
189 return true;
190 }
191
red_set_parms(struct red_parms * p,u32 qth_min,u32 qth_max,u8 Wlog,u8 Plog,u8 Scell_log,u8 * stab,u32 max_P)192 static inline void red_set_parms(struct red_parms *p,
193 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
194 u8 Scell_log, u8 *stab, u32 max_P)
195 {
196 int delta = qth_max - qth_min;
197 u32 max_p_delta;
198
199 p->qth_min = qth_min << Wlog;
200 p->qth_max = qth_max << Wlog;
201 p->Wlog = Wlog;
202 p->Plog = Plog;
203 if (delta <= 0)
204 delta = 1;
205 p->qth_delta = delta;
206 if (!max_P) {
207 max_P = red_maxp(Plog);
208 max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
209 }
210 p->max_P = max_P;
211 max_p_delta = max_P / delta;
212 max_p_delta = max(max_p_delta, 1U);
213 p->max_P_reciprocal = reciprocal_value(max_p_delta);
214
215 /* RED Adaptative target :
216 * [min_th + 0.4*(min_th - max_th),
217 * min_th + 0.6*(min_th - max_th)].
218 */
219 delta /= 5;
220 p->target_min = qth_min + 2*delta;
221 p->target_max = qth_min + 3*delta;
222
223 p->Scell_log = Scell_log;
224 p->Scell_max = (255 << Scell_log);
225
226 if (stab)
227 memcpy(p->Stab, stab, sizeof(p->Stab));
228 }
229
red_is_idling(const struct red_vars * v)230 static inline int red_is_idling(const struct red_vars *v)
231 {
232 return v->qidlestart != 0;
233 }
234
red_start_of_idle_period(struct red_vars * v)235 static inline void red_start_of_idle_period(struct red_vars *v)
236 {
237 v->qidlestart = ktime_get();
238 }
239
red_end_of_idle_period(struct red_vars * v)240 static inline void red_end_of_idle_period(struct red_vars *v)
241 {
242 v->qidlestart = 0;
243 }
244
red_restart(struct red_vars * v)245 static inline void red_restart(struct red_vars *v)
246 {
247 red_end_of_idle_period(v);
248 v->qavg = 0;
249 v->qcount = -1;
250 }
251
red_calc_qavg_from_idle_time(const struct red_parms * p,const struct red_vars * v)252 static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
253 const struct red_vars *v)
254 {
255 s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
256 long us_idle = min_t(s64, delta, p->Scell_max);
257 int shift;
258
259 /*
260 * The problem: ideally, average length queue recalcultion should
261 * be done over constant clock intervals. This is too expensive, so
262 * that the calculation is driven by outgoing packets.
263 * When the queue is idle we have to model this clock by hand.
264 *
265 * SF+VJ proposed to "generate":
266 *
267 * m = idletime / (average_pkt_size / bandwidth)
268 *
269 * dummy packets as a burst after idle time, i.e.
270 *
271 * v->qavg *= (1-W)^m
272 *
273 * This is an apparently overcomplicated solution (f.e. we have to
274 * precompute a table to make this calculation in reasonable time)
275 * I believe that a simpler model may be used here,
276 * but it is field for experiments.
277 */
278
279 shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
280
281 if (shift)
282 return v->qavg >> shift;
283 else {
284 /* Approximate initial part of exponent with linear function:
285 *
286 * (1-W)^m ~= 1-mW + ...
287 *
288 * Seems, it is the best solution to
289 * problem of too coarse exponent tabulation.
290 */
291 us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
292
293 if (us_idle < (v->qavg >> 1))
294 return v->qavg - us_idle;
295 else
296 return v->qavg >> 1;
297 }
298 }
299
red_calc_qavg_no_idle_time(const struct red_parms * p,const struct red_vars * v,unsigned int backlog)300 static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
301 const struct red_vars *v,
302 unsigned int backlog)
303 {
304 /*
305 * NOTE: v->qavg is fixed point number with point at Wlog.
306 * The formula below is equvalent to floating point
307 * version:
308 *
309 * qavg = qavg*(1-W) + backlog*W;
310 *
311 * --ANK (980924)
312 */
313 return v->qavg + (backlog - (v->qavg >> p->Wlog));
314 }
315
red_calc_qavg(const struct red_parms * p,const struct red_vars * v,unsigned int backlog)316 static inline unsigned long red_calc_qavg(const struct red_parms *p,
317 const struct red_vars *v,
318 unsigned int backlog)
319 {
320 if (!red_is_idling(v))
321 return red_calc_qavg_no_idle_time(p, v, backlog);
322 else
323 return red_calc_qavg_from_idle_time(p, v);
324 }
325
326
red_random(const struct red_parms * p)327 static inline u32 red_random(const struct red_parms *p)
328 {
329 return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
330 }
331
red_mark_probability(const struct red_parms * p,const struct red_vars * v,unsigned long qavg)332 static inline int red_mark_probability(const struct red_parms *p,
333 const struct red_vars *v,
334 unsigned long qavg)
335 {
336 /* The formula used below causes questions.
337
338 OK. qR is random number in the interval
339 (0..1/max_P)*(qth_max-qth_min)
340 i.e. 0..(2^Plog). If we used floating point
341 arithmetics, it would be: (2^Plog)*rnd_num,
342 where rnd_num is less 1.
343
344 Taking into account, that qavg have fixed
345 point at Wlog, two lines
346 below have the following floating point equivalent:
347
348 max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
349
350 Any questions? --ANK (980924)
351 */
352 return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
353 }
354
355 enum {
356 RED_BELOW_MIN_THRESH,
357 RED_BETWEEN_TRESH,
358 RED_ABOVE_MAX_TRESH,
359 };
360
red_cmp_thresh(const struct red_parms * p,unsigned long qavg)361 static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
362 {
363 if (qavg < p->qth_min)
364 return RED_BELOW_MIN_THRESH;
365 else if (qavg >= p->qth_max)
366 return RED_ABOVE_MAX_TRESH;
367 else
368 return RED_BETWEEN_TRESH;
369 }
370
371 enum {
372 RED_DONT_MARK,
373 RED_PROB_MARK,
374 RED_HARD_MARK,
375 };
376
red_action(const struct red_parms * p,struct red_vars * v,unsigned long qavg)377 static inline int red_action(const struct red_parms *p,
378 struct red_vars *v,
379 unsigned long qavg)
380 {
381 switch (red_cmp_thresh(p, qavg)) {
382 case RED_BELOW_MIN_THRESH:
383 v->qcount = -1;
384 return RED_DONT_MARK;
385
386 case RED_BETWEEN_TRESH:
387 if (++v->qcount) {
388 if (red_mark_probability(p, v, qavg)) {
389 v->qcount = 0;
390 v->qR = red_random(p);
391 return RED_PROB_MARK;
392 }
393 } else
394 v->qR = red_random(p);
395
396 return RED_DONT_MARK;
397
398 case RED_ABOVE_MAX_TRESH:
399 v->qcount = -1;
400 return RED_HARD_MARK;
401 }
402
403 BUG();
404 return RED_DONT_MARK;
405 }
406
red_adaptative_algo(struct red_parms * p,struct red_vars * v)407 static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
408 {
409 unsigned long qavg;
410 u32 max_p_delta;
411
412 qavg = v->qavg;
413 if (red_is_idling(v))
414 qavg = red_calc_qavg_from_idle_time(p, v);
415
416 /* v->qavg is fixed point number with point at Wlog */
417 qavg >>= p->Wlog;
418
419 if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
420 p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
421 else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
422 p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
423
424 max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
425 max_p_delta = max(max_p_delta, 1U);
426 p->max_P_reciprocal = reciprocal_value(max_p_delta);
427 }
428 #endif
429