1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/partitions/aix.c
4 *
5 * Copyright (C) 2012-2013 Philippe De Muyter <phdm@macqel.be>
6 */
7
8 #include "check.h"
9 #include "aix.h"
10
11 struct lvm_rec {
12 char lvm_id[4]; /* "_LVM" */
13 char reserved4[16];
14 __be32 lvmarea_len;
15 __be32 vgda_len;
16 __be32 vgda_psn[2];
17 char reserved36[10];
18 __be16 pp_size; /* log2(pp_size) */
19 char reserved46[12];
20 __be16 version;
21 };
22
23 struct vgda {
24 __be32 secs;
25 __be32 usec;
26 char reserved8[16];
27 __be16 numlvs;
28 __be16 maxlvs;
29 __be16 pp_size;
30 __be16 numpvs;
31 __be16 total_vgdas;
32 __be16 vgda_size;
33 };
34
35 struct lvd {
36 __be16 lv_ix;
37 __be16 res2;
38 __be16 res4;
39 __be16 maxsize;
40 __be16 lv_state;
41 __be16 mirror;
42 __be16 mirror_policy;
43 __be16 num_lps;
44 __be16 res10[8];
45 };
46
47 struct lvname {
48 char name[64];
49 };
50
51 struct ppe {
52 __be16 lv_ix;
53 unsigned short res2;
54 unsigned short res4;
55 __be16 lp_ix;
56 unsigned short res8[12];
57 };
58
59 struct pvd {
60 char reserved0[16];
61 __be16 pp_count;
62 char reserved18[2];
63 __be32 psn_part1;
64 char reserved24[8];
65 struct ppe ppe[1016];
66 };
67
68 #define LVM_MAXLVS 256
69
70 /**
71 * last_lba(): return number of last logical block of device
72 * @bdev: block device
73 *
74 * Description: Returns last LBA value on success, 0 on error.
75 * This is stored (by sd and ide-geometry) in
76 * the part[0] entry for this disk, and is the number of
77 * physical sectors available on the disk.
78 */
last_lba(struct block_device * bdev)79 static u64 last_lba(struct block_device *bdev)
80 {
81 if (!bdev || !bdev->bd_inode)
82 return 0;
83 return (bdev->bd_inode->i_size >> 9) - 1ULL;
84 }
85
86 /**
87 * read_lba(): Read bytes from disk, starting at given LBA
88 * @state
89 * @lba
90 * @buffer
91 * @count
92 *
93 * Description: Reads @count bytes from @state->bdev into @buffer.
94 * Returns number of bytes read on success, 0 on error.
95 */
read_lba(struct parsed_partitions * state,u64 lba,u8 * buffer,size_t count)96 static size_t read_lba(struct parsed_partitions *state, u64 lba, u8 *buffer,
97 size_t count)
98 {
99 size_t totalreadcount = 0;
100
101 if (!buffer || lba + count / 512 > last_lba(state->bdev))
102 return 0;
103
104 while (count) {
105 int copied = 512;
106 Sector sect;
107 unsigned char *data = read_part_sector(state, lba++, §);
108 if (!data)
109 break;
110 if (copied > count)
111 copied = count;
112 memcpy(buffer, data, copied);
113 put_dev_sector(sect);
114 buffer += copied;
115 totalreadcount += copied;
116 count -= copied;
117 }
118 return totalreadcount;
119 }
120
121 /**
122 * alloc_pvd(): reads physical volume descriptor
123 * @state
124 * @lba
125 *
126 * Description: Returns pvd on success, NULL on error.
127 * Allocates space for pvd and fill it with disk blocks at @lba
128 * Notes: remember to free pvd when you're done!
129 */
alloc_pvd(struct parsed_partitions * state,u32 lba)130 static struct pvd *alloc_pvd(struct parsed_partitions *state, u32 lba)
131 {
132 size_t count = sizeof(struct pvd);
133 struct pvd *p;
134
135 p = kmalloc(count, GFP_KERNEL);
136 if (!p)
137 return NULL;
138
139 if (read_lba(state, lba, (u8 *) p, count) < count) {
140 kfree(p);
141 return NULL;
142 }
143 return p;
144 }
145
146 /**
147 * alloc_lvn(): reads logical volume names
148 * @state
149 * @lba
150 *
151 * Description: Returns lvn on success, NULL on error.
152 * Allocates space for lvn and fill it with disk blocks at @lba
153 * Notes: remember to free lvn when you're done!
154 */
alloc_lvn(struct parsed_partitions * state,u32 lba)155 static struct lvname *alloc_lvn(struct parsed_partitions *state, u32 lba)
156 {
157 size_t count = sizeof(struct lvname) * LVM_MAXLVS;
158 struct lvname *p;
159
160 p = kmalloc(count, GFP_KERNEL);
161 if (!p)
162 return NULL;
163
164 if (read_lba(state, lba, (u8 *) p, count) < count) {
165 kfree(p);
166 return NULL;
167 }
168 return p;
169 }
170
aix_partition(struct parsed_partitions * state)171 int aix_partition(struct parsed_partitions *state)
172 {
173 int ret = 0;
174 Sector sect;
175 unsigned char *d;
176 u32 pp_bytes_size;
177 u32 pp_blocks_size = 0;
178 u32 vgda_sector = 0;
179 u32 vgda_len = 0;
180 int numlvs = 0;
181 struct pvd *pvd = NULL;
182 struct lv_info {
183 unsigned short pps_per_lv;
184 unsigned short pps_found;
185 unsigned char lv_is_contiguous;
186 } *lvip;
187 struct lvname *n = NULL;
188
189 d = read_part_sector(state, 7, §);
190 if (d) {
191 struct lvm_rec *p = (struct lvm_rec *)d;
192 u16 lvm_version = be16_to_cpu(p->version);
193 char tmp[64];
194
195 if (lvm_version == 1) {
196 int pp_size_log2 = be16_to_cpu(p->pp_size);
197
198 pp_bytes_size = 1 << pp_size_log2;
199 pp_blocks_size = pp_bytes_size / 512;
200 snprintf(tmp, sizeof(tmp),
201 " AIX LVM header version %u found\n",
202 lvm_version);
203 vgda_len = be32_to_cpu(p->vgda_len);
204 vgda_sector = be32_to_cpu(p->vgda_psn[0]);
205 } else {
206 snprintf(tmp, sizeof(tmp),
207 " unsupported AIX LVM version %d found\n",
208 lvm_version);
209 }
210 strlcat(state->pp_buf, tmp, PAGE_SIZE);
211 put_dev_sector(sect);
212 }
213 if (vgda_sector && (d = read_part_sector(state, vgda_sector, §))) {
214 struct vgda *p = (struct vgda *)d;
215
216 numlvs = be16_to_cpu(p->numlvs);
217 put_dev_sector(sect);
218 }
219 lvip = kcalloc(state->limit, sizeof(struct lv_info), GFP_KERNEL);
220 if (!lvip)
221 return 0;
222 if (numlvs && (d = read_part_sector(state, vgda_sector + 1, §))) {
223 struct lvd *p = (struct lvd *)d;
224 int i;
225
226 n = alloc_lvn(state, vgda_sector + vgda_len - 33);
227 if (n) {
228 int foundlvs = 0;
229
230 for (i = 0; foundlvs < numlvs && i < state->limit; i += 1) {
231 lvip[i].pps_per_lv = be16_to_cpu(p[i].num_lps);
232 if (lvip[i].pps_per_lv)
233 foundlvs += 1;
234 }
235 /* pvd loops depend on n[].name and lvip[].pps_per_lv */
236 pvd = alloc_pvd(state, vgda_sector + 17);
237 }
238 put_dev_sector(sect);
239 }
240 if (pvd) {
241 int numpps = be16_to_cpu(pvd->pp_count);
242 int psn_part1 = be32_to_cpu(pvd->psn_part1);
243 int i;
244 int cur_lv_ix = -1;
245 int next_lp_ix = 1;
246 int lp_ix;
247
248 for (i = 0; i < numpps; i += 1) {
249 struct ppe *p = pvd->ppe + i;
250 unsigned int lv_ix;
251
252 lp_ix = be16_to_cpu(p->lp_ix);
253 if (!lp_ix) {
254 next_lp_ix = 1;
255 continue;
256 }
257 lv_ix = be16_to_cpu(p->lv_ix) - 1;
258 if (lv_ix >= state->limit) {
259 cur_lv_ix = -1;
260 continue;
261 }
262 lvip[lv_ix].pps_found += 1;
263 if (lp_ix == 1) {
264 cur_lv_ix = lv_ix;
265 next_lp_ix = 1;
266 } else if (lv_ix != cur_lv_ix || lp_ix != next_lp_ix) {
267 next_lp_ix = 1;
268 continue;
269 }
270 if (lp_ix == lvip[lv_ix].pps_per_lv) {
271 char tmp[70];
272
273 put_partition(state, lv_ix + 1,
274 (i + 1 - lp_ix) * pp_blocks_size + psn_part1,
275 lvip[lv_ix].pps_per_lv * pp_blocks_size);
276 snprintf(tmp, sizeof(tmp), " <%s>\n",
277 n[lv_ix].name);
278 strlcat(state->pp_buf, tmp, PAGE_SIZE);
279 lvip[lv_ix].lv_is_contiguous = 1;
280 ret = 1;
281 next_lp_ix = 1;
282 } else
283 next_lp_ix += 1;
284 }
285 for (i = 0; i < state->limit; i += 1)
286 if (lvip[i].pps_found && !lvip[i].lv_is_contiguous) {
287 char tmp[sizeof(n[i].name) + 1]; // null char
288
289 snprintf(tmp, sizeof(tmp), "%s", n[i].name);
290 pr_warn("partition %s (%u pp's found) is "
291 "not contiguous\n",
292 tmp, lvip[i].pps_found);
293 }
294 kfree(pvd);
295 }
296 kfree(n);
297 kfree(lvip);
298 return ret;
299 }
300