1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
76 
77 /*
78  * This structure really needs to be cleaned up.
79  * Most of it is for TCP, and not used by any of
80  * the other protocols.
81  */
82 
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 					printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 {
93 }
94 #endif
95 
96 /* This is the per-socket lock.  The spinlock provides a synchronization
97  * between user contexts and software interrupt processing, whereas the
98  * mini-semaphore synchronizes multiple users amongst themselves.
99  */
100 typedef struct {
101 	spinlock_t		slock;
102 	int			owned;
103 	wait_queue_head_t	wq;
104 	/*
105 	 * We express the mutex-alike socket_lock semantics
106 	 * to the lock validator by explicitly managing
107 	 * the slock as a lock variant (in addition to
108 	 * the slock itself):
109 	 */
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 	struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
114 
115 struct sock;
116 struct proto;
117 struct net;
118 
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
121 
122 /**
123  *	struct sock_common - minimal network layer representation of sockets
124  *	@skc_daddr: Foreign IPv4 addr
125  *	@skc_rcv_saddr: Bound local IPv4 addr
126  *	@skc_hash: hash value used with various protocol lookup tables
127  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
128  *	@skc_dport: placeholder for inet_dport/tw_dport
129  *	@skc_num: placeholder for inet_num/tw_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_node: main hash linkage for various protocol lookup tables
140  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141  *	@skc_tx_queue_mapping: tx queue number for this connection
142  *	@skc_rx_queue_mapping: rx queue number for this connection
143  *	@skc_flags: place holder for sk_flags
144  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146  *	@skc_incoming_cpu: record/match cpu processing incoming packets
147  *	@skc_refcnt: reference count
148  *
149  *	This is the minimal network layer representation of sockets, the header
150  *	for struct sock and struct inet_timewait_sock.
151  */
152 struct sock_common {
153 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 	 * address on 64bit arches : cf INET_MATCH()
155 	 */
156 	union {
157 		__addrpair	skc_addrpair;
158 		struct {
159 			__be32	skc_daddr;
160 			__be32	skc_rcv_saddr;
161 		};
162 	};
163 	union  {
164 		unsigned int	skc_hash;
165 		__u16		skc_u16hashes[2];
166 	};
167 	/* skc_dport && skc_num must be grouped as well */
168 	union {
169 		__portpair	skc_portpair;
170 		struct {
171 			__be16	skc_dport;
172 			__u16	skc_num;
173 		};
174 	};
175 
176 	unsigned short		skc_family;
177 	volatile unsigned char	skc_state;
178 	unsigned char		skc_reuse:4;
179 	unsigned char		skc_reuseport:1;
180 	unsigned char		skc_ipv6only:1;
181 	unsigned char		skc_net_refcnt:1;
182 	int			skc_bound_dev_if;
183 	union {
184 		struct hlist_node	skc_bind_node;
185 		struct hlist_node	skc_portaddr_node;
186 	};
187 	struct proto		*skc_prot;
188 	possible_net_t		skc_net;
189 
190 #if IS_ENABLED(CONFIG_IPV6)
191 	struct in6_addr		skc_v6_daddr;
192 	struct in6_addr		skc_v6_rcv_saddr;
193 #endif
194 
195 	atomic64_t		skc_cookie;
196 
197 	/* following fields are padding to force
198 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 	 * assuming IPV6 is enabled. We use this padding differently
200 	 * for different kind of 'sockets'
201 	 */
202 	union {
203 		unsigned long	skc_flags;
204 		struct sock	*skc_listener; /* request_sock */
205 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 	};
207 	/*
208 	 * fields between dontcopy_begin/dontcopy_end
209 	 * are not copied in sock_copy()
210 	 */
211 	/* private: */
212 	int			skc_dontcopy_begin[0];
213 	/* public: */
214 	union {
215 		struct hlist_node	skc_node;
216 		struct hlist_nulls_node skc_nulls_node;
217 	};
218 	unsigned short		skc_tx_queue_mapping;
219 #ifdef CONFIG_XPS
220 	unsigned short		skc_rx_queue_mapping;
221 #endif
222 	union {
223 		int		skc_incoming_cpu;
224 		u32		skc_rcv_wnd;
225 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
226 	};
227 
228 	refcount_t		skc_refcnt;
229 	/* private: */
230 	int                     skc_dontcopy_end[0];
231 	union {
232 		u32		skc_rxhash;
233 		u32		skc_window_clamp;
234 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 	};
236 	/* public: */
237 };
238 
239 /**
240   *	struct sock - network layer representation of sockets
241   *	@__sk_common: shared layout with inet_timewait_sock
242   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244   *	@sk_lock:	synchronizer
245   *	@sk_kern_sock: True if sock is using kernel lock classes
246   *	@sk_rcvbuf: size of receive buffer in bytes
247   *	@sk_wq: sock wait queue and async head
248   *	@sk_rx_dst: receive input route used by early demux
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_napi_id: id of the last napi context to receive data for sk
260   *	@sk_ll_usec: usecs to busypoll when there is no data
261   *	@sk_allocation: allocation mode
262   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
264   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265   *	@sk_sndbuf: size of send buffer in bytes
266   *	@__sk_flags_offset: empty field used to determine location of bitfield
267   *	@sk_padding: unused element for alignment
268   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269   *	@sk_no_check_rx: allow zero checksum in RX packets
270   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273   *	@sk_gso_max_size: Maximum GSO segment size to build
274   *	@sk_gso_max_segs: Maximum number of GSO segments
275   *	@sk_pacing_shift: scaling factor for TCP Small Queues
276   *	@sk_lingertime: %SO_LINGER l_linger setting
277   *	@sk_backlog: always used with the per-socket spinlock held
278   *	@sk_callback_lock: used with the callbacks in the end of this struct
279   *	@sk_error_queue: rarely used
280   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281   *			  IPV6_ADDRFORM for instance)
282   *	@sk_err: last error
283   *	@sk_err_soft: errors that don't cause failure but are the cause of a
284   *		      persistent failure not just 'timed out'
285   *	@sk_drops: raw/udp drops counter
286   *	@sk_ack_backlog: current listen backlog
287   *	@sk_max_ack_backlog: listen backlog set in listen()
288   *	@sk_uid: user id of owner
289   *	@sk_priority: %SO_PRIORITY setting
290   *	@sk_type: socket type (%SOCK_STREAM, etc)
291   *	@sk_protocol: which protocol this socket belongs in this network family
292   *	@sk_peer_pid: &struct pid for this socket's peer
293   *	@sk_peer_cred: %SO_PEERCRED setting
294   *	@sk_rcvlowat: %SO_RCVLOWAT setting
295   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
296   *	@sk_sndtimeo: %SO_SNDTIMEO setting
297   *	@sk_txhash: computed flow hash for use on transmit
298   *	@sk_filter: socket filtering instructions
299   *	@sk_timer: sock cleanup timer
300   *	@sk_stamp: time stamp of last packet received
301   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
302   *	@sk_tsflags: SO_TIMESTAMPING socket options
303   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
304   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
305   *	@sk_socket: Identd and reporting IO signals
306   *	@sk_user_data: RPC layer private data
307   *	@sk_frag: cached page frag
308   *	@sk_peek_off: current peek_offset value
309   *	@sk_send_head: front of stuff to transmit
310   *	@sk_security: used by security modules
311   *	@sk_mark: generic packet mark
312   *	@sk_cgrp_data: cgroup data for this cgroup
313   *	@sk_memcg: this socket's memory cgroup association
314   *	@sk_write_pending: a write to stream socket waits to start
315   *	@sk_wait_pending: number of threads blocked on this socket
316   *	@sk_state_change: callback to indicate change in the state of the sock
317   *	@sk_data_ready: callback to indicate there is data to be processed
318   *	@sk_write_space: callback to indicate there is bf sending space available
319   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
320   *	@sk_backlog_rcv: callback to process the backlog
321   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
322   *	@sk_reuseport_cb: reuseport group container
323   *	@sk_rcu: used during RCU grace period
324   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
325   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
326   *	@sk_txtime_unused: unused txtime flags
327   */
328 struct sock {
329 	/*
330 	 * Now struct inet_timewait_sock also uses sock_common, so please just
331 	 * don't add nothing before this first member (__sk_common) --acme
332 	 */
333 	struct sock_common	__sk_common;
334 #define sk_node			__sk_common.skc_node
335 #define sk_nulls_node		__sk_common.skc_nulls_node
336 #define sk_refcnt		__sk_common.skc_refcnt
337 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
338 #ifdef CONFIG_XPS
339 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
340 #endif
341 
342 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
343 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
344 #define sk_hash			__sk_common.skc_hash
345 #define sk_portpair		__sk_common.skc_portpair
346 #define sk_num			__sk_common.skc_num
347 #define sk_dport		__sk_common.skc_dport
348 #define sk_addrpair		__sk_common.skc_addrpair
349 #define sk_daddr		__sk_common.skc_daddr
350 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
351 #define sk_family		__sk_common.skc_family
352 #define sk_state		__sk_common.skc_state
353 #define sk_reuse		__sk_common.skc_reuse
354 #define sk_reuseport		__sk_common.skc_reuseport
355 #define sk_ipv6only		__sk_common.skc_ipv6only
356 #define sk_net_refcnt		__sk_common.skc_net_refcnt
357 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
358 #define sk_bind_node		__sk_common.skc_bind_node
359 #define sk_prot			__sk_common.skc_prot
360 #define sk_net			__sk_common.skc_net
361 #define sk_v6_daddr		__sk_common.skc_v6_daddr
362 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
363 #define sk_cookie		__sk_common.skc_cookie
364 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
365 #define sk_flags		__sk_common.skc_flags
366 #define sk_rxhash		__sk_common.skc_rxhash
367 
368 	socket_lock_t		sk_lock;
369 	atomic_t		sk_drops;
370 	int			sk_rcvlowat;
371 	struct sk_buff_head	sk_error_queue;
372 	struct sk_buff_head	sk_receive_queue;
373 	/*
374 	 * The backlog queue is special, it is always used with
375 	 * the per-socket spinlock held and requires low latency
376 	 * access. Therefore we special case it's implementation.
377 	 * Note : rmem_alloc is in this structure to fill a hole
378 	 * on 64bit arches, not because its logically part of
379 	 * backlog.
380 	 */
381 	struct {
382 		atomic_t	rmem_alloc;
383 		int		len;
384 		struct sk_buff	*head;
385 		struct sk_buff	*tail;
386 	} sk_backlog;
387 #define sk_rmem_alloc sk_backlog.rmem_alloc
388 
389 	int			sk_forward_alloc;
390 #ifdef CONFIG_NET_RX_BUSY_POLL
391 	unsigned int		sk_ll_usec;
392 	/* ===== mostly read cache line ===== */
393 	unsigned int		sk_napi_id;
394 #endif
395 	int			sk_rcvbuf;
396 	int			sk_wait_pending;
397 
398 	struct sk_filter __rcu	*sk_filter;
399 	union {
400 		struct socket_wq __rcu	*sk_wq;
401 		struct socket_wq	*sk_wq_raw;
402 	};
403 #ifdef CONFIG_XFRM
404 	struct xfrm_policy __rcu *sk_policy[2];
405 #endif
406 	struct dst_entry __rcu	*sk_rx_dst;
407 	struct dst_entry __rcu	*sk_dst_cache;
408 	atomic_t		sk_omem_alloc;
409 	int			sk_sndbuf;
410 
411 	/* ===== cache line for TX ===== */
412 	int			sk_wmem_queued;
413 	refcount_t		sk_wmem_alloc;
414 	unsigned long		sk_tsq_flags;
415 	union {
416 		struct sk_buff	*sk_send_head;
417 		struct rb_root	tcp_rtx_queue;
418 	};
419 	struct sk_buff_head	sk_write_queue;
420 	__s32			sk_peek_off;
421 	int			sk_write_pending;
422 	__u32			sk_dst_pending_confirm;
423 	u32			sk_pacing_status; /* see enum sk_pacing */
424 	long			sk_sndtimeo;
425 	struct timer_list	sk_timer;
426 	__u32			sk_priority;
427 	__u32			sk_mark;
428 	u32			sk_pacing_rate; /* bytes per second */
429 	u32			sk_max_pacing_rate;
430 	struct page_frag	sk_frag;
431 	netdev_features_t	sk_route_caps;
432 	netdev_features_t	sk_route_nocaps;
433 	netdev_features_t	sk_route_forced_caps;
434 	int			sk_gso_type;
435 	unsigned int		sk_gso_max_size;
436 	gfp_t			sk_allocation;
437 	__u32			sk_txhash;
438 
439 	/*
440 	 * Because of non atomicity rules, all
441 	 * changes are protected by socket lock.
442 	 */
443 	unsigned int		__sk_flags_offset[0];
444 #ifdef __BIG_ENDIAN_BITFIELD
445 #define SK_FL_PROTO_SHIFT  16
446 #define SK_FL_PROTO_MASK   0x00ff0000
447 
448 #define SK_FL_TYPE_SHIFT   0
449 #define SK_FL_TYPE_MASK    0x0000ffff
450 #else
451 #define SK_FL_PROTO_SHIFT  8
452 #define SK_FL_PROTO_MASK   0x0000ff00
453 
454 #define SK_FL_TYPE_SHIFT   16
455 #define SK_FL_TYPE_MASK    0xffff0000
456 #endif
457 
458 	unsigned int		sk_padding : 1,
459 				sk_kern_sock : 1,
460 				sk_no_check_tx : 1,
461 				sk_no_check_rx : 1,
462 				sk_userlocks : 4,
463 				sk_protocol  : 8,
464 				sk_type      : 16;
465 #define SK_PROTOCOL_MAX U8_MAX
466 	u16			sk_gso_max_segs;
467 	u8			sk_pacing_shift;
468 	unsigned long	        sk_lingertime;
469 	struct proto		*sk_prot_creator;
470 	rwlock_t		sk_callback_lock;
471 	int			sk_err,
472 				sk_err_soft;
473 	u32			sk_ack_backlog;
474 	u32			sk_max_ack_backlog;
475 	kuid_t			sk_uid;
476 	spinlock_t		sk_peer_lock;
477 	struct pid		*sk_peer_pid;
478 	const struct cred	*sk_peer_cred;
479 
480 	long			sk_rcvtimeo;
481 	ktime_t			sk_stamp;
482 #if BITS_PER_LONG==32
483 	seqlock_t		sk_stamp_seq;
484 #endif
485 	u16			sk_tsflags;
486 	u8			sk_shutdown;
487 	u32			sk_tskey;
488 	atomic_t		sk_zckey;
489 
490 	u8			sk_clockid;
491 	u8			sk_txtime_deadline_mode : 1,
492 				sk_txtime_report_errors : 1,
493 				sk_txtime_unused : 6;
494 
495 	struct socket		*sk_socket;
496 	void			*sk_user_data;
497 #ifdef CONFIG_SECURITY
498 	void			*sk_security;
499 #endif
500 	struct sock_cgroup_data	sk_cgrp_data;
501 	struct mem_cgroup	*sk_memcg;
502 	void			(*sk_state_change)(struct sock *sk);
503 	void			(*sk_data_ready)(struct sock *sk);
504 	void			(*sk_write_space)(struct sock *sk);
505 	void			(*sk_error_report)(struct sock *sk);
506 	int			(*sk_backlog_rcv)(struct sock *sk,
507 						  struct sk_buff *skb);
508 #ifdef CONFIG_SOCK_VALIDATE_XMIT
509 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
510 							struct net_device *dev,
511 							struct sk_buff *skb);
512 #endif
513 	void                    (*sk_destruct)(struct sock *sk);
514 	struct sock_reuseport __rcu	*sk_reuseport_cb;
515 	struct rcu_head		sk_rcu;
516 };
517 
518 enum sk_pacing {
519 	SK_PACING_NONE		= 0,
520 	SK_PACING_NEEDED	= 1,
521 	SK_PACING_FQ		= 2,
522 };
523 
524 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
525 
526 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
527 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
528 
529 /*
530  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
531  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
532  * on a socket means that the socket will reuse everybody else's port
533  * without looking at the other's sk_reuse value.
534  */
535 
536 #define SK_NO_REUSE	0
537 #define SK_CAN_REUSE	1
538 #define SK_FORCE_REUSE	2
539 
540 int sk_set_peek_off(struct sock *sk, int val);
541 
sk_peek_offset(struct sock * sk,int flags)542 static inline int sk_peek_offset(struct sock *sk, int flags)
543 {
544 	if (unlikely(flags & MSG_PEEK)) {
545 		return READ_ONCE(sk->sk_peek_off);
546 	}
547 
548 	return 0;
549 }
550 
sk_peek_offset_bwd(struct sock * sk,int val)551 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
552 {
553 	s32 off = READ_ONCE(sk->sk_peek_off);
554 
555 	if (unlikely(off >= 0)) {
556 		off = max_t(s32, off - val, 0);
557 		WRITE_ONCE(sk->sk_peek_off, off);
558 	}
559 }
560 
sk_peek_offset_fwd(struct sock * sk,int val)561 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
562 {
563 	sk_peek_offset_bwd(sk, -val);
564 }
565 
566 /*
567  * Hashed lists helper routines
568  */
sk_entry(const struct hlist_node * node)569 static inline struct sock *sk_entry(const struct hlist_node *node)
570 {
571 	return hlist_entry(node, struct sock, sk_node);
572 }
573 
__sk_head(const struct hlist_head * head)574 static inline struct sock *__sk_head(const struct hlist_head *head)
575 {
576 	return hlist_entry(head->first, struct sock, sk_node);
577 }
578 
sk_head(const struct hlist_head * head)579 static inline struct sock *sk_head(const struct hlist_head *head)
580 {
581 	return hlist_empty(head) ? NULL : __sk_head(head);
582 }
583 
__sk_nulls_head(const struct hlist_nulls_head * head)584 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
585 {
586 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
587 }
588 
sk_nulls_head(const struct hlist_nulls_head * head)589 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
590 {
591 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
592 }
593 
sk_next(const struct sock * sk)594 static inline struct sock *sk_next(const struct sock *sk)
595 {
596 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
597 }
598 
sk_nulls_next(const struct sock * sk)599 static inline struct sock *sk_nulls_next(const struct sock *sk)
600 {
601 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
602 		hlist_nulls_entry(sk->sk_nulls_node.next,
603 				  struct sock, sk_nulls_node) :
604 		NULL;
605 }
606 
sk_unhashed(const struct sock * sk)607 static inline bool sk_unhashed(const struct sock *sk)
608 {
609 	return hlist_unhashed(&sk->sk_node);
610 }
611 
sk_hashed(const struct sock * sk)612 static inline bool sk_hashed(const struct sock *sk)
613 {
614 	return !sk_unhashed(sk);
615 }
616 
sk_node_init(struct hlist_node * node)617 static inline void sk_node_init(struct hlist_node *node)
618 {
619 	node->pprev = NULL;
620 }
621 
sk_nulls_node_init(struct hlist_nulls_node * node)622 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
623 {
624 	node->pprev = NULL;
625 }
626 
__sk_del_node(struct sock * sk)627 static inline void __sk_del_node(struct sock *sk)
628 {
629 	__hlist_del(&sk->sk_node);
630 }
631 
632 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)633 static inline bool __sk_del_node_init(struct sock *sk)
634 {
635 	if (sk_hashed(sk)) {
636 		__sk_del_node(sk);
637 		sk_node_init(&sk->sk_node);
638 		return true;
639 	}
640 	return false;
641 }
642 
643 /* Grab socket reference count. This operation is valid only
644    when sk is ALREADY grabbed f.e. it is found in hash table
645    or a list and the lookup is made under lock preventing hash table
646    modifications.
647  */
648 
sock_hold(struct sock * sk)649 static __always_inline void sock_hold(struct sock *sk)
650 {
651 	refcount_inc(&sk->sk_refcnt);
652 }
653 
654 /* Ungrab socket in the context, which assumes that socket refcnt
655    cannot hit zero, f.e. it is true in context of any socketcall.
656  */
__sock_put(struct sock * sk)657 static __always_inline void __sock_put(struct sock *sk)
658 {
659 	refcount_dec(&sk->sk_refcnt);
660 }
661 
sk_del_node_init(struct sock * sk)662 static inline bool sk_del_node_init(struct sock *sk)
663 {
664 	bool rc = __sk_del_node_init(sk);
665 
666 	if (rc) {
667 		/* paranoid for a while -acme */
668 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
669 		__sock_put(sk);
670 	}
671 	return rc;
672 }
673 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
674 
__sk_nulls_del_node_init_rcu(struct sock * sk)675 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
676 {
677 	if (sk_hashed(sk)) {
678 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
679 		return true;
680 	}
681 	return false;
682 }
683 
sk_nulls_del_node_init_rcu(struct sock * sk)684 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
685 {
686 	bool rc = __sk_nulls_del_node_init_rcu(sk);
687 
688 	if (rc) {
689 		/* paranoid for a while -acme */
690 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
691 		__sock_put(sk);
692 	}
693 	return rc;
694 }
695 
__sk_add_node(struct sock * sk,struct hlist_head * list)696 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
697 {
698 	hlist_add_head(&sk->sk_node, list);
699 }
700 
sk_add_node(struct sock * sk,struct hlist_head * list)701 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
702 {
703 	sock_hold(sk);
704 	__sk_add_node(sk, list);
705 }
706 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)707 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
708 {
709 	sock_hold(sk);
710 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
711 	    sk->sk_family == AF_INET6)
712 		hlist_add_tail_rcu(&sk->sk_node, list);
713 	else
714 		hlist_add_head_rcu(&sk->sk_node, list);
715 }
716 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)717 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
718 {
719 	sock_hold(sk);
720 	hlist_add_tail_rcu(&sk->sk_node, list);
721 }
722 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)723 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
724 {
725 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
726 }
727 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)728 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
729 {
730 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
731 }
732 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)733 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
734 {
735 	sock_hold(sk);
736 	__sk_nulls_add_node_rcu(sk, list);
737 }
738 
__sk_del_bind_node(struct sock * sk)739 static inline void __sk_del_bind_node(struct sock *sk)
740 {
741 	__hlist_del(&sk->sk_bind_node);
742 }
743 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)744 static inline void sk_add_bind_node(struct sock *sk,
745 					struct hlist_head *list)
746 {
747 	hlist_add_head(&sk->sk_bind_node, list);
748 }
749 
750 #define sk_for_each(__sk, list) \
751 	hlist_for_each_entry(__sk, list, sk_node)
752 #define sk_for_each_rcu(__sk, list) \
753 	hlist_for_each_entry_rcu(__sk, list, sk_node)
754 #define sk_nulls_for_each(__sk, node, list) \
755 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
756 #define sk_nulls_for_each_rcu(__sk, node, list) \
757 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
758 #define sk_for_each_from(__sk) \
759 	hlist_for_each_entry_from(__sk, sk_node)
760 #define sk_nulls_for_each_from(__sk, node) \
761 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
762 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
763 #define sk_for_each_safe(__sk, tmp, list) \
764 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
765 #define sk_for_each_bound(__sk, list) \
766 	hlist_for_each_entry(__sk, list, sk_bind_node)
767 
768 /**
769  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
770  * @tpos:	the type * to use as a loop cursor.
771  * @pos:	the &struct hlist_node to use as a loop cursor.
772  * @head:	the head for your list.
773  * @offset:	offset of hlist_node within the struct.
774  *
775  */
776 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
777 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
778 	     pos != NULL &&						       \
779 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
780 	     pos = rcu_dereference(hlist_next_rcu(pos)))
781 
sk_user_ns(struct sock * sk)782 static inline struct user_namespace *sk_user_ns(struct sock *sk)
783 {
784 	/* Careful only use this in a context where these parameters
785 	 * can not change and must all be valid, such as recvmsg from
786 	 * userspace.
787 	 */
788 	return sk->sk_socket->file->f_cred->user_ns;
789 }
790 
791 /* Sock flags */
792 enum sock_flags {
793 	SOCK_DEAD,
794 	SOCK_DONE,
795 	SOCK_URGINLINE,
796 	SOCK_KEEPOPEN,
797 	SOCK_LINGER,
798 	SOCK_DESTROY,
799 	SOCK_BROADCAST,
800 	SOCK_TIMESTAMP,
801 	SOCK_ZAPPED,
802 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
803 	SOCK_DBG, /* %SO_DEBUG setting */
804 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
805 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
806 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
807 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
808 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
809 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
810 	SOCK_FASYNC, /* fasync() active */
811 	SOCK_RXQ_OVFL,
812 	SOCK_ZEROCOPY, /* buffers from userspace */
813 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
814 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
815 		     * Will use last 4 bytes of packet sent from
816 		     * user-space instead.
817 		     */
818 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
819 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
820 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
821 	SOCK_TXTIME,
822 };
823 
824 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
825 
sock_copy_flags(struct sock * nsk,struct sock * osk)826 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
827 {
828 	nsk->sk_flags = osk->sk_flags;
829 }
830 
sock_set_flag(struct sock * sk,enum sock_flags flag)831 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
832 {
833 	__set_bit(flag, &sk->sk_flags);
834 }
835 
sock_reset_flag(struct sock * sk,enum sock_flags flag)836 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
837 {
838 	__clear_bit(flag, &sk->sk_flags);
839 }
840 
sock_flag(const struct sock * sk,enum sock_flags flag)841 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
842 {
843 	return test_bit(flag, &sk->sk_flags);
844 }
845 
846 #ifdef CONFIG_NET
847 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)848 static inline int sk_memalloc_socks(void)
849 {
850 	return static_branch_unlikely(&memalloc_socks_key);
851 }
852 
853 void __receive_sock(struct file *file);
854 #else
855 
sk_memalloc_socks(void)856 static inline int sk_memalloc_socks(void)
857 {
858 	return 0;
859 }
860 
__receive_sock(struct file * file)861 static inline void __receive_sock(struct file *file)
862 { }
863 #endif
864 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)865 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
866 {
867 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
868 }
869 
sk_acceptq_removed(struct sock * sk)870 static inline void sk_acceptq_removed(struct sock *sk)
871 {
872 	sk->sk_ack_backlog--;
873 }
874 
sk_acceptq_added(struct sock * sk)875 static inline void sk_acceptq_added(struct sock *sk)
876 {
877 	sk->sk_ack_backlog++;
878 }
879 
sk_acceptq_is_full(const struct sock * sk)880 static inline bool sk_acceptq_is_full(const struct sock *sk)
881 {
882 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
883 }
884 
885 /*
886  * Compute minimal free write space needed to queue new packets.
887  */
sk_stream_min_wspace(const struct sock * sk)888 static inline int sk_stream_min_wspace(const struct sock *sk)
889 {
890 	return sk->sk_wmem_queued >> 1;
891 }
892 
sk_stream_wspace(const struct sock * sk)893 static inline int sk_stream_wspace(const struct sock *sk)
894 {
895 	return sk->sk_sndbuf - sk->sk_wmem_queued;
896 }
897 
898 void sk_stream_write_space(struct sock *sk);
899 
900 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)901 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
902 {
903 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
904 	skb_dst_force(skb);
905 
906 	if (!sk->sk_backlog.tail)
907 		WRITE_ONCE(sk->sk_backlog.head, skb);
908 	else
909 		sk->sk_backlog.tail->next = skb;
910 
911 	WRITE_ONCE(sk->sk_backlog.tail, skb);
912 	skb->next = NULL;
913 }
914 
915 /*
916  * Take into account size of receive queue and backlog queue
917  * Do not take into account this skb truesize,
918  * to allow even a single big packet to come.
919  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)920 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
921 {
922 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
923 
924 	return qsize > limit;
925 }
926 
927 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)928 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
929 					      unsigned int limit)
930 {
931 	if (sk_rcvqueues_full(sk, limit))
932 		return -ENOBUFS;
933 
934 	/*
935 	 * If the skb was allocated from pfmemalloc reserves, only
936 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
937 	 * helping free memory
938 	 */
939 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
940 		return -ENOMEM;
941 
942 	__sk_add_backlog(sk, skb);
943 	sk->sk_backlog.len += skb->truesize;
944 	return 0;
945 }
946 
947 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
948 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)949 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
950 {
951 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
952 		return __sk_backlog_rcv(sk, skb);
953 
954 	return sk->sk_backlog_rcv(sk, skb);
955 }
956 
sk_incoming_cpu_update(struct sock * sk)957 static inline void sk_incoming_cpu_update(struct sock *sk)
958 {
959 	int cpu = raw_smp_processor_id();
960 
961 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
962 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
963 }
964 
sock_rps_record_flow_hash(__u32 hash)965 static inline void sock_rps_record_flow_hash(__u32 hash)
966 {
967 #ifdef CONFIG_RPS
968 	struct rps_sock_flow_table *sock_flow_table;
969 
970 	rcu_read_lock();
971 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
972 	rps_record_sock_flow(sock_flow_table, hash);
973 	rcu_read_unlock();
974 #endif
975 }
976 
sock_rps_record_flow(const struct sock * sk)977 static inline void sock_rps_record_flow(const struct sock *sk)
978 {
979 #ifdef CONFIG_RPS
980 	if (static_key_false(&rfs_needed)) {
981 		/* Reading sk->sk_rxhash might incur an expensive cache line
982 		 * miss.
983 		 *
984 		 * TCP_ESTABLISHED does cover almost all states where RFS
985 		 * might be useful, and is cheaper [1] than testing :
986 		 *	IPv4: inet_sk(sk)->inet_daddr
987 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
988 		 * OR	an additional socket flag
989 		 * [1] : sk_state and sk_prot are in the same cache line.
990 		 */
991 		if (sk->sk_state == TCP_ESTABLISHED) {
992 			/* This READ_ONCE() is paired with the WRITE_ONCE()
993 			 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
994 			 */
995 			sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
996 		}
997 	}
998 #endif
999 }
1000 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1001 static inline void sock_rps_save_rxhash(struct sock *sk,
1002 					const struct sk_buff *skb)
1003 {
1004 #ifdef CONFIG_RPS
1005 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1006 	 * here, and another one in sock_rps_record_flow().
1007 	 */
1008 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1009 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1010 #endif
1011 }
1012 
sock_rps_reset_rxhash(struct sock * sk)1013 static inline void sock_rps_reset_rxhash(struct sock *sk)
1014 {
1015 #ifdef CONFIG_RPS
1016 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1017 	WRITE_ONCE(sk->sk_rxhash, 0);
1018 #endif
1019 }
1020 
1021 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1022 	({	int __rc;						\
1023 		__sk->sk_wait_pending++;				\
1024 		release_sock(__sk);					\
1025 		__rc = __condition;					\
1026 		if (!__rc) {						\
1027 			*(__timeo) = wait_woken(__wait,			\
1028 						TASK_INTERRUPTIBLE,	\
1029 						*(__timeo));		\
1030 		}							\
1031 		sched_annotate_sleep();					\
1032 		lock_sock(__sk);					\
1033 		__sk->sk_wait_pending--;				\
1034 		__rc = __condition;					\
1035 		__rc;							\
1036 	})
1037 
1038 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1039 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1040 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1041 int sk_stream_error(struct sock *sk, int flags, int err);
1042 void sk_stream_kill_queues(struct sock *sk);
1043 void sk_set_memalloc(struct sock *sk);
1044 void sk_clear_memalloc(struct sock *sk);
1045 
1046 void __sk_flush_backlog(struct sock *sk);
1047 
sk_flush_backlog(struct sock * sk)1048 static inline bool sk_flush_backlog(struct sock *sk)
1049 {
1050 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1051 		__sk_flush_backlog(sk);
1052 		return true;
1053 	}
1054 	return false;
1055 }
1056 
1057 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1058 
1059 struct request_sock_ops;
1060 struct timewait_sock_ops;
1061 struct inet_hashinfo;
1062 struct raw_hashinfo;
1063 struct smc_hashinfo;
1064 struct module;
1065 
1066 /*
1067  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1068  * un-modified. Special care is taken when initializing object to zero.
1069  */
sk_prot_clear_nulls(struct sock * sk,int size)1070 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1071 {
1072 	if (offsetof(struct sock, sk_node.next) != 0)
1073 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1074 	memset(&sk->sk_node.pprev, 0,
1075 	       size - offsetof(struct sock, sk_node.pprev));
1076 }
1077 
1078 /* Networking protocol blocks we attach to sockets.
1079  * socket layer -> transport layer interface
1080  */
1081 struct proto {
1082 	void			(*close)(struct sock *sk,
1083 					long timeout);
1084 	int			(*pre_connect)(struct sock *sk,
1085 					struct sockaddr *uaddr,
1086 					int addr_len);
1087 	int			(*connect)(struct sock *sk,
1088 					struct sockaddr *uaddr,
1089 					int addr_len);
1090 	int			(*disconnect)(struct sock *sk, int flags);
1091 
1092 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1093 					  bool kern);
1094 
1095 	int			(*ioctl)(struct sock *sk, int cmd,
1096 					 unsigned long arg);
1097 	int			(*init)(struct sock *sk);
1098 	void			(*destroy)(struct sock *sk);
1099 	void			(*shutdown)(struct sock *sk, int how);
1100 	int			(*setsockopt)(struct sock *sk, int level,
1101 					int optname, char __user *optval,
1102 					unsigned int optlen);
1103 	int			(*getsockopt)(struct sock *sk, int level,
1104 					int optname, char __user *optval,
1105 					int __user *option);
1106 	void			(*keepalive)(struct sock *sk, int valbool);
1107 #ifdef CONFIG_COMPAT
1108 	int			(*compat_setsockopt)(struct sock *sk,
1109 					int level,
1110 					int optname, char __user *optval,
1111 					unsigned int optlen);
1112 	int			(*compat_getsockopt)(struct sock *sk,
1113 					int level,
1114 					int optname, char __user *optval,
1115 					int __user *option);
1116 	int			(*compat_ioctl)(struct sock *sk,
1117 					unsigned int cmd, unsigned long arg);
1118 #endif
1119 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1120 					   size_t len);
1121 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1122 					   size_t len, int noblock, int flags,
1123 					   int *addr_len);
1124 	int			(*sendpage)(struct sock *sk, struct page *page,
1125 					int offset, size_t size, int flags);
1126 	int			(*bind)(struct sock *sk,
1127 					struct sockaddr *uaddr, int addr_len);
1128 
1129 	int			(*backlog_rcv) (struct sock *sk,
1130 						struct sk_buff *skb);
1131 
1132 	void		(*release_cb)(struct sock *sk);
1133 
1134 	/* Keeping track of sk's, looking them up, and port selection methods. */
1135 	int			(*hash)(struct sock *sk);
1136 	void			(*unhash)(struct sock *sk);
1137 	void			(*rehash)(struct sock *sk);
1138 	int			(*get_port)(struct sock *sk, unsigned short snum);
1139 
1140 	/* Keeping track of sockets in use */
1141 #ifdef CONFIG_PROC_FS
1142 	unsigned int		inuse_idx;
1143 #endif
1144 
1145 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1146 	bool			(*stream_memory_read)(const struct sock *sk);
1147 	/* Memory pressure */
1148 	void			(*enter_memory_pressure)(struct sock *sk);
1149 	void			(*leave_memory_pressure)(struct sock *sk);
1150 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1151 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1152 	/*
1153 	 * Pressure flag: try to collapse.
1154 	 * Technical note: it is used by multiple contexts non atomically.
1155 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1156 	 * All the __sk_mem_schedule() is of this nature: accounting
1157 	 * is strict, actions are advisory and have some latency.
1158 	 */
1159 	unsigned long		*memory_pressure;
1160 	long			*sysctl_mem;
1161 
1162 	int			*sysctl_wmem;
1163 	int			*sysctl_rmem;
1164 	u32			sysctl_wmem_offset;
1165 	u32			sysctl_rmem_offset;
1166 
1167 	int			max_header;
1168 	bool			no_autobind;
1169 
1170 	struct kmem_cache	*slab;
1171 	unsigned int		obj_size;
1172 	slab_flags_t		slab_flags;
1173 	unsigned int		useroffset;	/* Usercopy region offset */
1174 	unsigned int		usersize;	/* Usercopy region size */
1175 
1176 	struct percpu_counter	*orphan_count;
1177 
1178 	struct request_sock_ops	*rsk_prot;
1179 	struct timewait_sock_ops *twsk_prot;
1180 
1181 	union {
1182 		struct inet_hashinfo	*hashinfo;
1183 		struct udp_table	*udp_table;
1184 		struct raw_hashinfo	*raw_hash;
1185 		struct smc_hashinfo	*smc_hash;
1186 	} h;
1187 
1188 	struct module		*owner;
1189 
1190 	char			name[32];
1191 
1192 	struct list_head	node;
1193 #ifdef SOCK_REFCNT_DEBUG
1194 	atomic_t		socks;
1195 #endif
1196 	int			(*diag_destroy)(struct sock *sk, int err);
1197 } __randomize_layout;
1198 
1199 int proto_register(struct proto *prot, int alloc_slab);
1200 void proto_unregister(struct proto *prot);
1201 int sock_load_diag_module(int family, int protocol);
1202 
1203 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1204 static inline void sk_refcnt_debug_inc(struct sock *sk)
1205 {
1206 	atomic_inc(&sk->sk_prot->socks);
1207 }
1208 
sk_refcnt_debug_dec(struct sock * sk)1209 static inline void sk_refcnt_debug_dec(struct sock *sk)
1210 {
1211 	atomic_dec(&sk->sk_prot->socks);
1212 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1213 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1214 }
1215 
sk_refcnt_debug_release(const struct sock * sk)1216 static inline void sk_refcnt_debug_release(const struct sock *sk)
1217 {
1218 	if (refcount_read(&sk->sk_refcnt) != 1)
1219 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1220 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1221 }
1222 #else /* SOCK_REFCNT_DEBUG */
1223 #define sk_refcnt_debug_inc(sk) do { } while (0)
1224 #define sk_refcnt_debug_dec(sk) do { } while (0)
1225 #define sk_refcnt_debug_release(sk) do { } while (0)
1226 #endif /* SOCK_REFCNT_DEBUG */
1227 
__sk_stream_memory_free(const struct sock * sk,int wake)1228 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1229 {
1230 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1231 		return false;
1232 
1233 	return sk->sk_prot->stream_memory_free ?
1234 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1235 }
1236 
sk_stream_memory_free(const struct sock * sk)1237 static inline bool sk_stream_memory_free(const struct sock *sk)
1238 {
1239 	return __sk_stream_memory_free(sk, 0);
1240 }
1241 
__sk_stream_is_writeable(const struct sock * sk,int wake)1242 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1243 {
1244 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1245 	       __sk_stream_memory_free(sk, wake);
1246 }
1247 
sk_stream_is_writeable(const struct sock * sk)1248 static inline bool sk_stream_is_writeable(const struct sock *sk)
1249 {
1250 	return __sk_stream_is_writeable(sk, 0);
1251 }
1252 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1253 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1254 					    struct cgroup *ancestor)
1255 {
1256 #ifdef CONFIG_SOCK_CGROUP_DATA
1257 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1258 				    ancestor);
1259 #else
1260 	return -ENOTSUPP;
1261 #endif
1262 }
1263 
sk_has_memory_pressure(const struct sock * sk)1264 static inline bool sk_has_memory_pressure(const struct sock *sk)
1265 {
1266 	return sk->sk_prot->memory_pressure != NULL;
1267 }
1268 
sk_under_global_memory_pressure(const struct sock * sk)1269 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1270 {
1271 	return sk->sk_prot->memory_pressure &&
1272 		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1273 }
1274 
sk_under_memory_pressure(const struct sock * sk)1275 static inline bool sk_under_memory_pressure(const struct sock *sk)
1276 {
1277 	if (!sk->sk_prot->memory_pressure)
1278 		return false;
1279 
1280 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1281 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1282 		return true;
1283 
1284 	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1285 }
1286 
1287 static inline long
sk_memory_allocated(const struct sock * sk)1288 sk_memory_allocated(const struct sock *sk)
1289 {
1290 	return atomic_long_read(sk->sk_prot->memory_allocated);
1291 }
1292 
1293 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1294 sk_memory_allocated_add(struct sock *sk, int amt)
1295 {
1296 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1297 }
1298 
1299 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1300 sk_memory_allocated_sub(struct sock *sk, int amt)
1301 {
1302 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1303 }
1304 
sk_sockets_allocated_dec(struct sock * sk)1305 static inline void sk_sockets_allocated_dec(struct sock *sk)
1306 {
1307 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1308 }
1309 
sk_sockets_allocated_inc(struct sock * sk)1310 static inline void sk_sockets_allocated_inc(struct sock *sk)
1311 {
1312 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1313 }
1314 
1315 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1316 sk_sockets_allocated_read_positive(struct sock *sk)
1317 {
1318 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1319 }
1320 
1321 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1322 proto_sockets_allocated_sum_positive(struct proto *prot)
1323 {
1324 	return percpu_counter_sum_positive(prot->sockets_allocated);
1325 }
1326 
1327 static inline long
proto_memory_allocated(struct proto * prot)1328 proto_memory_allocated(struct proto *prot)
1329 {
1330 	return atomic_long_read(prot->memory_allocated);
1331 }
1332 
1333 static inline bool
proto_memory_pressure(struct proto * prot)1334 proto_memory_pressure(struct proto *prot)
1335 {
1336 	if (!prot->memory_pressure)
1337 		return false;
1338 	return !!READ_ONCE(*prot->memory_pressure);
1339 }
1340 
1341 
1342 #ifdef CONFIG_PROC_FS
1343 /* Called with local bh disabled */
1344 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1345 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1346 int sock_inuse_get(struct net *net);
1347 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1348 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1349 		int inc)
1350 {
1351 }
1352 #endif
1353 
1354 
1355 /* With per-bucket locks this operation is not-atomic, so that
1356  * this version is not worse.
1357  */
__sk_prot_rehash(struct sock * sk)1358 static inline int __sk_prot_rehash(struct sock *sk)
1359 {
1360 	sk->sk_prot->unhash(sk);
1361 	return sk->sk_prot->hash(sk);
1362 }
1363 
1364 /* About 10 seconds */
1365 #define SOCK_DESTROY_TIME (10*HZ)
1366 
1367 /* Sockets 0-1023 can't be bound to unless you are superuser */
1368 #define PROT_SOCK	1024
1369 
1370 #define SHUTDOWN_MASK	3
1371 #define RCV_SHUTDOWN	1
1372 #define SEND_SHUTDOWN	2
1373 
1374 #define SOCK_SNDBUF_LOCK	1
1375 #define SOCK_RCVBUF_LOCK	2
1376 #define SOCK_BINDADDR_LOCK	4
1377 #define SOCK_BINDPORT_LOCK	8
1378 
1379 struct socket_alloc {
1380 	struct socket socket;
1381 	struct inode vfs_inode;
1382 };
1383 
SOCKET_I(struct inode * inode)1384 static inline struct socket *SOCKET_I(struct inode *inode)
1385 {
1386 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1387 }
1388 
SOCK_INODE(struct socket * socket)1389 static inline struct inode *SOCK_INODE(struct socket *socket)
1390 {
1391 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1392 }
1393 
1394 /*
1395  * Functions for memory accounting
1396  */
1397 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1398 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1399 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1400 void __sk_mem_reclaim(struct sock *sk, int amount);
1401 
1402 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1403  * do not necessarily have 16x time more memory than 4KB ones.
1404  */
1405 #define SK_MEM_QUANTUM 4096
1406 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1407 #define SK_MEM_SEND	0
1408 #define SK_MEM_RECV	1
1409 
1410 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1411 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1412 {
1413 	long val = READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1414 
1415 #if PAGE_SIZE > SK_MEM_QUANTUM
1416 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1417 #elif PAGE_SIZE < SK_MEM_QUANTUM
1418 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1419 #endif
1420 	return val;
1421 }
1422 
sk_mem_pages(int amt)1423 static inline int sk_mem_pages(int amt)
1424 {
1425 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1426 }
1427 
sk_has_account(struct sock * sk)1428 static inline bool sk_has_account(struct sock *sk)
1429 {
1430 	/* return true if protocol supports memory accounting */
1431 	return !!sk->sk_prot->memory_allocated;
1432 }
1433 
sk_wmem_schedule(struct sock * sk,int size)1434 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1435 {
1436 	if (!sk_has_account(sk))
1437 		return true;
1438 	return size <= sk->sk_forward_alloc ||
1439 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1440 }
1441 
1442 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1443 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1444 {
1445 	if (!sk_has_account(sk))
1446 		return true;
1447 	return size<= sk->sk_forward_alloc ||
1448 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1449 		skb_pfmemalloc(skb);
1450 }
1451 
sk_mem_reclaim(struct sock * sk)1452 static inline void sk_mem_reclaim(struct sock *sk)
1453 {
1454 	if (!sk_has_account(sk))
1455 		return;
1456 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1457 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1458 }
1459 
sk_mem_reclaim_partial(struct sock * sk)1460 static inline void sk_mem_reclaim_partial(struct sock *sk)
1461 {
1462 	if (!sk_has_account(sk))
1463 		return;
1464 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1465 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1466 }
1467 
sk_mem_charge(struct sock * sk,int size)1468 static inline void sk_mem_charge(struct sock *sk, int size)
1469 {
1470 	if (!sk_has_account(sk))
1471 		return;
1472 	sk->sk_forward_alloc -= size;
1473 }
1474 
sk_mem_uncharge(struct sock * sk,int size)1475 static inline void sk_mem_uncharge(struct sock *sk, int size)
1476 {
1477 	if (!sk_has_account(sk))
1478 		return;
1479 	sk->sk_forward_alloc += size;
1480 
1481 	/* Avoid a possible overflow.
1482 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1483 	 * is not called and more than 2 GBytes are released at once.
1484 	 *
1485 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1486 	 * no need to hold that much forward allocation anyway.
1487 	 */
1488 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1489 		__sk_mem_reclaim(sk, 1 << 20);
1490 }
1491 
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1492 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1493 {
1494 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1495 	sk->sk_wmem_queued -= skb->truesize;
1496 	sk_mem_uncharge(sk, skb->truesize);
1497 	__kfree_skb(skb);
1498 }
1499 
sock_release_ownership(struct sock * sk)1500 static inline void sock_release_ownership(struct sock *sk)
1501 {
1502 	if (sk->sk_lock.owned) {
1503 		sk->sk_lock.owned = 0;
1504 
1505 		/* The sk_lock has mutex_unlock() semantics: */
1506 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1507 	}
1508 }
1509 
1510 /*
1511  * Macro so as to not evaluate some arguments when
1512  * lockdep is not enabled.
1513  *
1514  * Mark both the sk_lock and the sk_lock.slock as a
1515  * per-address-family lock class.
1516  */
1517 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1518 do {									\
1519 	sk->sk_lock.owned = 0;						\
1520 	init_waitqueue_head(&sk->sk_lock.wq);				\
1521 	spin_lock_init(&(sk)->sk_lock.slock);				\
1522 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1523 			sizeof((sk)->sk_lock));				\
1524 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1525 				(skey), (sname));				\
1526 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1527 } while (0)
1528 
1529 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1530 static inline bool lockdep_sock_is_held(const struct sock *sk)
1531 {
1532 	return lockdep_is_held(&sk->sk_lock) ||
1533 	       lockdep_is_held(&sk->sk_lock.slock);
1534 }
1535 #endif
1536 
1537 void lock_sock_nested(struct sock *sk, int subclass);
1538 
lock_sock(struct sock * sk)1539 static inline void lock_sock(struct sock *sk)
1540 {
1541 	lock_sock_nested(sk, 0);
1542 }
1543 
1544 void __release_sock(struct sock *sk);
1545 void release_sock(struct sock *sk);
1546 
1547 /* BH context may only use the following locking interface. */
1548 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1549 #define bh_lock_sock_nested(__sk) \
1550 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1551 				SINGLE_DEPTH_NESTING)
1552 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1553 
1554 bool lock_sock_fast(struct sock *sk);
1555 /**
1556  * unlock_sock_fast - complement of lock_sock_fast
1557  * @sk: socket
1558  * @slow: slow mode
1559  *
1560  * fast unlock socket for user context.
1561  * If slow mode is on, we call regular release_sock()
1562  */
unlock_sock_fast(struct sock * sk,bool slow)1563 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1564 {
1565 	if (slow)
1566 		release_sock(sk);
1567 	else
1568 		spin_unlock_bh(&sk->sk_lock.slock);
1569 }
1570 
1571 /* Used by processes to "lock" a socket state, so that
1572  * interrupts and bottom half handlers won't change it
1573  * from under us. It essentially blocks any incoming
1574  * packets, so that we won't get any new data or any
1575  * packets that change the state of the socket.
1576  *
1577  * While locked, BH processing will add new packets to
1578  * the backlog queue.  This queue is processed by the
1579  * owner of the socket lock right before it is released.
1580  *
1581  * Since ~2.3.5 it is also exclusive sleep lock serializing
1582  * accesses from user process context.
1583  */
1584 
sock_owned_by_me(const struct sock * sk)1585 static inline void sock_owned_by_me(const struct sock *sk)
1586 {
1587 #ifdef CONFIG_LOCKDEP
1588 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1589 #endif
1590 }
1591 
sock_owned_by_user(const struct sock * sk)1592 static inline bool sock_owned_by_user(const struct sock *sk)
1593 {
1594 	sock_owned_by_me(sk);
1595 	return sk->sk_lock.owned;
1596 }
1597 
sock_owned_by_user_nocheck(const struct sock * sk)1598 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1599 {
1600 	return sk->sk_lock.owned;
1601 }
1602 
1603 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1604 static inline bool sock_allow_reclassification(const struct sock *csk)
1605 {
1606 	struct sock *sk = (struct sock *)csk;
1607 
1608 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1609 }
1610 
1611 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1612 		      struct proto *prot, int kern);
1613 void sk_free(struct sock *sk);
1614 void sk_destruct(struct sock *sk);
1615 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1616 void sk_free_unlock_clone(struct sock *sk);
1617 
1618 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1619 			     gfp_t priority);
1620 void __sock_wfree(struct sk_buff *skb);
1621 void sock_wfree(struct sk_buff *skb);
1622 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1623 			     gfp_t priority);
1624 void skb_orphan_partial(struct sk_buff *skb);
1625 void sock_rfree(struct sk_buff *skb);
1626 void sock_efree(struct sk_buff *skb);
1627 #ifdef CONFIG_INET
1628 void sock_edemux(struct sk_buff *skb);
1629 #else
1630 #define sock_edemux sock_efree
1631 #endif
1632 
1633 int sock_setsockopt(struct socket *sock, int level, int op,
1634 		    char __user *optval, unsigned int optlen);
1635 
1636 int sock_getsockopt(struct socket *sock, int level, int op,
1637 		    char __user *optval, int __user *optlen);
1638 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1639 				    int noblock, int *errcode);
1640 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1641 				     unsigned long data_len, int noblock,
1642 				     int *errcode, int max_page_order);
1643 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1644 void sock_kfree_s(struct sock *sk, void *mem, int size);
1645 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1646 void sk_send_sigurg(struct sock *sk);
1647 
1648 struct sockcm_cookie {
1649 	u64 transmit_time;
1650 	u32 mark;
1651 	u16 tsflags;
1652 };
1653 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1654 static inline void sockcm_init(struct sockcm_cookie *sockc,
1655 			       const struct sock *sk)
1656 {
1657 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1658 }
1659 
1660 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1661 		     struct sockcm_cookie *sockc);
1662 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1663 		   struct sockcm_cookie *sockc);
1664 
1665 /*
1666  * Functions to fill in entries in struct proto_ops when a protocol
1667  * does not implement a particular function.
1668  */
1669 int sock_no_bind(struct socket *, struct sockaddr *, int);
1670 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1671 int sock_no_socketpair(struct socket *, struct socket *);
1672 int sock_no_accept(struct socket *, struct socket *, int, bool);
1673 int sock_no_getname(struct socket *, struct sockaddr *, int);
1674 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1675 int sock_no_listen(struct socket *, int);
1676 int sock_no_shutdown(struct socket *, int);
1677 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1678 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1679 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1680 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1681 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1682 int sock_no_mmap(struct file *file, struct socket *sock,
1683 		 struct vm_area_struct *vma);
1684 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1685 			 size_t size, int flags);
1686 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1687 				int offset, size_t size, int flags);
1688 
1689 /*
1690  * Functions to fill in entries in struct proto_ops when a protocol
1691  * uses the inet style.
1692  */
1693 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1694 				  char __user *optval, int __user *optlen);
1695 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1696 			int flags);
1697 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1698 				  char __user *optval, unsigned int optlen);
1699 int compat_sock_common_getsockopt(struct socket *sock, int level,
1700 		int optname, char __user *optval, int __user *optlen);
1701 int compat_sock_common_setsockopt(struct socket *sock, int level,
1702 		int optname, char __user *optval, unsigned int optlen);
1703 
1704 void sk_common_release(struct sock *sk);
1705 
1706 /*
1707  *	Default socket callbacks and setup code
1708  */
1709 
1710 /* Initialise core socket variables */
1711 void sock_init_data(struct socket *sock, struct sock *sk);
1712 
1713 /*
1714  * Socket reference counting postulates.
1715  *
1716  * * Each user of socket SHOULD hold a reference count.
1717  * * Each access point to socket (an hash table bucket, reference from a list,
1718  *   running timer, skb in flight MUST hold a reference count.
1719  * * When reference count hits 0, it means it will never increase back.
1720  * * When reference count hits 0, it means that no references from
1721  *   outside exist to this socket and current process on current CPU
1722  *   is last user and may/should destroy this socket.
1723  * * sk_free is called from any context: process, BH, IRQ. When
1724  *   it is called, socket has no references from outside -> sk_free
1725  *   may release descendant resources allocated by the socket, but
1726  *   to the time when it is called, socket is NOT referenced by any
1727  *   hash tables, lists etc.
1728  * * Packets, delivered from outside (from network or from another process)
1729  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1730  *   when they sit in queue. Otherwise, packets will leak to hole, when
1731  *   socket is looked up by one cpu and unhasing is made by another CPU.
1732  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1733  *   (leak to backlog). Packet socket does all the processing inside
1734  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1735  *   use separate SMP lock, so that they are prone too.
1736  */
1737 
1738 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1739 static inline void sock_put(struct sock *sk)
1740 {
1741 	if (refcount_dec_and_test(&sk->sk_refcnt))
1742 		sk_free(sk);
1743 }
1744 /* Generic version of sock_put(), dealing with all sockets
1745  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1746  */
1747 void sock_gen_put(struct sock *sk);
1748 
1749 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1750 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1751 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1752 				 const int nested)
1753 {
1754 	return __sk_receive_skb(sk, skb, nested, 1, true);
1755 }
1756 
sk_tx_queue_set(struct sock * sk,int tx_queue)1757 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1758 {
1759 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1760 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1761 		return;
1762 	sk->sk_tx_queue_mapping = tx_queue;
1763 }
1764 
1765 #define NO_QUEUE_MAPPING	USHRT_MAX
1766 
sk_tx_queue_clear(struct sock * sk)1767 static inline void sk_tx_queue_clear(struct sock *sk)
1768 {
1769 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1770 }
1771 
sk_tx_queue_get(const struct sock * sk)1772 static inline int sk_tx_queue_get(const struct sock *sk)
1773 {
1774 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1775 		return sk->sk_tx_queue_mapping;
1776 
1777 	return -1;
1778 }
1779 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1780 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1781 {
1782 #ifdef CONFIG_XPS
1783 	if (skb_rx_queue_recorded(skb)) {
1784 		u16 rx_queue = skb_get_rx_queue(skb);
1785 
1786 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1787 			return;
1788 
1789 		sk->sk_rx_queue_mapping = rx_queue;
1790 	}
1791 #endif
1792 }
1793 
sk_rx_queue_clear(struct sock * sk)1794 static inline void sk_rx_queue_clear(struct sock *sk)
1795 {
1796 #ifdef CONFIG_XPS
1797 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1798 #endif
1799 }
1800 
1801 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1802 static inline int sk_rx_queue_get(const struct sock *sk)
1803 {
1804 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1805 		return sk->sk_rx_queue_mapping;
1806 
1807 	return -1;
1808 }
1809 #endif
1810 
sk_set_socket(struct sock * sk,struct socket * sock)1811 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1812 {
1813 	sk->sk_socket = sock;
1814 }
1815 
sk_sleep(struct sock * sk)1816 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1817 {
1818 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1819 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1820 }
1821 /* Detach socket from process context.
1822  * Announce socket dead, detach it from wait queue and inode.
1823  * Note that parent inode held reference count on this struct sock,
1824  * we do not release it in this function, because protocol
1825  * probably wants some additional cleanups or even continuing
1826  * to work with this socket (TCP).
1827  */
sock_orphan(struct sock * sk)1828 static inline void sock_orphan(struct sock *sk)
1829 {
1830 	write_lock_bh(&sk->sk_callback_lock);
1831 	sock_set_flag(sk, SOCK_DEAD);
1832 	sk_set_socket(sk, NULL);
1833 	sk->sk_wq  = NULL;
1834 	write_unlock_bh(&sk->sk_callback_lock);
1835 }
1836 
sock_graft(struct sock * sk,struct socket * parent)1837 static inline void sock_graft(struct sock *sk, struct socket *parent)
1838 {
1839 	WARN_ON(parent->sk);
1840 	write_lock_bh(&sk->sk_callback_lock);
1841 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1842 	parent->sk = sk;
1843 	sk_set_socket(sk, parent);
1844 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1845 	security_sock_graft(sk, parent);
1846 	write_unlock_bh(&sk->sk_callback_lock);
1847 }
1848 
1849 kuid_t sock_i_uid(struct sock *sk);
1850 unsigned long __sock_i_ino(struct sock *sk);
1851 unsigned long sock_i_ino(struct sock *sk);
1852 
sock_net_uid(const struct net * net,const struct sock * sk)1853 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1854 {
1855 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1856 }
1857 
net_tx_rndhash(void)1858 static inline u32 net_tx_rndhash(void)
1859 {
1860 	u32 v = prandom_u32();
1861 
1862 	return v ?: 1;
1863 }
1864 
sk_set_txhash(struct sock * sk)1865 static inline void sk_set_txhash(struct sock *sk)
1866 {
1867 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1868 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1869 }
1870 
sk_rethink_txhash(struct sock * sk)1871 static inline void sk_rethink_txhash(struct sock *sk)
1872 {
1873 	if (sk->sk_txhash)
1874 		sk_set_txhash(sk);
1875 }
1876 
1877 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1878 __sk_dst_get(struct sock *sk)
1879 {
1880 	return rcu_dereference_check(sk->sk_dst_cache,
1881 				     lockdep_sock_is_held(sk));
1882 }
1883 
1884 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1885 sk_dst_get(struct sock *sk)
1886 {
1887 	struct dst_entry *dst;
1888 
1889 	rcu_read_lock();
1890 	dst = rcu_dereference(sk->sk_dst_cache);
1891 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1892 		dst = NULL;
1893 	rcu_read_unlock();
1894 	return dst;
1895 }
1896 
dst_negative_advice(struct sock * sk)1897 static inline void dst_negative_advice(struct sock *sk)
1898 {
1899 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1900 
1901 	sk_rethink_txhash(sk);
1902 
1903 	if (dst && dst->ops->negative_advice) {
1904 		ndst = dst->ops->negative_advice(dst);
1905 
1906 		if (ndst != dst) {
1907 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1908 			sk_tx_queue_clear(sk);
1909 			sk->sk_dst_pending_confirm = 0;
1910 		}
1911 	}
1912 }
1913 
1914 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1915 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1916 {
1917 	struct dst_entry *old_dst;
1918 
1919 	sk_tx_queue_clear(sk);
1920 	sk->sk_dst_pending_confirm = 0;
1921 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1922 					    lockdep_sock_is_held(sk));
1923 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1924 	dst_release(old_dst);
1925 }
1926 
1927 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1928 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1929 {
1930 	struct dst_entry *old_dst;
1931 
1932 	sk_tx_queue_clear(sk);
1933 	sk->sk_dst_pending_confirm = 0;
1934 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1935 	dst_release(old_dst);
1936 }
1937 
1938 static inline void
__sk_dst_reset(struct sock * sk)1939 __sk_dst_reset(struct sock *sk)
1940 {
1941 	__sk_dst_set(sk, NULL);
1942 }
1943 
1944 static inline void
sk_dst_reset(struct sock * sk)1945 sk_dst_reset(struct sock *sk)
1946 {
1947 	sk_dst_set(sk, NULL);
1948 }
1949 
1950 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1951 
1952 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1953 
sk_dst_confirm(struct sock * sk)1954 static inline void sk_dst_confirm(struct sock *sk)
1955 {
1956 	if (!sk->sk_dst_pending_confirm)
1957 		sk->sk_dst_pending_confirm = 1;
1958 }
1959 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)1960 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1961 {
1962 	if (skb_get_dst_pending_confirm(skb)) {
1963 		struct sock *sk = skb->sk;
1964 		unsigned long now = jiffies;
1965 
1966 		/* avoid dirtying neighbour */
1967 		if (n->confirmed != now)
1968 			n->confirmed = now;
1969 		if (sk && sk->sk_dst_pending_confirm)
1970 			sk->sk_dst_pending_confirm = 0;
1971 	}
1972 }
1973 
1974 bool sk_mc_loop(struct sock *sk);
1975 
sk_can_gso(const struct sock * sk)1976 static inline bool sk_can_gso(const struct sock *sk)
1977 {
1978 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1979 }
1980 
1981 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1982 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1983 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1984 {
1985 	sk->sk_route_nocaps |= flags;
1986 	sk->sk_route_caps &= ~flags;
1987 }
1988 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)1989 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1990 					   struct iov_iter *from, char *to,
1991 					   int copy, int offset)
1992 {
1993 	if (skb->ip_summed == CHECKSUM_NONE) {
1994 		__wsum csum = 0;
1995 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1996 			return -EFAULT;
1997 		skb->csum = csum_block_add(skb->csum, csum, offset);
1998 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1999 		if (!copy_from_iter_full_nocache(to, copy, from))
2000 			return -EFAULT;
2001 	} else if (!copy_from_iter_full(to, copy, from))
2002 		return -EFAULT;
2003 
2004 	return 0;
2005 }
2006 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2007 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2008 				       struct iov_iter *from, int copy)
2009 {
2010 	int err, offset = skb->len;
2011 
2012 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2013 				       copy, offset);
2014 	if (err)
2015 		__skb_trim(skb, offset);
2016 
2017 	return err;
2018 }
2019 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2020 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2021 					   struct sk_buff *skb,
2022 					   struct page *page,
2023 					   int off, int copy)
2024 {
2025 	int err;
2026 
2027 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2028 				       copy, skb->len);
2029 	if (err)
2030 		return err;
2031 
2032 	skb->len	     += copy;
2033 	skb->data_len	     += copy;
2034 	skb->truesize	     += copy;
2035 	sk->sk_wmem_queued   += copy;
2036 	sk_mem_charge(sk, copy);
2037 	return 0;
2038 }
2039 
2040 /**
2041  * sk_wmem_alloc_get - returns write allocations
2042  * @sk: socket
2043  *
2044  * Returns sk_wmem_alloc minus initial offset of one
2045  */
sk_wmem_alloc_get(const struct sock * sk)2046 static inline int sk_wmem_alloc_get(const struct sock *sk)
2047 {
2048 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2049 }
2050 
2051 /**
2052  * sk_rmem_alloc_get - returns read allocations
2053  * @sk: socket
2054  *
2055  * Returns sk_rmem_alloc
2056  */
sk_rmem_alloc_get(const struct sock * sk)2057 static inline int sk_rmem_alloc_get(const struct sock *sk)
2058 {
2059 	return atomic_read(&sk->sk_rmem_alloc);
2060 }
2061 
2062 /**
2063  * sk_has_allocations - check if allocations are outstanding
2064  * @sk: socket
2065  *
2066  * Returns true if socket has write or read allocations
2067  */
sk_has_allocations(const struct sock * sk)2068 static inline bool sk_has_allocations(const struct sock *sk)
2069 {
2070 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2071 }
2072 
2073 /**
2074  * skwq_has_sleeper - check if there are any waiting processes
2075  * @wq: struct socket_wq
2076  *
2077  * Returns true if socket_wq has waiting processes
2078  *
2079  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2080  * barrier call. They were added due to the race found within the tcp code.
2081  *
2082  * Consider following tcp code paths::
2083  *
2084  *   CPU1                CPU2
2085  *   sys_select          receive packet
2086  *   ...                 ...
2087  *   __add_wait_queue    update tp->rcv_nxt
2088  *   ...                 ...
2089  *   tp->rcv_nxt check   sock_def_readable
2090  *   ...                 {
2091  *   schedule               rcu_read_lock();
2092  *                          wq = rcu_dereference(sk->sk_wq);
2093  *                          if (wq && waitqueue_active(&wq->wait))
2094  *                              wake_up_interruptible(&wq->wait)
2095  *                          ...
2096  *                       }
2097  *
2098  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2099  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2100  * could then endup calling schedule and sleep forever if there are no more
2101  * data on the socket.
2102  *
2103  */
skwq_has_sleeper(struct socket_wq * wq)2104 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2105 {
2106 	return wq && wq_has_sleeper(&wq->wait);
2107 }
2108 
2109 /**
2110  * sock_poll_wait - place memory barrier behind the poll_wait call.
2111  * @filp:           file
2112  * @sock:           socket to wait on
2113  * @p:              poll_table
2114  *
2115  * See the comments in the wq_has_sleeper function.
2116  *
2117  * Do not derive sock from filp->private_data here. An SMC socket establishes
2118  * an internal TCP socket that is used in the fallback case. All socket
2119  * operations on the SMC socket are then forwarded to the TCP socket. In case of
2120  * poll, the filp->private_data pointer references the SMC socket because the
2121  * TCP socket has no file assigned.
2122  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2123 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2124 				  poll_table *p)
2125 {
2126 	if (!poll_does_not_wait(p)) {
2127 		poll_wait(filp, &sock->wq->wait, p);
2128 		/* We need to be sure we are in sync with the
2129 		 * socket flags modification.
2130 		 *
2131 		 * This memory barrier is paired in the wq_has_sleeper.
2132 		 */
2133 		smp_mb();
2134 	}
2135 }
2136 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2137 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2138 {
2139 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2140 	u32 txhash = READ_ONCE(sk->sk_txhash);
2141 
2142 	if (txhash) {
2143 		skb->l4_hash = 1;
2144 		skb->hash = txhash;
2145 	}
2146 }
2147 
2148 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2149 
2150 /*
2151  *	Queue a received datagram if it will fit. Stream and sequenced
2152  *	protocols can't normally use this as they need to fit buffers in
2153  *	and play with them.
2154  *
2155  *	Inlined as it's very short and called for pretty much every
2156  *	packet ever received.
2157  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2158 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2159 {
2160 	skb_orphan(skb);
2161 	skb->sk = sk;
2162 	skb->destructor = sock_rfree;
2163 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2164 	sk_mem_charge(sk, skb->truesize);
2165 }
2166 
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2167 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2168 {
2169 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2170 	if (skb) {
2171 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2172 			skb_set_owner_r(skb, sk);
2173 			return skb;
2174 		}
2175 		__kfree_skb(skb);
2176 	}
2177 	return NULL;
2178 }
2179 
2180 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2181 		    unsigned long expires);
2182 
2183 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2184 
2185 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2186 			struct sk_buff *skb, unsigned int flags,
2187 			void (*destructor)(struct sock *sk,
2188 					   struct sk_buff *skb));
2189 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2190 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2191 
2192 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2193 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2194 
2195 /*
2196  *	Recover an error report and clear atomically
2197  */
2198 
sock_error(struct sock * sk)2199 static inline int sock_error(struct sock *sk)
2200 {
2201 	int err;
2202 	if (likely(!sk->sk_err))
2203 		return 0;
2204 	err = xchg(&sk->sk_err, 0);
2205 	return -err;
2206 }
2207 
sock_wspace(struct sock * sk)2208 static inline unsigned long sock_wspace(struct sock *sk)
2209 {
2210 	int amt = 0;
2211 
2212 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2213 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2214 		if (amt < 0)
2215 			amt = 0;
2216 	}
2217 	return amt;
2218 }
2219 
2220 /* Note:
2221  *  We use sk->sk_wq_raw, from contexts knowing this
2222  *  pointer is not NULL and cannot disappear/change.
2223  */
sk_set_bit(int nr,struct sock * sk)2224 static inline void sk_set_bit(int nr, struct sock *sk)
2225 {
2226 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2227 	    !sock_flag(sk, SOCK_FASYNC))
2228 		return;
2229 
2230 	set_bit(nr, &sk->sk_wq_raw->flags);
2231 }
2232 
sk_clear_bit(int nr,struct sock * sk)2233 static inline void sk_clear_bit(int nr, struct sock *sk)
2234 {
2235 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2236 	    !sock_flag(sk, SOCK_FASYNC))
2237 		return;
2238 
2239 	clear_bit(nr, &sk->sk_wq_raw->flags);
2240 }
2241 
sk_wake_async(const struct sock * sk,int how,int band)2242 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2243 {
2244 	if (sock_flag(sk, SOCK_FASYNC)) {
2245 		rcu_read_lock();
2246 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2247 		rcu_read_unlock();
2248 	}
2249 }
2250 
2251 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2252  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2253  * Note: for send buffers, TCP works better if we can build two skbs at
2254  * minimum.
2255  */
2256 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2257 
2258 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2259 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2260 
sk_stream_moderate_sndbuf(struct sock * sk)2261 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2262 {
2263 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2264 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2265 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2266 	}
2267 }
2268 
2269 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2270 				    bool force_schedule);
2271 
2272 /**
2273  * sk_page_frag - return an appropriate page_frag
2274  * @sk: socket
2275  *
2276  * Use the per task page_frag instead of the per socket one for
2277  * optimization when we know that we're in the normal context and owns
2278  * everything that's associated with %current.
2279  *
2280  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2281  * inside other socket operations and end up recursing into sk_page_frag()
2282  * while it's already in use.
2283  */
sk_page_frag(struct sock * sk)2284 static inline struct page_frag *sk_page_frag(struct sock *sk)
2285 {
2286 	if (gfpflags_normal_context(sk->sk_allocation))
2287 		return &current->task_frag;
2288 
2289 	return &sk->sk_frag;
2290 }
2291 
2292 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2293 
2294 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2295 		int sg_start, int *sg_curr, unsigned int *sg_size,
2296 		int first_coalesce);
2297 
2298 /*
2299  *	Default write policy as shown to user space via poll/select/SIGIO
2300  */
sock_writeable(const struct sock * sk)2301 static inline bool sock_writeable(const struct sock *sk)
2302 {
2303 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2304 }
2305 
gfp_any(void)2306 static inline gfp_t gfp_any(void)
2307 {
2308 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2309 }
2310 
sock_rcvtimeo(const struct sock * sk,bool noblock)2311 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2312 {
2313 	return noblock ? 0 : sk->sk_rcvtimeo;
2314 }
2315 
sock_sndtimeo(const struct sock * sk,bool noblock)2316 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2317 {
2318 	return noblock ? 0 : sk->sk_sndtimeo;
2319 }
2320 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2321 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2322 {
2323 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2324 }
2325 
2326 /* Alas, with timeout socket operations are not restartable.
2327  * Compare this to poll().
2328  */
sock_intr_errno(long timeo)2329 static inline int sock_intr_errno(long timeo)
2330 {
2331 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2332 }
2333 
2334 struct sock_skb_cb {
2335 	u32 dropcount;
2336 };
2337 
2338 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2339  * using skb->cb[] would keep using it directly and utilize its
2340  * alignement guarantee.
2341  */
2342 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2343 			    sizeof(struct sock_skb_cb)))
2344 
2345 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2346 			    SOCK_SKB_CB_OFFSET))
2347 
2348 #define sock_skb_cb_check_size(size) \
2349 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2350 
2351 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2352 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2353 {
2354 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2355 						atomic_read(&sk->sk_drops) : 0;
2356 }
2357 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2358 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2359 {
2360 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2361 
2362 	atomic_add(segs, &sk->sk_drops);
2363 }
2364 
sock_read_timestamp(struct sock * sk)2365 static inline ktime_t sock_read_timestamp(struct sock *sk)
2366 {
2367 #if BITS_PER_LONG==32
2368 	unsigned int seq;
2369 	ktime_t kt;
2370 
2371 	do {
2372 		seq = read_seqbegin(&sk->sk_stamp_seq);
2373 		kt = sk->sk_stamp;
2374 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2375 
2376 	return kt;
2377 #else
2378 	return READ_ONCE(sk->sk_stamp);
2379 #endif
2380 }
2381 
sock_write_timestamp(struct sock * sk,ktime_t kt)2382 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2383 {
2384 #if BITS_PER_LONG==32
2385 	write_seqlock(&sk->sk_stamp_seq);
2386 	sk->sk_stamp = kt;
2387 	write_sequnlock(&sk->sk_stamp_seq);
2388 #else
2389 	WRITE_ONCE(sk->sk_stamp, kt);
2390 #endif
2391 }
2392 
2393 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2394 			   struct sk_buff *skb);
2395 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2396 			     struct sk_buff *skb);
2397 
2398 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2399 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2400 {
2401 	ktime_t kt = skb->tstamp;
2402 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2403 
2404 	/*
2405 	 * generate control messages if
2406 	 * - receive time stamping in software requested
2407 	 * - software time stamp available and wanted
2408 	 * - hardware time stamps available and wanted
2409 	 */
2410 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2411 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2412 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2413 	    (hwtstamps->hwtstamp &&
2414 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2415 		__sock_recv_timestamp(msg, sk, skb);
2416 	else
2417 		sock_write_timestamp(sk, kt);
2418 
2419 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2420 		__sock_recv_wifi_status(msg, sk, skb);
2421 }
2422 
2423 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2424 			      struct sk_buff *skb);
2425 
2426 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2427 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2428 					  struct sk_buff *skb)
2429 {
2430 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2431 			   (1UL << SOCK_RCVTSTAMP))
2432 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2433 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2434 
2435 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2436 		__sock_recv_ts_and_drops(msg, sk, skb);
2437 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2438 		sock_write_timestamp(sk, skb->tstamp);
2439 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2440 		sock_write_timestamp(sk, 0);
2441 }
2442 
2443 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2444 
2445 /**
2446  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2447  * @sk:		socket sending this packet
2448  * @tsflags:	timestamping flags to use
2449  * @tx_flags:	completed with instructions for time stamping
2450  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2451  *
2452  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2453  */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2454 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2455 				      __u8 *tx_flags, __u32 *tskey)
2456 {
2457 	if (unlikely(tsflags)) {
2458 		__sock_tx_timestamp(tsflags, tx_flags);
2459 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2460 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2461 			*tskey = sk->sk_tskey++;
2462 	}
2463 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2464 		*tx_flags |= SKBTX_WIFI_STATUS;
2465 }
2466 
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2467 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2468 				     __u8 *tx_flags)
2469 {
2470 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2471 }
2472 
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2473 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2474 {
2475 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2476 			   &skb_shinfo(skb)->tskey);
2477 }
2478 
2479 /**
2480  * sk_eat_skb - Release a skb if it is no longer needed
2481  * @sk: socket to eat this skb from
2482  * @skb: socket buffer to eat
2483  *
2484  * This routine must be called with interrupts disabled or with the socket
2485  * locked so that the sk_buff queue operation is ok.
2486 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2487 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2488 {
2489 	__skb_unlink(skb, &sk->sk_receive_queue);
2490 	__kfree_skb(skb);
2491 }
2492 
2493 static inline
sock_net(const struct sock * sk)2494 struct net *sock_net(const struct sock *sk)
2495 {
2496 	return read_pnet(&sk->sk_net);
2497 }
2498 
2499 static inline
sock_net_set(struct sock * sk,struct net * net)2500 void sock_net_set(struct sock *sk, struct net *net)
2501 {
2502 	write_pnet(&sk->sk_net, net);
2503 }
2504 
skb_steal_sock(struct sk_buff * skb)2505 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2506 {
2507 	if (skb->sk) {
2508 		struct sock *sk = skb->sk;
2509 
2510 		skb->destructor = NULL;
2511 		skb->sk = NULL;
2512 		return sk;
2513 	}
2514 	return NULL;
2515 }
2516 
2517 /* This helper checks if a socket is a full socket,
2518  * ie _not_ a timewait or request socket.
2519  */
sk_fullsock(const struct sock * sk)2520 static inline bool sk_fullsock(const struct sock *sk)
2521 {
2522 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2523 }
2524 
2525 /* Checks if this SKB belongs to an HW offloaded socket
2526  * and whether any SW fallbacks are required based on dev.
2527  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2528 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2529 						   struct net_device *dev)
2530 {
2531 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2532 	struct sock *sk = skb->sk;
2533 
2534 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2535 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2536 #endif
2537 
2538 	return skb;
2539 }
2540 
2541 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2542  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2543  */
sk_listener(const struct sock * sk)2544 static inline bool sk_listener(const struct sock *sk)
2545 {
2546 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2547 }
2548 
2549 void sock_enable_timestamp(struct sock *sk, int flag);
2550 int sock_get_timestamp(struct sock *, struct timeval __user *);
2551 int sock_get_timestampns(struct sock *, struct timespec __user *);
2552 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2553 		       int type);
2554 
2555 bool sk_ns_capable(const struct sock *sk,
2556 		   struct user_namespace *user_ns, int cap);
2557 bool sk_capable(const struct sock *sk, int cap);
2558 bool sk_net_capable(const struct sock *sk, int cap);
2559 
2560 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2561 
2562 /* Take into consideration the size of the struct sk_buff overhead in the
2563  * determination of these values, since that is non-constant across
2564  * platforms.  This makes socket queueing behavior and performance
2565  * not depend upon such differences.
2566  */
2567 #define _SK_MEM_PACKETS		256
2568 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2569 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2570 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2571 
2572 extern __u32 sysctl_wmem_max;
2573 extern __u32 sysctl_rmem_max;
2574 
2575 extern int sysctl_tstamp_allow_data;
2576 extern int sysctl_optmem_max;
2577 
2578 extern __u32 sysctl_wmem_default;
2579 extern __u32 sysctl_rmem_default;
2580 
2581 /* On 32bit arches, an skb frag is limited to 2^15 */
2582 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2583 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2584 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2585 {
2586 	/* Does this proto have per netns sysctl_wmem ? */
2587 	if (proto->sysctl_wmem_offset)
2588 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2589 
2590 	return *proto->sysctl_wmem;
2591 }
2592 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2593 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2594 {
2595 	/* Does this proto have per netns sysctl_rmem ? */
2596 	if (proto->sysctl_rmem_offset)
2597 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2598 
2599 	return *proto->sysctl_rmem;
2600 }
2601 
2602 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2603  * Some wifi drivers need to tweak it to get more chunks.
2604  * They can use this helper from their ndo_start_xmit()
2605  */
sk_pacing_shift_update(struct sock * sk,int val)2606 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2607 {
2608 	if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2609 		return;
2610 	sk->sk_pacing_shift = val;
2611 }
2612 
2613 /* if a socket is bound to a device, check that the given device
2614  * index is either the same or that the socket is bound to an L3
2615  * master device and the given device index is also enslaved to
2616  * that L3 master
2617  */
sk_dev_equal_l3scope(struct sock * sk,int dif)2618 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2619 {
2620 	int mdif;
2621 
2622 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2623 		return true;
2624 
2625 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2626 	if (mdif && mdif == sk->sk_bound_dev_if)
2627 		return true;
2628 
2629 	return false;
2630 }
2631 
2632 #endif	/* _SOCK_H */
2633