1 /*
2  *  Bluetooth Software UART Qualcomm protocol
3  *
4  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
5  *  protocol extension to H4.
6  *
7  *  Copyright (C) 2007 Texas Instruments, Inc.
8  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
9  *
10  *  Acknowledgements:
11  *  This file is based on hci_ll.c, which was...
12  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
13  *  which was in turn based on hci_h4.c, which was written
14  *  by Maxim Krasnyansky and Marcel Holtmann.
15  *
16  *  This program is free software; you can redistribute it and/or modify
17  *  it under the terms of the GNU General Public License version 2
18  *  as published by the Free Software Foundation
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  *  GNU General Public License for more details.
24  *
25  *  You should have received a copy of the GNU General Public License
26  *  along with this program; if not, write to the Free Software
27  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/clk.h>
33 #include <linux/debugfs.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/module.h>
39 #include <linux/of_device.h>
40 #include <linux/platform_device.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/serdev.h>
43 
44 #include <net/bluetooth/bluetooth.h>
45 #include <net/bluetooth/hci_core.h>
46 
47 #include "hci_uart.h"
48 #include "btqca.h"
49 
50 /* HCI_IBS protocol messages */
51 #define HCI_IBS_SLEEP_IND	0xFE
52 #define HCI_IBS_WAKE_IND	0xFD
53 #define HCI_IBS_WAKE_ACK	0xFC
54 #define HCI_MAX_IBS_SIZE	10
55 
56 /* Controller states */
57 #define STATE_IN_BAND_SLEEP_ENABLED	1
58 
59 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
60 #define IBS_TX_IDLE_TIMEOUT_MS		2000
61 #define BAUDRATE_SETTLE_TIMEOUT_MS	300
62 
63 /* susclk rate */
64 #define SUSCLK_RATE_32KHZ	32768
65 
66 /* HCI_IBS transmit side sleep protocol states */
67 enum tx_ibs_states {
68 	HCI_IBS_TX_ASLEEP,
69 	HCI_IBS_TX_WAKING,
70 	HCI_IBS_TX_AWAKE,
71 };
72 
73 /* HCI_IBS receive side sleep protocol states */
74 enum rx_states {
75 	HCI_IBS_RX_ASLEEP,
76 	HCI_IBS_RX_AWAKE,
77 };
78 
79 /* HCI_IBS transmit and receive side clock state vote */
80 enum hci_ibs_clock_state_vote {
81 	HCI_IBS_VOTE_STATS_UPDATE,
82 	HCI_IBS_TX_VOTE_CLOCK_ON,
83 	HCI_IBS_TX_VOTE_CLOCK_OFF,
84 	HCI_IBS_RX_VOTE_CLOCK_ON,
85 	HCI_IBS_RX_VOTE_CLOCK_OFF,
86 };
87 
88 struct qca_data {
89 	struct hci_uart *hu;
90 	struct sk_buff *rx_skb;
91 	struct sk_buff_head txq;
92 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
93 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
94 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
95 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
96 	bool tx_vote;		/* Clock must be on for TX */
97 	bool rx_vote;		/* Clock must be on for RX */
98 	struct timer_list tx_idle_timer;
99 	u32 tx_idle_delay;
100 	struct timer_list wake_retrans_timer;
101 	u32 wake_retrans;
102 	struct workqueue_struct *workqueue;
103 	struct work_struct ws_awake_rx;
104 	struct work_struct ws_awake_device;
105 	struct work_struct ws_rx_vote_off;
106 	struct work_struct ws_tx_vote_off;
107 	unsigned long flags;
108 
109 	/* For debugging purpose */
110 	u64 ibs_sent_wacks;
111 	u64 ibs_sent_slps;
112 	u64 ibs_sent_wakes;
113 	u64 ibs_recv_wacks;
114 	u64 ibs_recv_slps;
115 	u64 ibs_recv_wakes;
116 	u64 vote_last_jif;
117 	u32 vote_on_ms;
118 	u32 vote_off_ms;
119 	u64 tx_votes_on;
120 	u64 rx_votes_on;
121 	u64 tx_votes_off;
122 	u64 rx_votes_off;
123 	u64 votes_on;
124 	u64 votes_off;
125 };
126 
127 enum qca_speed_type {
128 	QCA_INIT_SPEED = 1,
129 	QCA_OPER_SPEED
130 };
131 
132 /*
133  * Voltage regulator information required for configuring the
134  * QCA Bluetooth chipset
135  */
136 struct qca_vreg {
137 	const char *name;
138 	unsigned int min_uV;
139 	unsigned int max_uV;
140 	unsigned int load_uA;
141 };
142 
143 struct qca_vreg_data {
144 	enum qca_btsoc_type soc_type;
145 	struct qca_vreg *vregs;
146 	size_t num_vregs;
147 };
148 
149 /*
150  * Platform data for the QCA Bluetooth power driver.
151  */
152 struct qca_power {
153 	struct device *dev;
154 	const struct qca_vreg_data *vreg_data;
155 	struct regulator_bulk_data *vreg_bulk;
156 	bool vregs_on;
157 };
158 
159 struct qca_serdev {
160 	struct hci_uart	 serdev_hu;
161 	struct gpio_desc *bt_en;
162 	struct clk	 *susclk;
163 	enum qca_btsoc_type btsoc_type;
164 	struct qca_power *bt_power;
165 	u32 init_speed;
166 	u32 oper_speed;
167 };
168 
169 static int qca_power_setup(struct hci_uart *hu, bool on);
170 static void qca_power_shutdown(struct hci_uart *hu);
171 
__serial_clock_on(struct tty_struct * tty)172 static void __serial_clock_on(struct tty_struct *tty)
173 {
174 	/* TODO: Some chipset requires to enable UART clock on client
175 	 * side to save power consumption or manual work is required.
176 	 * Please put your code to control UART clock here if needed
177 	 */
178 }
179 
__serial_clock_off(struct tty_struct * tty)180 static void __serial_clock_off(struct tty_struct *tty)
181 {
182 	/* TODO: Some chipset requires to disable UART clock on client
183 	 * side to save power consumption or manual work is required.
184 	 * Please put your code to control UART clock off here if needed
185 	 */
186 }
187 
188 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)189 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
190 {
191 	struct qca_data *qca = hu->priv;
192 	unsigned int diff;
193 
194 	bool old_vote = (qca->tx_vote | qca->rx_vote);
195 	bool new_vote;
196 
197 	switch (vote) {
198 	case HCI_IBS_VOTE_STATS_UPDATE:
199 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
200 
201 		if (old_vote)
202 			qca->vote_off_ms += diff;
203 		else
204 			qca->vote_on_ms += diff;
205 		return;
206 
207 	case HCI_IBS_TX_VOTE_CLOCK_ON:
208 		qca->tx_vote = true;
209 		qca->tx_votes_on++;
210 		new_vote = true;
211 		break;
212 
213 	case HCI_IBS_RX_VOTE_CLOCK_ON:
214 		qca->rx_vote = true;
215 		qca->rx_votes_on++;
216 		new_vote = true;
217 		break;
218 
219 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
220 		qca->tx_vote = false;
221 		qca->tx_votes_off++;
222 		new_vote = qca->rx_vote | qca->tx_vote;
223 		break;
224 
225 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
226 		qca->rx_vote = false;
227 		qca->rx_votes_off++;
228 		new_vote = qca->rx_vote | qca->tx_vote;
229 		break;
230 
231 	default:
232 		BT_ERR("Voting irregularity");
233 		return;
234 	}
235 
236 	if (new_vote != old_vote) {
237 		if (new_vote)
238 			__serial_clock_on(hu->tty);
239 		else
240 			__serial_clock_off(hu->tty);
241 
242 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
243 		       vote ? "true" : "false");
244 
245 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
246 
247 		if (new_vote) {
248 			qca->votes_on++;
249 			qca->vote_off_ms += diff;
250 		} else {
251 			qca->votes_off++;
252 			qca->vote_on_ms += diff;
253 		}
254 		qca->vote_last_jif = jiffies;
255 	}
256 }
257 
258 /* Builds and sends an HCI_IBS command packet.
259  * These are very simple packets with only 1 cmd byte.
260  */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)261 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
262 {
263 	int err = 0;
264 	struct sk_buff *skb = NULL;
265 	struct qca_data *qca = hu->priv;
266 
267 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
268 
269 	skb = bt_skb_alloc(1, GFP_ATOMIC);
270 	if (!skb) {
271 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
272 		return -ENOMEM;
273 	}
274 
275 	/* Assign HCI_IBS type */
276 	skb_put_u8(skb, cmd);
277 
278 	skb_queue_tail(&qca->txq, skb);
279 
280 	return err;
281 }
282 
qca_wq_awake_device(struct work_struct * work)283 static void qca_wq_awake_device(struct work_struct *work)
284 {
285 	struct qca_data *qca = container_of(work, struct qca_data,
286 					    ws_awake_device);
287 	struct hci_uart *hu = qca->hu;
288 	unsigned long retrans_delay;
289 
290 	BT_DBG("hu %p wq awake device", hu);
291 
292 	/* Vote for serial clock */
293 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
294 
295 	spin_lock(&qca->hci_ibs_lock);
296 
297 	/* Send wake indication to device */
298 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
299 		BT_ERR("Failed to send WAKE to device");
300 
301 	qca->ibs_sent_wakes++;
302 
303 	/* Start retransmit timer */
304 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
305 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
306 
307 	spin_unlock(&qca->hci_ibs_lock);
308 
309 	/* Actually send the packets */
310 	hci_uart_tx_wakeup(hu);
311 }
312 
qca_wq_awake_rx(struct work_struct * work)313 static void qca_wq_awake_rx(struct work_struct *work)
314 {
315 	struct qca_data *qca = container_of(work, struct qca_data,
316 					    ws_awake_rx);
317 	struct hci_uart *hu = qca->hu;
318 
319 	BT_DBG("hu %p wq awake rx", hu);
320 
321 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
322 
323 	spin_lock(&qca->hci_ibs_lock);
324 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
325 
326 	/* Always acknowledge device wake up,
327 	 * sending IBS message doesn't count as TX ON.
328 	 */
329 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
330 		BT_ERR("Failed to acknowledge device wake up");
331 
332 	qca->ibs_sent_wacks++;
333 
334 	spin_unlock(&qca->hci_ibs_lock);
335 
336 	/* Actually send the packets */
337 	hci_uart_tx_wakeup(hu);
338 }
339 
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)340 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
341 {
342 	struct qca_data *qca = container_of(work, struct qca_data,
343 					    ws_rx_vote_off);
344 	struct hci_uart *hu = qca->hu;
345 
346 	BT_DBG("hu %p rx clock vote off", hu);
347 
348 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
349 }
350 
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)351 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
352 {
353 	struct qca_data *qca = container_of(work, struct qca_data,
354 					    ws_tx_vote_off);
355 	struct hci_uart *hu = qca->hu;
356 
357 	BT_DBG("hu %p tx clock vote off", hu);
358 
359 	/* Run HCI tx handling unlocked */
360 	hci_uart_tx_wakeup(hu);
361 
362 	/* Now that message queued to tty driver, vote for tty clocks off.
363 	 * It is up to the tty driver to pend the clocks off until tx done.
364 	 */
365 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
366 }
367 
hci_ibs_tx_idle_timeout(struct timer_list * t)368 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
369 {
370 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
371 	struct hci_uart *hu = qca->hu;
372 	unsigned long flags;
373 
374 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
375 
376 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
377 				 flags, SINGLE_DEPTH_NESTING);
378 
379 	switch (qca->tx_ibs_state) {
380 	case HCI_IBS_TX_AWAKE:
381 		/* TX_IDLE, go to SLEEP */
382 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
383 			BT_ERR("Failed to send SLEEP to device");
384 			break;
385 		}
386 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
387 		qca->ibs_sent_slps++;
388 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
389 		break;
390 
391 	case HCI_IBS_TX_ASLEEP:
392 	case HCI_IBS_TX_WAKING:
393 		/* Fall through */
394 
395 	default:
396 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
397 		break;
398 	}
399 
400 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
401 }
402 
hci_ibs_wake_retrans_timeout(struct timer_list * t)403 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
404 {
405 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
406 	struct hci_uart *hu = qca->hu;
407 	unsigned long flags, retrans_delay;
408 	bool retransmit = false;
409 
410 	BT_DBG("hu %p wake retransmit timeout in %d state",
411 		hu, qca->tx_ibs_state);
412 
413 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
414 				 flags, SINGLE_DEPTH_NESTING);
415 
416 	switch (qca->tx_ibs_state) {
417 	case HCI_IBS_TX_WAKING:
418 		/* No WAKE_ACK, retransmit WAKE */
419 		retransmit = true;
420 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
421 			BT_ERR("Failed to acknowledge device wake up");
422 			break;
423 		}
424 		qca->ibs_sent_wakes++;
425 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
426 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
427 		break;
428 
429 	case HCI_IBS_TX_ASLEEP:
430 	case HCI_IBS_TX_AWAKE:
431 		/* Fall through */
432 
433 	default:
434 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
435 		break;
436 	}
437 
438 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
439 
440 	if (retransmit)
441 		hci_uart_tx_wakeup(hu);
442 }
443 
444 /* Initialize protocol */
qca_open(struct hci_uart * hu)445 static int qca_open(struct hci_uart *hu)
446 {
447 	struct qca_serdev *qcadev;
448 	struct qca_data *qca;
449 	int ret;
450 
451 	BT_DBG("hu %p qca_open", hu);
452 
453 	if (!hci_uart_has_flow_control(hu))
454 		return -EOPNOTSUPP;
455 
456 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
457 	if (!qca)
458 		return -ENOMEM;
459 
460 	skb_queue_head_init(&qca->txq);
461 	skb_queue_head_init(&qca->tx_wait_q);
462 	spin_lock_init(&qca->hci_ibs_lock);
463 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
464 	if (!qca->workqueue) {
465 		BT_ERR("QCA Workqueue not initialized properly");
466 		kfree(qca);
467 		return -ENOMEM;
468 	}
469 
470 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
471 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
472 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
473 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
474 
475 	qca->hu = hu;
476 
477 	/* Assume we start with both sides asleep -- extra wakes OK */
478 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
479 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
480 
481 	/* clocks actually on, but we start votes off */
482 	qca->tx_vote = false;
483 	qca->rx_vote = false;
484 	qca->flags = 0;
485 
486 	qca->ibs_sent_wacks = 0;
487 	qca->ibs_sent_slps = 0;
488 	qca->ibs_sent_wakes = 0;
489 	qca->ibs_recv_wacks = 0;
490 	qca->ibs_recv_slps = 0;
491 	qca->ibs_recv_wakes = 0;
492 	qca->vote_last_jif = jiffies;
493 	qca->vote_on_ms = 0;
494 	qca->vote_off_ms = 0;
495 	qca->votes_on = 0;
496 	qca->votes_off = 0;
497 	qca->tx_votes_on = 0;
498 	qca->tx_votes_off = 0;
499 	qca->rx_votes_on = 0;
500 	qca->rx_votes_off = 0;
501 
502 	hu->priv = qca;
503 
504 	if (hu->serdev) {
505 		serdev_device_open(hu->serdev);
506 
507 		qcadev = serdev_device_get_drvdata(hu->serdev);
508 		if (qcadev->btsoc_type != QCA_WCN3990) {
509 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
510 			/* Controller needs time to bootup. */
511 			msleep(150);
512 		} else {
513 			hu->init_speed = qcadev->init_speed;
514 			hu->oper_speed = qcadev->oper_speed;
515 			ret = qca_power_setup(hu, true);
516 			if (ret) {
517 				destroy_workqueue(qca->workqueue);
518 				kfree_skb(qca->rx_skb);
519 				hu->priv = NULL;
520 				kfree(qca);
521 				return ret;
522 			}
523 		}
524 	}
525 
526 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
527 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
528 
529 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
530 	qca->tx_idle_delay = IBS_TX_IDLE_TIMEOUT_MS;
531 
532 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
533 	       qca->tx_idle_delay, qca->wake_retrans);
534 
535 	return 0;
536 }
537 
qca_debugfs_init(struct hci_dev * hdev)538 static void qca_debugfs_init(struct hci_dev *hdev)
539 {
540 	struct hci_uart *hu = hci_get_drvdata(hdev);
541 	struct qca_data *qca = hu->priv;
542 	struct dentry *ibs_dir;
543 	umode_t mode;
544 
545 	if (!hdev->debugfs)
546 		return;
547 
548 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
549 
550 	/* read only */
551 	mode = S_IRUGO;
552 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
553 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
554 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
555 			   &qca->ibs_sent_slps);
556 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
557 			   &qca->ibs_sent_wakes);
558 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
559 			   &qca->ibs_sent_wacks);
560 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
561 			   &qca->ibs_recv_slps);
562 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
563 			   &qca->ibs_recv_wakes);
564 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
565 			   &qca->ibs_recv_wacks);
566 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
567 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
568 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
569 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
570 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
571 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
572 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
573 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
574 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
575 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
576 
577 	/* read/write */
578 	mode = S_IRUGO | S_IWUSR;
579 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
580 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
581 			   &qca->tx_idle_delay);
582 }
583 
584 /* Flush protocol data */
qca_flush(struct hci_uart * hu)585 static int qca_flush(struct hci_uart *hu)
586 {
587 	struct qca_data *qca = hu->priv;
588 
589 	BT_DBG("hu %p qca flush", hu);
590 
591 	skb_queue_purge(&qca->tx_wait_q);
592 	skb_queue_purge(&qca->txq);
593 
594 	return 0;
595 }
596 
597 /* Close protocol */
qca_close(struct hci_uart * hu)598 static int qca_close(struct hci_uart *hu)
599 {
600 	struct qca_serdev *qcadev;
601 	struct qca_data *qca = hu->priv;
602 
603 	BT_DBG("hu %p qca close", hu);
604 
605 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
606 
607 	skb_queue_purge(&qca->tx_wait_q);
608 	skb_queue_purge(&qca->txq);
609 	del_timer(&qca->tx_idle_timer);
610 	del_timer(&qca->wake_retrans_timer);
611 	destroy_workqueue(qca->workqueue);
612 	qca->hu = NULL;
613 
614 	if (hu->serdev) {
615 		qcadev = serdev_device_get_drvdata(hu->serdev);
616 		if (qcadev->btsoc_type == QCA_WCN3990)
617 			qca_power_shutdown(hu);
618 		else
619 			gpiod_set_value_cansleep(qcadev->bt_en, 0);
620 
621 		serdev_device_close(hu->serdev);
622 	}
623 
624 	kfree_skb(qca->rx_skb);
625 
626 	hu->priv = NULL;
627 
628 	kfree(qca);
629 
630 	return 0;
631 }
632 
633 /* Called upon a wake-up-indication from the device.
634  */
device_want_to_wakeup(struct hci_uart * hu)635 static void device_want_to_wakeup(struct hci_uart *hu)
636 {
637 	unsigned long flags;
638 	struct qca_data *qca = hu->priv;
639 
640 	BT_DBG("hu %p want to wake up", hu);
641 
642 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
643 
644 	qca->ibs_recv_wakes++;
645 
646 	switch (qca->rx_ibs_state) {
647 	case HCI_IBS_RX_ASLEEP:
648 		/* Make sure clock is on - we may have turned clock off since
649 		 * receiving the wake up indicator awake rx clock.
650 		 */
651 		queue_work(qca->workqueue, &qca->ws_awake_rx);
652 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
653 		return;
654 
655 	case HCI_IBS_RX_AWAKE:
656 		/* Always acknowledge device wake up,
657 		 * sending IBS message doesn't count as TX ON.
658 		 */
659 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
660 			BT_ERR("Failed to acknowledge device wake up");
661 			break;
662 		}
663 		qca->ibs_sent_wacks++;
664 		break;
665 
666 	default:
667 		/* Any other state is illegal */
668 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
669 		       qca->rx_ibs_state);
670 		break;
671 	}
672 
673 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
674 
675 	/* Actually send the packets */
676 	hci_uart_tx_wakeup(hu);
677 }
678 
679 /* Called upon a sleep-indication from the device.
680  */
device_want_to_sleep(struct hci_uart * hu)681 static void device_want_to_sleep(struct hci_uart *hu)
682 {
683 	unsigned long flags;
684 	struct qca_data *qca = hu->priv;
685 
686 	BT_DBG("hu %p want to sleep", hu);
687 
688 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
689 
690 	qca->ibs_recv_slps++;
691 
692 	switch (qca->rx_ibs_state) {
693 	case HCI_IBS_RX_AWAKE:
694 		/* Update state */
695 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
696 		/* Vote off rx clock under workqueue */
697 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
698 		break;
699 
700 	case HCI_IBS_RX_ASLEEP:
701 		/* Fall through */
702 
703 	default:
704 		/* Any other state is illegal */
705 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
706 		       qca->rx_ibs_state);
707 		break;
708 	}
709 
710 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
711 }
712 
713 /* Called upon wake-up-acknowledgement from the device
714  */
device_woke_up(struct hci_uart * hu)715 static void device_woke_up(struct hci_uart *hu)
716 {
717 	unsigned long flags, idle_delay;
718 	struct qca_data *qca = hu->priv;
719 	struct sk_buff *skb = NULL;
720 
721 	BT_DBG("hu %p woke up", hu);
722 
723 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
724 
725 	qca->ibs_recv_wacks++;
726 
727 	switch (qca->tx_ibs_state) {
728 	case HCI_IBS_TX_AWAKE:
729 		/* Expect one if we send 2 WAKEs */
730 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
731 		       qca->tx_ibs_state);
732 		break;
733 
734 	case HCI_IBS_TX_WAKING:
735 		/* Send pending packets */
736 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
737 			skb_queue_tail(&qca->txq, skb);
738 
739 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
740 		del_timer(&qca->wake_retrans_timer);
741 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
742 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
743 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
744 		break;
745 
746 	case HCI_IBS_TX_ASLEEP:
747 		/* Fall through */
748 
749 	default:
750 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
751 		       qca->tx_ibs_state);
752 		break;
753 	}
754 
755 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
756 
757 	/* Actually send the packets */
758 	hci_uart_tx_wakeup(hu);
759 }
760 
761 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
762  * two simultaneous tasklets.
763  */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)764 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
765 {
766 	unsigned long flags = 0, idle_delay;
767 	struct qca_data *qca = hu->priv;
768 
769 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
770 	       qca->tx_ibs_state);
771 
772 	/* Prepend skb with frame type */
773 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
774 
775 	/* Don't go to sleep in middle of patch download or
776 	 * Out-Of-Band(GPIOs control) sleep is selected.
777 	 */
778 	if (!test_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags)) {
779 		skb_queue_tail(&qca->txq, skb);
780 		return 0;
781 	}
782 
783 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
784 
785 	/* Act according to current state */
786 	switch (qca->tx_ibs_state) {
787 	case HCI_IBS_TX_AWAKE:
788 		BT_DBG("Device awake, sending normally");
789 		skb_queue_tail(&qca->txq, skb);
790 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
791 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
792 		break;
793 
794 	case HCI_IBS_TX_ASLEEP:
795 		BT_DBG("Device asleep, waking up and queueing packet");
796 		/* Save packet for later */
797 		skb_queue_tail(&qca->tx_wait_q, skb);
798 
799 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
800 		/* Schedule a work queue to wake up device */
801 		queue_work(qca->workqueue, &qca->ws_awake_device);
802 		break;
803 
804 	case HCI_IBS_TX_WAKING:
805 		BT_DBG("Device waking up, queueing packet");
806 		/* Transient state; just keep packet for later */
807 		skb_queue_tail(&qca->tx_wait_q, skb);
808 		break;
809 
810 	default:
811 		BT_ERR("Illegal tx state: %d (losing packet)",
812 		       qca->tx_ibs_state);
813 		dev_kfree_skb_irq(skb);
814 		break;
815 	}
816 
817 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
818 
819 	return 0;
820 }
821 
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)822 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
823 {
824 	struct hci_uart *hu = hci_get_drvdata(hdev);
825 
826 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
827 
828 	device_want_to_sleep(hu);
829 
830 	kfree_skb(skb);
831 	return 0;
832 }
833 
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)834 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
835 {
836 	struct hci_uart *hu = hci_get_drvdata(hdev);
837 
838 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
839 
840 	device_want_to_wakeup(hu);
841 
842 	kfree_skb(skb);
843 	return 0;
844 }
845 
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)846 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
847 {
848 	struct hci_uart *hu = hci_get_drvdata(hdev);
849 
850 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
851 
852 	device_woke_up(hu);
853 
854 	kfree_skb(skb);
855 	return 0;
856 }
857 
858 #define QCA_IBS_SLEEP_IND_EVENT \
859 	.type = HCI_IBS_SLEEP_IND, \
860 	.hlen = 0, \
861 	.loff = 0, \
862 	.lsize = 0, \
863 	.maxlen = HCI_MAX_IBS_SIZE
864 
865 #define QCA_IBS_WAKE_IND_EVENT \
866 	.type = HCI_IBS_WAKE_IND, \
867 	.hlen = 0, \
868 	.loff = 0, \
869 	.lsize = 0, \
870 	.maxlen = HCI_MAX_IBS_SIZE
871 
872 #define QCA_IBS_WAKE_ACK_EVENT \
873 	.type = HCI_IBS_WAKE_ACK, \
874 	.hlen = 0, \
875 	.loff = 0, \
876 	.lsize = 0, \
877 	.maxlen = HCI_MAX_IBS_SIZE
878 
879 static const struct h4_recv_pkt qca_recv_pkts[] = {
880 	{ H4_RECV_ACL,             .recv = hci_recv_frame    },
881 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
882 	{ H4_RECV_EVENT,           .recv = hci_recv_frame    },
883 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
884 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
885 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
886 };
887 
qca_recv(struct hci_uart * hu,const void * data,int count)888 static int qca_recv(struct hci_uart *hu, const void *data, int count)
889 {
890 	struct qca_data *qca = hu->priv;
891 
892 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
893 		return -EUNATCH;
894 
895 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
896 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
897 	if (IS_ERR(qca->rx_skb)) {
898 		int err = PTR_ERR(qca->rx_skb);
899 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
900 		qca->rx_skb = NULL;
901 		return err;
902 	}
903 
904 	return count;
905 }
906 
qca_dequeue(struct hci_uart * hu)907 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
908 {
909 	struct qca_data *qca = hu->priv;
910 
911 	return skb_dequeue(&qca->txq);
912 }
913 
qca_get_baudrate_value(int speed)914 static uint8_t qca_get_baudrate_value(int speed)
915 {
916 	switch (speed) {
917 	case 9600:
918 		return QCA_BAUDRATE_9600;
919 	case 19200:
920 		return QCA_BAUDRATE_19200;
921 	case 38400:
922 		return QCA_BAUDRATE_38400;
923 	case 57600:
924 		return QCA_BAUDRATE_57600;
925 	case 115200:
926 		return QCA_BAUDRATE_115200;
927 	case 230400:
928 		return QCA_BAUDRATE_230400;
929 	case 460800:
930 		return QCA_BAUDRATE_460800;
931 	case 500000:
932 		return QCA_BAUDRATE_500000;
933 	case 921600:
934 		return QCA_BAUDRATE_921600;
935 	case 1000000:
936 		return QCA_BAUDRATE_1000000;
937 	case 2000000:
938 		return QCA_BAUDRATE_2000000;
939 	case 3000000:
940 		return QCA_BAUDRATE_3000000;
941 	case 3200000:
942 		return QCA_BAUDRATE_3200000;
943 	case 3500000:
944 		return QCA_BAUDRATE_3500000;
945 	default:
946 		return QCA_BAUDRATE_115200;
947 	}
948 }
949 
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)950 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
951 {
952 	struct hci_uart *hu = hci_get_drvdata(hdev);
953 	struct qca_data *qca = hu->priv;
954 	struct sk_buff *skb;
955 	struct qca_serdev *qcadev;
956 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
957 
958 	if (baudrate > QCA_BAUDRATE_3200000)
959 		return -EINVAL;
960 
961 	cmd[4] = baudrate;
962 
963 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
964 	if (!skb) {
965 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
966 		return -ENOMEM;
967 	}
968 
969 	/* Disabling hardware flow control is mandatory while
970 	 * sending change baudrate request to wcn3990 SoC.
971 	 */
972 	qcadev = serdev_device_get_drvdata(hu->serdev);
973 	if (qcadev->btsoc_type == QCA_WCN3990)
974 		hci_uart_set_flow_control(hu, true);
975 
976 	/* Assign commands to change baudrate and packet type. */
977 	skb_put_data(skb, cmd, sizeof(cmd));
978 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
979 
980 	skb_queue_tail(&qca->txq, skb);
981 	hci_uart_tx_wakeup(hu);
982 
983 	/* wait 300ms to change new baudrate on controller side
984 	 * controller will come back after they receive this HCI command
985 	 * then host can communicate with new baudrate to controller
986 	 */
987 	set_current_state(TASK_UNINTERRUPTIBLE);
988 	schedule_timeout(msecs_to_jiffies(BAUDRATE_SETTLE_TIMEOUT_MS));
989 	set_current_state(TASK_RUNNING);
990 
991 	if (qcadev->btsoc_type == QCA_WCN3990)
992 		hci_uart_set_flow_control(hu, false);
993 
994 	return 0;
995 }
996 
host_set_baudrate(struct hci_uart * hu,unsigned int speed)997 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
998 {
999 	if (hu->serdev)
1000 		serdev_device_set_baudrate(hu->serdev, speed);
1001 	else
1002 		hci_uart_set_baudrate(hu, speed);
1003 }
1004 
qca_send_power_pulse(struct hci_dev * hdev,u8 cmd)1005 static int qca_send_power_pulse(struct hci_dev *hdev, u8 cmd)
1006 {
1007 	struct hci_uart *hu = hci_get_drvdata(hdev);
1008 	struct qca_data *qca = hu->priv;
1009 	struct sk_buff *skb;
1010 
1011 	/* These power pulses are single byte command which are sent
1012 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1013 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1014 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1015 	 * and also we use the same power inputs to turn on and off for
1016 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1017 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1018 	 * save power. Disabling hardware flow control is mandatory while
1019 	 * sending power pulses to SoC.
1020 	 */
1021 	bt_dev_dbg(hdev, "sending power pulse %02x to SoC", cmd);
1022 
1023 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1024 	if (!skb)
1025 		return -ENOMEM;
1026 
1027 	hci_uart_set_flow_control(hu, true);
1028 
1029 	skb_put_u8(skb, cmd);
1030 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1031 
1032 	skb_queue_tail(&qca->txq, skb);
1033 	hci_uart_tx_wakeup(hu);
1034 
1035 	/* Wait for 100 uS for SoC to settle down */
1036 	usleep_range(100, 200);
1037 	hci_uart_set_flow_control(hu, false);
1038 
1039 	return 0;
1040 }
1041 
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1042 static unsigned int qca_get_speed(struct hci_uart *hu,
1043 				  enum qca_speed_type speed_type)
1044 {
1045 	unsigned int speed = 0;
1046 
1047 	if (speed_type == QCA_INIT_SPEED) {
1048 		if (hu->init_speed)
1049 			speed = hu->init_speed;
1050 		else if (hu->proto->init_speed)
1051 			speed = hu->proto->init_speed;
1052 	} else {
1053 		if (hu->oper_speed)
1054 			speed = hu->oper_speed;
1055 		else if (hu->proto->oper_speed)
1056 			speed = hu->proto->oper_speed;
1057 	}
1058 
1059 	return speed;
1060 }
1061 
qca_check_speeds(struct hci_uart * hu)1062 static int qca_check_speeds(struct hci_uart *hu)
1063 {
1064 	struct qca_serdev *qcadev;
1065 
1066 	qcadev = serdev_device_get_drvdata(hu->serdev);
1067 	if (qcadev->btsoc_type == QCA_WCN3990) {
1068 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1069 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1070 			return -EINVAL;
1071 	} else {
1072 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1073 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1074 			return -EINVAL;
1075 	}
1076 
1077 	return 0;
1078 }
1079 
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1080 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1081 {
1082 	unsigned int speed, qca_baudrate;
1083 	int ret;
1084 
1085 	if (speed_type == QCA_INIT_SPEED) {
1086 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1087 		if (speed)
1088 			host_set_baudrate(hu, speed);
1089 	} else {
1090 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1091 		if (!speed)
1092 			return 0;
1093 
1094 		qca_baudrate = qca_get_baudrate_value(speed);
1095 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1096 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1097 		if (ret)
1098 			return ret;
1099 
1100 		host_set_baudrate(hu, speed);
1101 	}
1102 
1103 	return 0;
1104 }
1105 
qca_wcn3990_init(struct hci_uart * hu)1106 static int qca_wcn3990_init(struct hci_uart *hu)
1107 {
1108 	struct hci_dev *hdev = hu->hdev;
1109 	int ret;
1110 
1111 	/* Forcefully enable wcn3990 to enter in to boot mode. */
1112 	host_set_baudrate(hu, 2400);
1113 	ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWEROFF_PULSE);
1114 	if (ret)
1115 		return ret;
1116 
1117 	qca_set_speed(hu, QCA_INIT_SPEED);
1118 	ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWERON_PULSE);
1119 	if (ret)
1120 		return ret;
1121 
1122 	/* Wait for 100 ms for SoC to boot */
1123 	msleep(100);
1124 
1125 	/* Now the device is in ready state to communicate with host.
1126 	 * To sync host with device we need to reopen port.
1127 	 * Without this, we will have RTS and CTS synchronization
1128 	 * issues.
1129 	 */
1130 	serdev_device_close(hu->serdev);
1131 	ret = serdev_device_open(hu->serdev);
1132 	if (ret) {
1133 		bt_dev_err(hu->hdev, "failed to open port");
1134 		return ret;
1135 	}
1136 
1137 	hci_uart_set_flow_control(hu, false);
1138 
1139 	return 0;
1140 }
1141 
qca_setup(struct hci_uart * hu)1142 static int qca_setup(struct hci_uart *hu)
1143 {
1144 	struct hci_dev *hdev = hu->hdev;
1145 	struct qca_data *qca = hu->priv;
1146 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1147 	struct qca_serdev *qcadev;
1148 	int ret;
1149 	int soc_ver = 0;
1150 
1151 	qcadev = serdev_device_get_drvdata(hu->serdev);
1152 
1153 	ret = qca_check_speeds(hu);
1154 	if (ret)
1155 		return ret;
1156 
1157 	/* Patch downloading has to be done without IBS mode */
1158 	clear_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags);
1159 
1160 	if (qcadev->btsoc_type == QCA_WCN3990) {
1161 		bt_dev_info(hdev, "setting up wcn3990");
1162 		ret = qca_wcn3990_init(hu);
1163 		if (ret)
1164 			return ret;
1165 
1166 		ret = qca_read_soc_version(hdev, &soc_ver);
1167 		if (ret)
1168 			return ret;
1169 	} else {
1170 		bt_dev_info(hdev, "ROME setup");
1171 		qca_set_speed(hu, QCA_INIT_SPEED);
1172 	}
1173 
1174 	/* Setup user speed if needed */
1175 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1176 	if (speed) {
1177 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1178 		if (ret)
1179 			return ret;
1180 
1181 		qca_baudrate = qca_get_baudrate_value(speed);
1182 	}
1183 
1184 	if (qcadev->btsoc_type != QCA_WCN3990) {
1185 		/* Get QCA version information */
1186 		ret = qca_read_soc_version(hdev, &soc_ver);
1187 		if (ret)
1188 			return ret;
1189 	}
1190 
1191 	bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1192 	/* Setup patch / NVM configurations */
1193 	ret = qca_uart_setup(hdev, qca_baudrate, qcadev->btsoc_type, soc_ver);
1194 	if (!ret) {
1195 		set_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags);
1196 		qca_debugfs_init(hdev);
1197 	} else if (ret == -ENOENT) {
1198 		/* No patch/nvm-config found, run with original fw/config */
1199 		ret = 0;
1200 	} else if (ret == -EAGAIN) {
1201 		/*
1202 		 * Userspace firmware loader will return -EAGAIN in case no
1203 		 * patch/nvm-config is found, so run with original fw/config.
1204 		 */
1205 		ret = 0;
1206 	}
1207 
1208 	/* Setup bdaddr */
1209 	hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1210 
1211 	return ret;
1212 }
1213 
1214 static struct hci_uart_proto qca_proto = {
1215 	.id		= HCI_UART_QCA,
1216 	.name		= "QCA",
1217 	.manufacturer	= 29,
1218 	.init_speed	= 115200,
1219 	.oper_speed	= 3000000,
1220 	.open		= qca_open,
1221 	.close		= qca_close,
1222 	.flush		= qca_flush,
1223 	.setup		= qca_setup,
1224 	.recv		= qca_recv,
1225 	.enqueue	= qca_enqueue,
1226 	.dequeue	= qca_dequeue,
1227 };
1228 
1229 static const struct qca_vreg_data qca_soc_data = {
1230 	.soc_type = QCA_WCN3990,
1231 	.vregs = (struct qca_vreg []) {
1232 		{ "vddio",   1800000, 1900000,  15000  },
1233 		{ "vddxo",   1800000, 1900000,  80000  },
1234 		{ "vddrf",   1300000, 1350000,  300000 },
1235 		{ "vddch0",  3300000, 3400000,  450000 },
1236 	},
1237 	.num_vregs = 4,
1238 };
1239 
qca_power_shutdown(struct hci_uart * hu)1240 static void qca_power_shutdown(struct hci_uart *hu)
1241 {
1242 	struct serdev_device *serdev = hu->serdev;
1243 	unsigned char cmd = QCA_WCN3990_POWEROFF_PULSE;
1244 
1245 	host_set_baudrate(hu, 2400);
1246 	hci_uart_set_flow_control(hu, true);
1247 	serdev_device_write_buf(serdev, &cmd, sizeof(cmd));
1248 	hci_uart_set_flow_control(hu, false);
1249 	qca_power_setup(hu, false);
1250 }
1251 
qca_enable_regulator(struct qca_vreg vregs,struct regulator * regulator)1252 static int qca_enable_regulator(struct qca_vreg vregs,
1253 				struct regulator *regulator)
1254 {
1255 	int ret;
1256 
1257 	ret = regulator_set_voltage(regulator, vregs.min_uV,
1258 				    vregs.max_uV);
1259 	if (ret)
1260 		return ret;
1261 
1262 	if (vregs.load_uA)
1263 		ret = regulator_set_load(regulator,
1264 					 vregs.load_uA);
1265 
1266 	if (ret)
1267 		return ret;
1268 
1269 	return regulator_enable(regulator);
1270 
1271 }
1272 
qca_disable_regulator(struct qca_vreg vregs,struct regulator * regulator)1273 static void qca_disable_regulator(struct qca_vreg vregs,
1274 				  struct regulator *regulator)
1275 {
1276 	regulator_disable(regulator);
1277 	regulator_set_voltage(regulator, 0, vregs.max_uV);
1278 	if (vregs.load_uA)
1279 		regulator_set_load(regulator, 0);
1280 
1281 }
1282 
qca_power_setup(struct hci_uart * hu,bool on)1283 static int qca_power_setup(struct hci_uart *hu, bool on)
1284 {
1285 	struct qca_vreg *vregs;
1286 	struct regulator_bulk_data *vreg_bulk;
1287 	struct qca_serdev *qcadev;
1288 	int i, num_vregs, ret = 0;
1289 
1290 	qcadev = serdev_device_get_drvdata(hu->serdev);
1291 	if (!qcadev || !qcadev->bt_power || !qcadev->bt_power->vreg_data ||
1292 	    !qcadev->bt_power->vreg_bulk)
1293 		return -EINVAL;
1294 
1295 	vregs = qcadev->bt_power->vreg_data->vregs;
1296 	vreg_bulk = qcadev->bt_power->vreg_bulk;
1297 	num_vregs = qcadev->bt_power->vreg_data->num_vregs;
1298 	BT_DBG("on: %d", on);
1299 	if (on && !qcadev->bt_power->vregs_on) {
1300 		for (i = 0; i < num_vregs; i++) {
1301 			ret = qca_enable_regulator(vregs[i],
1302 						   vreg_bulk[i].consumer);
1303 			if (ret)
1304 				break;
1305 		}
1306 
1307 		if (ret) {
1308 			BT_ERR("failed to enable regulator:%s", vregs[i].name);
1309 			/* turn off regulators which are enabled */
1310 			for (i = i - 1; i >= 0; i--)
1311 				qca_disable_regulator(vregs[i],
1312 						      vreg_bulk[i].consumer);
1313 		} else {
1314 			qcadev->bt_power->vregs_on = true;
1315 		}
1316 	} else if (!on && qcadev->bt_power->vregs_on) {
1317 		/* turn off regulator in reverse order */
1318 		i = qcadev->bt_power->vreg_data->num_vregs - 1;
1319 		for ( ; i >= 0; i--)
1320 			qca_disable_regulator(vregs[i], vreg_bulk[i].consumer);
1321 
1322 		qcadev->bt_power->vregs_on = false;
1323 	}
1324 
1325 	return ret;
1326 }
1327 
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)1328 static int qca_init_regulators(struct qca_power *qca,
1329 				const struct qca_vreg *vregs, size_t num_vregs)
1330 {
1331 	int i;
1332 
1333 	qca->vreg_bulk = devm_kcalloc(qca->dev, num_vregs,
1334 				      sizeof(struct regulator_bulk_data),
1335 				      GFP_KERNEL);
1336 	if (!qca->vreg_bulk)
1337 		return -ENOMEM;
1338 
1339 	for (i = 0; i < num_vregs; i++)
1340 		qca->vreg_bulk[i].supply = vregs[i].name;
1341 
1342 	return devm_regulator_bulk_get(qca->dev, num_vregs, qca->vreg_bulk);
1343 }
1344 
qca_serdev_probe(struct serdev_device * serdev)1345 static int qca_serdev_probe(struct serdev_device *serdev)
1346 {
1347 	struct qca_serdev *qcadev;
1348 	const struct qca_vreg_data *data;
1349 	int err;
1350 
1351 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1352 	if (!qcadev)
1353 		return -ENOMEM;
1354 
1355 	qcadev->serdev_hu.serdev = serdev;
1356 	data = of_device_get_match_data(&serdev->dev);
1357 	serdev_device_set_drvdata(serdev, qcadev);
1358 	if (data && data->soc_type == QCA_WCN3990) {
1359 		qcadev->btsoc_type = QCA_WCN3990;
1360 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
1361 						sizeof(struct qca_power),
1362 						GFP_KERNEL);
1363 		if (!qcadev->bt_power)
1364 			return -ENOMEM;
1365 
1366 		qcadev->bt_power->dev = &serdev->dev;
1367 		qcadev->bt_power->vreg_data = data;
1368 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
1369 					  data->num_vregs);
1370 		if (err) {
1371 			BT_ERR("Failed to init regulators:%d", err);
1372 			goto out;
1373 		}
1374 
1375 		qcadev->bt_power->vregs_on = false;
1376 
1377 		device_property_read_u32(&serdev->dev, "max-speed",
1378 					 &qcadev->oper_speed);
1379 		if (!qcadev->oper_speed)
1380 			BT_DBG("UART will pick default operating speed");
1381 
1382 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1383 		if (err) {
1384 			BT_ERR("wcn3990 serdev registration failed");
1385 			goto out;
1386 		}
1387 	} else {
1388 		qcadev->btsoc_type = QCA_ROME;
1389 		qcadev->bt_en = devm_gpiod_get(&serdev->dev, "enable",
1390 					       GPIOD_OUT_LOW);
1391 		if (IS_ERR(qcadev->bt_en)) {
1392 			dev_err(&serdev->dev, "failed to acquire enable gpio\n");
1393 			return PTR_ERR(qcadev->bt_en);
1394 		}
1395 
1396 		qcadev->susclk = devm_clk_get(&serdev->dev, NULL);
1397 		if (IS_ERR(qcadev->susclk)) {
1398 			dev_err(&serdev->dev, "failed to acquire clk\n");
1399 			return PTR_ERR(qcadev->susclk);
1400 		}
1401 
1402 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
1403 		if (err)
1404 			return err;
1405 
1406 		err = clk_prepare_enable(qcadev->susclk);
1407 		if (err)
1408 			return err;
1409 
1410 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1411 		if (err)
1412 			clk_disable_unprepare(qcadev->susclk);
1413 	}
1414 
1415 out:	return err;
1416 
1417 }
1418 
qca_serdev_remove(struct serdev_device * serdev)1419 static void qca_serdev_remove(struct serdev_device *serdev)
1420 {
1421 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
1422 
1423 	if (qcadev->btsoc_type == QCA_WCN3990)
1424 		qca_power_shutdown(&qcadev->serdev_hu);
1425 	else
1426 		clk_disable_unprepare(qcadev->susclk);
1427 
1428 	hci_uart_unregister_device(&qcadev->serdev_hu);
1429 }
1430 
1431 static const struct of_device_id qca_bluetooth_of_match[] = {
1432 	{ .compatible = "qcom,qca6174-bt" },
1433 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data},
1434 	{ /* sentinel */ }
1435 };
1436 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
1437 
1438 static struct serdev_device_driver qca_serdev_driver = {
1439 	.probe = qca_serdev_probe,
1440 	.remove = qca_serdev_remove,
1441 	.driver = {
1442 		.name = "hci_uart_qca",
1443 		.of_match_table = qca_bluetooth_of_match,
1444 	},
1445 };
1446 
qca_init(void)1447 int __init qca_init(void)
1448 {
1449 	serdev_device_driver_register(&qca_serdev_driver);
1450 
1451 	return hci_uart_register_proto(&qca_proto);
1452 }
1453 
qca_deinit(void)1454 int __exit qca_deinit(void)
1455 {
1456 	serdev_device_driver_unregister(&qca_serdev_driver);
1457 
1458 	return hci_uart_unregister_proto(&qca_proto);
1459 }
1460