1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <net/tcp.h>
43 #include <net/strparser.h>
44
45 #include <uapi/linux/tls.h>
46
47
48 /* Maximum data size carried in a TLS record */
49 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
50
51 #define TLS_HEADER_SIZE 5
52 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
53
54 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
55
56 #define TLS_RECORD_TYPE_DATA 0x17
57
58 #define TLS_AAD_SPACE_SIZE 13
59 #define TLS_DEVICE_NAME_MAX 32
60
61 /*
62 * This structure defines the routines for Inline TLS driver.
63 * The following routines are optional and filled with a
64 * null pointer if not defined.
65 *
66 * @name: Its the name of registered Inline tls device
67 * @dev_list: Inline tls device list
68 * int (*feature)(struct tls_device *device);
69 * Called to return Inline TLS driver capability
70 *
71 * int (*hash)(struct tls_device *device, struct sock *sk);
72 * This function sets Inline driver for listen and program
73 * device specific functioanlity as required
74 *
75 * void (*unhash)(struct tls_device *device, struct sock *sk);
76 * This function cleans listen state set by Inline TLS driver
77 */
78 struct tls_device {
79 char name[TLS_DEVICE_NAME_MAX];
80 struct list_head dev_list;
81 int (*feature)(struct tls_device *device);
82 int (*hash)(struct tls_device *device, struct sock *sk);
83 void (*unhash)(struct tls_device *device, struct sock *sk);
84 };
85
86 enum {
87 TLS_BASE,
88 TLS_SW,
89 #ifdef CONFIG_TLS_DEVICE
90 TLS_HW,
91 #endif
92 TLS_HW_RECORD,
93 TLS_NUM_CONFIG,
94 };
95
96 struct tls_sw_context_tx {
97 struct crypto_aead *aead_send;
98 struct crypto_wait async_wait;
99
100 char aad_space[TLS_AAD_SPACE_SIZE];
101
102 unsigned int sg_plaintext_size;
103 int sg_plaintext_num_elem;
104 struct scatterlist sg_plaintext_data[MAX_SKB_FRAGS];
105
106 unsigned int sg_encrypted_size;
107 int sg_encrypted_num_elem;
108 struct scatterlist sg_encrypted_data[MAX_SKB_FRAGS];
109
110 /* AAD | sg_plaintext_data | sg_tag */
111 struct scatterlist sg_aead_in[2];
112 /* AAD | sg_encrypted_data (data contain overhead for hdr&iv&tag) */
113 struct scatterlist sg_aead_out[2];
114 };
115
116 struct tls_sw_context_rx {
117 struct crypto_aead *aead_recv;
118 struct crypto_wait async_wait;
119
120 struct strparser strp;
121 void (*saved_data_ready)(struct sock *sk);
122 unsigned int (*sk_poll)(struct file *file, struct socket *sock,
123 struct poll_table_struct *wait);
124 struct sk_buff *recv_pkt;
125 u8 control;
126 bool decrypted;
127 };
128
129 struct tls_record_info {
130 struct list_head list;
131 u32 end_seq;
132 int len;
133 int num_frags;
134 skb_frag_t frags[MAX_SKB_FRAGS];
135 };
136
137 struct tls_offload_context_tx {
138 struct crypto_aead *aead_send;
139 spinlock_t lock; /* protects records list */
140 struct list_head records_list;
141 struct tls_record_info *open_record;
142 struct tls_record_info *retransmit_hint;
143 u64 hint_record_sn;
144 u64 unacked_record_sn;
145
146 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
147 void (*sk_destruct)(struct sock *sk);
148 u8 driver_state[];
149 /* The TLS layer reserves room for driver specific state
150 * Currently the belief is that there is not enough
151 * driver specific state to justify another layer of indirection
152 */
153 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
154 };
155
156 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
157 (ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) + \
158 TLS_DRIVER_STATE_SIZE)
159
160 enum {
161 TLS_PENDING_CLOSED_RECORD
162 };
163
164 enum tls_context_flags {
165 TLS_RX_SYNC_RUNNING = 0,
166 /* tls_dev_del was called for the RX side, device state was released,
167 * but tls_ctx->netdev might still be kept, because TX-side driver
168 * resources might not be released yet. Used to prevent the second
169 * tls_dev_del call in tls_device_down if it happens simultaneously.
170 */
171 TLS_RX_DEV_CLOSED = 2,
172 };
173
174 struct cipher_context {
175 u16 prepend_size;
176 u16 tag_size;
177 u16 overhead_size;
178 u16 iv_size;
179 char *iv;
180 u16 rec_seq_size;
181 char *rec_seq;
182 };
183
184 union tls_crypto_context {
185 struct tls_crypto_info info;
186 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
187 };
188
189 struct tls_context {
190 union tls_crypto_context crypto_send;
191 union tls_crypto_context crypto_recv;
192
193 struct list_head list;
194 struct net_device *netdev;
195 refcount_t refcount;
196
197 void *priv_ctx_tx;
198 void *priv_ctx_rx;
199
200 u8 tx_conf:3;
201 u8 rx_conf:3;
202
203 struct cipher_context tx;
204 struct cipher_context rx;
205
206 struct scatterlist *partially_sent_record;
207 u16 partially_sent_offset;
208 unsigned long flags;
209 bool in_tcp_sendpages;
210
211 u16 pending_open_record_frags;
212 int (*push_pending_record)(struct sock *sk, int flags);
213
214 void (*sk_write_space)(struct sock *sk);
215 void (*sk_destruct)(struct sock *sk);
216 void (*sk_proto_close)(struct sock *sk, long timeout);
217
218 int (*setsockopt)(struct sock *sk, int level,
219 int optname, char __user *optval,
220 unsigned int optlen);
221 int (*getsockopt)(struct sock *sk, int level,
222 int optname, char __user *optval,
223 int __user *optlen);
224 int (*hash)(struct sock *sk);
225 void (*unhash)(struct sock *sk);
226 };
227
228 struct tls_offload_context_rx {
229 /* sw must be the first member of tls_offload_context_rx */
230 struct tls_sw_context_rx sw;
231 atomic64_t resync_req;
232 u8 driver_state[];
233 /* The TLS layer reserves room for driver specific state
234 * Currently the belief is that there is not enough
235 * driver specific state to justify another layer of indirection
236 */
237 };
238
239 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
240 (ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
241 TLS_DRIVER_STATE_SIZE)
242
243 void tls_ctx_free(struct tls_context *ctx);
244 int wait_on_pending_writer(struct sock *sk, long *timeo);
245 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
246 int __user *optlen);
247 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
248 unsigned int optlen);
249
250 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
251 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
252 int tls_sw_sendpage(struct sock *sk, struct page *page,
253 int offset, size_t size, int flags);
254 void tls_sw_close(struct sock *sk, long timeout);
255 void tls_sw_free_resources_tx(struct sock *sk);
256 void tls_sw_free_resources_rx(struct sock *sk);
257 void tls_sw_release_resources_rx(struct sock *sk);
258 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
259 int nonblock, int flags, int *addr_len);
260 unsigned int tls_sw_poll(struct file *file, struct socket *sock,
261 struct poll_table_struct *wait);
262 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
263 struct pipe_inode_info *pipe,
264 size_t len, unsigned int flags);
265
266 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
267 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
268 int tls_device_sendpage(struct sock *sk, struct page *page,
269 int offset, size_t size, int flags);
270 void tls_device_sk_destruct(struct sock *sk);
271 void tls_device_init(void);
272 void tls_device_cleanup(void);
273
274 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
275 u32 seq, u64 *p_record_sn);
276
tls_record_is_start_marker(struct tls_record_info * rec)277 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
278 {
279 return rec->len == 0;
280 }
281
tls_record_start_seq(struct tls_record_info * rec)282 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
283 {
284 return rec->end_seq - rec->len;
285 }
286
287 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx);
288 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
289 struct scatterlist *sg, u16 first_offset,
290 int flags);
291 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
292 int flags, long *timeo);
293
tls_is_pending_closed_record(struct tls_context * ctx)294 static inline bool tls_is_pending_closed_record(struct tls_context *ctx)
295 {
296 return test_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
297 }
298
tls_complete_pending_work(struct sock * sk,struct tls_context * ctx,int flags,long * timeo)299 static inline int tls_complete_pending_work(struct sock *sk,
300 struct tls_context *ctx,
301 int flags, long *timeo)
302 {
303 int rc = 0;
304
305 if (unlikely(sk->sk_write_pending))
306 rc = wait_on_pending_writer(sk, timeo);
307
308 if (!rc && tls_is_pending_closed_record(ctx))
309 rc = tls_push_pending_closed_record(sk, ctx, flags, timeo);
310
311 return rc;
312 }
313
tls_is_partially_sent_record(struct tls_context * ctx)314 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
315 {
316 return !!ctx->partially_sent_record;
317 }
318
tls_is_pending_open_record(struct tls_context * tls_ctx)319 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
320 {
321 return tls_ctx->pending_open_record_frags;
322 }
323
324 struct sk_buff *
325 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
326 struct sk_buff *skb);
327
tls_is_sk_tx_device_offloaded(struct sock * sk)328 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
329 {
330 #ifdef CONFIG_SOCK_VALIDATE_XMIT
331 return sk_fullsock(sk) &&
332 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
333 &tls_validate_xmit_skb);
334 #else
335 return false;
336 #endif
337 }
338
tls_err_abort(struct sock * sk,int err)339 static inline void tls_err_abort(struct sock *sk, int err)
340 {
341 sk->sk_err = err;
342 sk->sk_error_report(sk);
343 }
344
tls_bigint_increment(unsigned char * seq,int len)345 static inline bool tls_bigint_increment(unsigned char *seq, int len)
346 {
347 int i;
348
349 for (i = len - 1; i >= 0; i--) {
350 ++seq[i];
351 if (seq[i] != 0)
352 break;
353 }
354
355 return (i == -1);
356 }
357
tls_advance_record_sn(struct sock * sk,struct cipher_context * ctx)358 static inline void tls_advance_record_sn(struct sock *sk,
359 struct cipher_context *ctx)
360 {
361 if (tls_bigint_increment(ctx->rec_seq, ctx->rec_seq_size))
362 tls_err_abort(sk, EBADMSG);
363 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
364 ctx->iv_size);
365 }
366
tls_fill_prepend(struct tls_context * ctx,char * buf,size_t plaintext_len,unsigned char record_type)367 static inline void tls_fill_prepend(struct tls_context *ctx,
368 char *buf,
369 size_t plaintext_len,
370 unsigned char record_type)
371 {
372 size_t pkt_len, iv_size = ctx->tx.iv_size;
373
374 pkt_len = plaintext_len + iv_size + ctx->tx.tag_size;
375
376 /* we cover nonce explicit here as well, so buf should be of
377 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
378 */
379 buf[0] = record_type;
380 buf[1] = TLS_VERSION_MINOR(ctx->crypto_send.info.version);
381 buf[2] = TLS_VERSION_MAJOR(ctx->crypto_send.info.version);
382 /* we can use IV for nonce explicit according to spec */
383 buf[3] = pkt_len >> 8;
384 buf[4] = pkt_len & 0xFF;
385 memcpy(buf + TLS_NONCE_OFFSET,
386 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
387 }
388
tls_make_aad(char * buf,size_t size,char * record_sequence,int record_sequence_size,unsigned char record_type)389 static inline void tls_make_aad(char *buf,
390 size_t size,
391 char *record_sequence,
392 int record_sequence_size,
393 unsigned char record_type)
394 {
395 memcpy(buf, record_sequence, record_sequence_size);
396
397 buf[8] = record_type;
398 buf[9] = TLS_1_2_VERSION_MAJOR;
399 buf[10] = TLS_1_2_VERSION_MINOR;
400 buf[11] = size >> 8;
401 buf[12] = size & 0xFF;
402 }
403
tls_get_ctx(const struct sock * sk)404 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
405 {
406 struct inet_connection_sock *icsk = inet_csk(sk);
407
408 return icsk->icsk_ulp_data;
409 }
410
tls_sw_ctx_rx(const struct tls_context * tls_ctx)411 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
412 const struct tls_context *tls_ctx)
413 {
414 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
415 }
416
tls_sw_ctx_tx(const struct tls_context * tls_ctx)417 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
418 const struct tls_context *tls_ctx)
419 {
420 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
421 }
422
423 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)424 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
425 {
426 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
427 }
428
429 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)430 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
431 {
432 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
433 }
434
435 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)436 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
437 {
438 struct tls_context *tls_ctx = tls_get_ctx(sk);
439 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
440
441 atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1));
442 }
443
444
445 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
446 unsigned char *record_type);
447 void tls_register_device(struct tls_device *device);
448 void tls_unregister_device(struct tls_device *device);
449 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
450 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
451 struct scatterlist *sgout);
452
453 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
454 struct net_device *dev,
455 struct sk_buff *skb);
456
457 int tls_sw_fallback_init(struct sock *sk,
458 struct tls_offload_context_tx *offload_ctx,
459 struct tls_crypto_info *crypto_info);
460
461 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
462
463 void tls_device_offload_cleanup_rx(struct sock *sk);
464 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
465
466 #endif /* _TLS_OFFLOAD_H */
467