1 /* 2 * Host communication command constants for ChromeOS EC 3 * 4 * Copyright (C) 2012 Google, Inc 5 * 6 * This software is licensed under the terms of the GNU General Public 7 * License version 2, as published by the Free Software Foundation, and 8 * may be copied, distributed, and modified under those terms. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * The ChromeOS EC multi function device is used to mux all the requests 16 * to the EC device for its multiple features: keyboard controller, 17 * battery charging and regulator control, firmware update. 18 * 19 * NOTE: This file is copied verbatim from the ChromeOS EC Open Source 20 * project in an attempt to make future updates easy to make. 21 */ 22 23 #ifndef __CROS_EC_COMMANDS_H 24 #define __CROS_EC_COMMANDS_H 25 26 /* 27 * Current version of this protocol 28 * 29 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is 30 * determined in other ways. Remove this once the kernel code no longer 31 * depends on it. 32 */ 33 #define EC_PROTO_VERSION 0x00000002 34 35 /* Command version mask */ 36 #define EC_VER_MASK(version) (1UL << (version)) 37 38 /* I/O addresses for ACPI commands */ 39 #define EC_LPC_ADDR_ACPI_DATA 0x62 40 #define EC_LPC_ADDR_ACPI_CMD 0x66 41 42 /* I/O addresses for host command */ 43 #define EC_LPC_ADDR_HOST_DATA 0x200 44 #define EC_LPC_ADDR_HOST_CMD 0x204 45 46 /* I/O addresses for host command args and params */ 47 /* Protocol version 2 */ 48 #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */ 49 #define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is 50 * EC_PROTO2_MAX_PARAM_SIZE */ 51 /* Protocol version 3 */ 52 #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */ 53 #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */ 54 55 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff 56 * and they tell the kernel that so we have to think of it as two parts. */ 57 #define EC_HOST_CMD_REGION0 0x800 58 #define EC_HOST_CMD_REGION1 0x880 59 #define EC_HOST_CMD_REGION_SIZE 0x80 60 61 /* EC command register bit functions */ 62 #define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */ 63 #define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */ 64 #define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */ 65 #define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */ 66 #define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */ 67 #define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */ 68 #define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */ 69 70 #define EC_LPC_ADDR_MEMMAP 0x900 71 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */ 72 #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */ 73 74 /* The offset address of each type of data in mapped memory. */ 75 #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */ 76 #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */ 77 #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */ 78 #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */ 79 #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */ 80 #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */ 81 #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */ 82 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */ 83 #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */ 84 #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */ 85 /* Unused 0x28 - 0x2f */ 86 #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */ 87 /* Unused 0x31 - 0x33 */ 88 #define EC_MEMMAP_HOST_EVENTS 0x34 /* 32 bits */ 89 /* Reserve 0x38 - 0x3f for additional host event-related stuff */ 90 /* Battery values are all 32 bits */ 91 #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */ 92 #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */ 93 #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */ 94 #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */ 95 #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */ 96 #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */ 97 #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */ 98 #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */ 99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */ 100 #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */ 101 #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */ 102 #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */ 103 #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */ 104 #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */ 105 /* Unused 0x84 - 0x8f */ 106 #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/ 107 /* Unused 0x91 */ 108 #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometer data 0x92 - 0x9f */ 109 #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */ 110 /* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */ 111 112 113 /* Define the format of the accelerometer mapped memory status byte. */ 114 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f 115 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT (1 << 4) 116 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT (1 << 7) 117 118 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */ 119 #define EC_TEMP_SENSOR_ENTRIES 16 120 /* 121 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B. 122 * 123 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2. 124 */ 125 #define EC_TEMP_SENSOR_B_ENTRIES 8 126 127 /* Special values for mapped temperature sensors */ 128 #define EC_TEMP_SENSOR_NOT_PRESENT 0xff 129 #define EC_TEMP_SENSOR_ERROR 0xfe 130 #define EC_TEMP_SENSOR_NOT_POWERED 0xfd 131 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc 132 /* 133 * The offset of temperature value stored in mapped memory. This allows 134 * reporting a temperature range of 200K to 454K = -73C to 181C. 135 */ 136 #define EC_TEMP_SENSOR_OFFSET 200 137 138 /* 139 * Number of ALS readings at EC_MEMMAP_ALS 140 */ 141 #define EC_ALS_ENTRIES 2 142 143 /* 144 * The default value a temperature sensor will return when it is present but 145 * has not been read this boot. This is a reasonable number to avoid 146 * triggering alarms on the host. 147 */ 148 #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET) 149 150 #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */ 151 #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */ 152 #define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */ 153 154 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */ 155 #define EC_BATT_FLAG_AC_PRESENT 0x01 156 #define EC_BATT_FLAG_BATT_PRESENT 0x02 157 #define EC_BATT_FLAG_DISCHARGING 0x04 158 #define EC_BATT_FLAG_CHARGING 0x08 159 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10 160 161 /* Switch flags at EC_MEMMAP_SWITCHES */ 162 #define EC_SWITCH_LID_OPEN 0x01 163 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02 164 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04 165 /* Was recovery requested via keyboard; now unused. */ 166 #define EC_SWITCH_IGNORE1 0x08 167 /* Recovery requested via dedicated signal (from servo board) */ 168 #define EC_SWITCH_DEDICATED_RECOVERY 0x10 169 /* Was fake developer mode switch; now unused. Remove in next refactor. */ 170 #define EC_SWITCH_IGNORE0 0x20 171 172 /* Host command interface flags */ 173 /* Host command interface supports LPC args (LPC interface only) */ 174 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01 175 /* Host command interface supports version 3 protocol */ 176 #define EC_HOST_CMD_FLAG_VERSION_3 0x02 177 178 /* Wireless switch flags */ 179 #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */ 180 #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */ 181 #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */ 182 #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */ 183 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */ 184 185 /* 186 * This header file is used in coreboot both in C and ACPI code. The ACPI code 187 * is pre-processed to handle constants but the ASL compiler is unable to 188 * handle actual C code so keep it separate. 189 */ 190 #ifndef __ACPI__ 191 192 /* 193 * Define __packed if someone hasn't beat us to it. Linux kernel style 194 * checking prefers __packed over __attribute__((packed)). 195 */ 196 #ifndef __packed 197 #define __packed __attribute__((packed)) 198 #endif 199 200 /* LPC command status byte masks */ 201 /* EC has written a byte in the data register and host hasn't read it yet */ 202 #define EC_LPC_STATUS_TO_HOST 0x01 203 /* Host has written a command/data byte and the EC hasn't read it yet */ 204 #define EC_LPC_STATUS_FROM_HOST 0x02 205 /* EC is processing a command */ 206 #define EC_LPC_STATUS_PROCESSING 0x04 207 /* Last write to EC was a command, not data */ 208 #define EC_LPC_STATUS_LAST_CMD 0x08 209 /* EC is in burst mode. Unsupported by Chrome EC, so this bit is never set */ 210 #define EC_LPC_STATUS_BURST_MODE 0x10 211 /* SCI event is pending (requesting SCI query) */ 212 #define EC_LPC_STATUS_SCI_PENDING 0x20 213 /* SMI event is pending (requesting SMI query) */ 214 #define EC_LPC_STATUS_SMI_PENDING 0x40 215 /* (reserved) */ 216 #define EC_LPC_STATUS_RESERVED 0x80 217 218 /* 219 * EC is busy. This covers both the EC processing a command, and the host has 220 * written a new command but the EC hasn't picked it up yet. 221 */ 222 #define EC_LPC_STATUS_BUSY_MASK \ 223 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING) 224 225 /* Host command response codes */ 226 enum ec_status { 227 EC_RES_SUCCESS = 0, 228 EC_RES_INVALID_COMMAND = 1, 229 EC_RES_ERROR = 2, 230 EC_RES_INVALID_PARAM = 3, 231 EC_RES_ACCESS_DENIED = 4, 232 EC_RES_INVALID_RESPONSE = 5, 233 EC_RES_INVALID_VERSION = 6, 234 EC_RES_INVALID_CHECKSUM = 7, 235 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */ 236 EC_RES_UNAVAILABLE = 9, /* No response available */ 237 EC_RES_TIMEOUT = 10, /* We got a timeout */ 238 EC_RES_OVERFLOW = 11, /* Table / data overflow */ 239 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */ 240 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */ 241 EC_RES_RESPONSE_TOO_BIG = 14 /* Response was too big to handle */ 242 }; 243 244 /* 245 * Host event codes. Note these are 1-based, not 0-based, because ACPI query 246 * EC command uses code 0 to mean "no event pending". We explicitly specify 247 * each value in the enum listing so they won't change if we delete/insert an 248 * item or rearrange the list (it needs to be stable across platforms, not 249 * just within a single compiled instance). 250 */ 251 enum host_event_code { 252 EC_HOST_EVENT_LID_CLOSED = 1, 253 EC_HOST_EVENT_LID_OPEN = 2, 254 EC_HOST_EVENT_POWER_BUTTON = 3, 255 EC_HOST_EVENT_AC_CONNECTED = 4, 256 EC_HOST_EVENT_AC_DISCONNECTED = 5, 257 EC_HOST_EVENT_BATTERY_LOW = 6, 258 EC_HOST_EVENT_BATTERY_CRITICAL = 7, 259 EC_HOST_EVENT_BATTERY = 8, 260 EC_HOST_EVENT_THERMAL_THRESHOLD = 9, 261 EC_HOST_EVENT_THERMAL_OVERLOAD = 10, 262 EC_HOST_EVENT_THERMAL = 11, 263 EC_HOST_EVENT_USB_CHARGER = 12, 264 EC_HOST_EVENT_KEY_PRESSED = 13, 265 /* 266 * EC has finished initializing the host interface. The host can check 267 * for this event following sending a EC_CMD_REBOOT_EC command to 268 * determine when the EC is ready to accept subsequent commands. 269 */ 270 EC_HOST_EVENT_INTERFACE_READY = 14, 271 /* Keyboard recovery combo has been pressed */ 272 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15, 273 274 /* Shutdown due to thermal overload */ 275 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16, 276 /* Shutdown due to battery level too low */ 277 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17, 278 279 /* Suggest that the AP throttle itself */ 280 EC_HOST_EVENT_THROTTLE_START = 18, 281 /* Suggest that the AP resume normal speed */ 282 EC_HOST_EVENT_THROTTLE_STOP = 19, 283 284 /* Hang detect logic detected a hang and host event timeout expired */ 285 EC_HOST_EVENT_HANG_DETECT = 20, 286 /* Hang detect logic detected a hang and warm rebooted the AP */ 287 EC_HOST_EVENT_HANG_REBOOT = 21, 288 /* PD MCU triggering host event */ 289 EC_HOST_EVENT_PD_MCU = 22, 290 291 /* EC desires to change state of host-controlled USB mux */ 292 EC_HOST_EVENT_USB_MUX = 28, 293 294 /* EC RTC event occurred */ 295 EC_HOST_EVENT_RTC = 26, 296 297 /* 298 * The high bit of the event mask is not used as a host event code. If 299 * it reads back as set, then the entire event mask should be 300 * considered invalid by the host. This can happen when reading the 301 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is 302 * not initialized on the EC, or improperly configured on the host. 303 */ 304 EC_HOST_EVENT_INVALID = 32 305 }; 306 /* Host event mask */ 307 #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1)) 308 309 /* Arguments at EC_LPC_ADDR_HOST_ARGS */ 310 struct ec_lpc_host_args { 311 uint8_t flags; 312 uint8_t command_version; 313 uint8_t data_size; 314 /* 315 * Checksum; sum of command + flags + command_version + data_size + 316 * all params/response data bytes. 317 */ 318 uint8_t checksum; 319 } __packed; 320 321 /* Flags for ec_lpc_host_args.flags */ 322 /* 323 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command 324 * params. 325 * 326 * If EC gets a command and this flag is not set, this is an old-style command. 327 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with 328 * unknown length. EC must respond with an old-style response (that is, 329 * withouth setting EC_HOST_ARGS_FLAG_TO_HOST). 330 */ 331 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01 332 /* 333 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response. 334 * 335 * If EC responds to a command and this flag is not set, this is an old-style 336 * response. Command version is 0 and response data from EC is at 337 * EC_LPC_ADDR_OLD_PARAM with unknown length. 338 */ 339 #define EC_HOST_ARGS_FLAG_TO_HOST 0x02 340 341 /*****************************************************************************/ 342 /* 343 * Byte codes returned by EC over SPI interface. 344 * 345 * These can be used by the AP to debug the EC interface, and to determine 346 * when the EC is not in a state where it will ever get around to responding 347 * to the AP. 348 * 349 * Example of sequence of bytes read from EC for a current good transfer: 350 * 1. - - AP asserts chip select (CS#) 351 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request 352 * 3. - - EC starts handling CS# interrupt 353 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request 354 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in 355 * bytes looking for EC_SPI_FRAME_START 356 * 6. - - EC finishes processing and sets up response 357 * 7. EC_SPI_FRAME_START - AP reads frame byte 358 * 8. (response packet) - AP reads response packet 359 * 9. EC_SPI_PAST_END - Any additional bytes read by AP 360 * 10 - - AP deasserts chip select 361 * 11 - - EC processes CS# interrupt and sets up DMA for 362 * next request 363 * 364 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than 365 * the following byte values: 366 * EC_SPI_OLD_READY 367 * EC_SPI_RX_READY 368 * EC_SPI_RECEIVING 369 * EC_SPI_PROCESSING 370 * 371 * Then the EC found an error in the request, or was not ready for the request 372 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START, 373 * because the EC is unable to tell when the AP is done sending its request. 374 */ 375 376 /* 377 * Framing byte which precedes a response packet from the EC. After sending a 378 * request, the AP will clock in bytes until it sees the framing byte, then 379 * clock in the response packet. 380 */ 381 #define EC_SPI_FRAME_START 0xec 382 383 /* 384 * Padding bytes which are clocked out after the end of a response packet. 385 */ 386 #define EC_SPI_PAST_END 0xed 387 388 /* 389 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects 390 * that the AP will send a valid packet header (starting with 391 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes. 392 */ 393 #define EC_SPI_RX_READY 0xf8 394 395 /* 396 * EC has started receiving the request from the AP, but hasn't started 397 * processing it yet. 398 */ 399 #define EC_SPI_RECEIVING 0xf9 400 401 /* EC has received the entire request from the AP and is processing it. */ 402 #define EC_SPI_PROCESSING 0xfa 403 404 /* 405 * EC received bad data from the AP, such as a packet header with an invalid 406 * length. EC will ignore all data until chip select deasserts. 407 */ 408 #define EC_SPI_RX_BAD_DATA 0xfb 409 410 /* 411 * EC received data from the AP before it was ready. That is, the AP asserted 412 * chip select and started clocking data before the EC was ready to receive it. 413 * EC will ignore all data until chip select deasserts. 414 */ 415 #define EC_SPI_NOT_READY 0xfc 416 417 /* 418 * EC was ready to receive a request from the AP. EC has treated the byte sent 419 * by the AP as part of a request packet, or (for old-style ECs) is processing 420 * a fully received packet but is not ready to respond yet. 421 */ 422 #define EC_SPI_OLD_READY 0xfd 423 424 /*****************************************************************************/ 425 426 /* 427 * Protocol version 2 for I2C and SPI send a request this way: 428 * 429 * 0 EC_CMD_VERSION0 + (command version) 430 * 1 Command number 431 * 2 Length of params = N 432 * 3..N+2 Params, if any 433 * N+3 8-bit checksum of bytes 0..N+2 434 * 435 * The corresponding response is: 436 * 437 * 0 Result code (EC_RES_*) 438 * 1 Length of params = M 439 * 2..M+1 Params, if any 440 * M+2 8-bit checksum of bytes 0..M+1 441 */ 442 #define EC_PROTO2_REQUEST_HEADER_BYTES 3 443 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1 444 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \ 445 EC_PROTO2_REQUEST_TRAILER_BYTES) 446 447 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2 448 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1 449 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \ 450 EC_PROTO2_RESPONSE_TRAILER_BYTES) 451 452 /* Parameter length was limited by the LPC interface */ 453 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc 454 455 /* Maximum request and response packet sizes for protocol version 2 */ 456 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \ 457 EC_PROTO2_MAX_PARAM_SIZE) 458 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \ 459 EC_PROTO2_MAX_PARAM_SIZE) 460 461 /*****************************************************************************/ 462 463 /* 464 * Value written to legacy command port / prefix byte to indicate protocol 465 * 3+ structs are being used. Usage is bus-dependent. 466 */ 467 #define EC_COMMAND_PROTOCOL_3 0xda 468 469 #define EC_HOST_REQUEST_VERSION 3 470 471 /* Version 3 request from host */ 472 struct ec_host_request { 473 /* Struct version (=3) 474 * 475 * EC will return EC_RES_INVALID_HEADER if it receives a header with a 476 * version it doesn't know how to parse. 477 */ 478 uint8_t struct_version; 479 480 /* 481 * Checksum of request and data; sum of all bytes including checksum 482 * should total to 0. 483 */ 484 uint8_t checksum; 485 486 /* Command code */ 487 uint16_t command; 488 489 /* Command version */ 490 uint8_t command_version; 491 492 /* Unused byte in current protocol version; set to 0 */ 493 uint8_t reserved; 494 495 /* Length of data which follows this header */ 496 uint16_t data_len; 497 } __packed; 498 499 #define EC_HOST_RESPONSE_VERSION 3 500 501 /* Version 3 response from EC */ 502 struct ec_host_response { 503 /* Struct version (=3) */ 504 uint8_t struct_version; 505 506 /* 507 * Checksum of response and data; sum of all bytes including checksum 508 * should total to 0. 509 */ 510 uint8_t checksum; 511 512 /* Result code (EC_RES_*) */ 513 uint16_t result; 514 515 /* Length of data which follows this header */ 516 uint16_t data_len; 517 518 /* Unused bytes in current protocol version; set to 0 */ 519 uint16_t reserved; 520 } __packed; 521 522 /*****************************************************************************/ 523 /* 524 * Notes on commands: 525 * 526 * Each command is an 16-bit command value. Commands which take params or 527 * return response data specify structs for that data. If no struct is 528 * specified, the command does not input or output data, respectively. 529 * Parameter/response length is implicit in the structs. Some underlying 530 * communication protocols (I2C, SPI) may add length or checksum headers, but 531 * those are implementation-dependent and not defined here. 532 */ 533 534 /*****************************************************************************/ 535 /* General / test commands */ 536 537 /* 538 * Get protocol version, used to deal with non-backward compatible protocol 539 * changes. 540 */ 541 #define EC_CMD_PROTO_VERSION 0x00 542 543 struct ec_response_proto_version { 544 uint32_t version; 545 } __packed; 546 547 /* 548 * Hello. This is a simple command to test the EC is responsive to 549 * commands. 550 */ 551 #define EC_CMD_HELLO 0x01 552 553 struct ec_params_hello { 554 uint32_t in_data; /* Pass anything here */ 555 } __packed; 556 557 struct ec_response_hello { 558 uint32_t out_data; /* Output will be in_data + 0x01020304 */ 559 } __packed; 560 561 /* Get version number */ 562 #define EC_CMD_GET_VERSION 0x02 563 564 enum ec_current_image { 565 EC_IMAGE_UNKNOWN = 0, 566 EC_IMAGE_RO, 567 EC_IMAGE_RW 568 }; 569 570 struct ec_response_get_version { 571 /* Null-terminated version strings for RO, RW */ 572 char version_string_ro[32]; 573 char version_string_rw[32]; 574 char reserved[32]; /* Was previously RW-B string */ 575 uint32_t current_image; /* One of ec_current_image */ 576 } __packed; 577 578 /* Read test */ 579 #define EC_CMD_READ_TEST 0x03 580 581 struct ec_params_read_test { 582 uint32_t offset; /* Starting value for read buffer */ 583 uint32_t size; /* Size to read in bytes */ 584 } __packed; 585 586 struct ec_response_read_test { 587 uint32_t data[32]; 588 } __packed; 589 590 /* 591 * Get build information 592 * 593 * Response is null-terminated string. 594 */ 595 #define EC_CMD_GET_BUILD_INFO 0x04 596 597 /* Get chip info */ 598 #define EC_CMD_GET_CHIP_INFO 0x05 599 600 struct ec_response_get_chip_info { 601 /* Null-terminated strings */ 602 char vendor[32]; 603 char name[32]; 604 char revision[32]; /* Mask version */ 605 } __packed; 606 607 /* Get board HW version */ 608 #define EC_CMD_GET_BOARD_VERSION 0x06 609 610 struct ec_response_board_version { 611 uint16_t board_version; /* A monotonously incrementing number. */ 612 } __packed; 613 614 /* 615 * Read memory-mapped data. 616 * 617 * This is an alternate interface to memory-mapped data for bus protocols 618 * which don't support direct-mapped memory - I2C, SPI, etc. 619 * 620 * Response is params.size bytes of data. 621 */ 622 #define EC_CMD_READ_MEMMAP 0x07 623 624 struct ec_params_read_memmap { 625 uint8_t offset; /* Offset in memmap (EC_MEMMAP_*) */ 626 uint8_t size; /* Size to read in bytes */ 627 } __packed; 628 629 /* Read versions supported for a command */ 630 #define EC_CMD_GET_CMD_VERSIONS 0x08 631 632 struct ec_params_get_cmd_versions { 633 uint8_t cmd; /* Command to check */ 634 } __packed; 635 636 struct ec_params_get_cmd_versions_v1 { 637 uint16_t cmd; /* Command to check */ 638 } __packed; 639 640 struct ec_response_get_cmd_versions { 641 /* 642 * Mask of supported versions; use EC_VER_MASK() to compare with a 643 * desired version. 644 */ 645 uint32_t version_mask; 646 } __packed; 647 648 /* 649 * Check EC communcations status (busy). This is needed on i2c/spi but not 650 * on lpc since it has its own out-of-band busy indicator. 651 * 652 * lpc must read the status from the command register. Attempting this on 653 * lpc will overwrite the args/parameter space and corrupt its data. 654 */ 655 #define EC_CMD_GET_COMMS_STATUS 0x09 656 657 /* Avoid using ec_status which is for return values */ 658 enum ec_comms_status { 659 EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */ 660 }; 661 662 struct ec_response_get_comms_status { 663 uint32_t flags; /* Mask of enum ec_comms_status */ 664 } __packed; 665 666 /* Fake a variety of responses, purely for testing purposes. */ 667 #define EC_CMD_TEST_PROTOCOL 0x0a 668 669 /* Tell the EC what to send back to us. */ 670 struct ec_params_test_protocol { 671 uint32_t ec_result; 672 uint32_t ret_len; 673 uint8_t buf[32]; 674 } __packed; 675 676 /* Here it comes... */ 677 struct ec_response_test_protocol { 678 uint8_t buf[32]; 679 } __packed; 680 681 /* Get prococol information */ 682 #define EC_CMD_GET_PROTOCOL_INFO 0x0b 683 684 /* Flags for ec_response_get_protocol_info.flags */ 685 /* EC_RES_IN_PROGRESS may be returned if a command is slow */ 686 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0) 687 688 struct ec_response_get_protocol_info { 689 /* Fields which exist if at least protocol version 3 supported */ 690 691 /* Bitmask of protocol versions supported (1 << n means version n)*/ 692 uint32_t protocol_versions; 693 694 /* Maximum request packet size, in bytes */ 695 uint16_t max_request_packet_size; 696 697 /* Maximum response packet size, in bytes */ 698 uint16_t max_response_packet_size; 699 700 /* Flags; see EC_PROTOCOL_INFO_* */ 701 uint32_t flags; 702 } __packed; 703 704 705 /*****************************************************************************/ 706 /* Get/Set miscellaneous values */ 707 708 /* The upper byte of .flags tells what to do (nothing means "get") */ 709 #define EC_GSV_SET 0x80000000 710 711 /* The lower three bytes of .flags identifies the parameter, if that has 712 meaning for an individual command. */ 713 #define EC_GSV_PARAM_MASK 0x00ffffff 714 715 struct ec_params_get_set_value { 716 uint32_t flags; 717 uint32_t value; 718 } __packed; 719 720 struct ec_response_get_set_value { 721 uint32_t flags; 722 uint32_t value; 723 } __packed; 724 725 /* More than one command can use these structs to get/set paramters. */ 726 #define EC_CMD_GSV_PAUSE_IN_S5 0x0c 727 728 /*****************************************************************************/ 729 /* List the features supported by the firmware */ 730 #define EC_CMD_GET_FEATURES 0x0d 731 732 /* Supported features */ 733 enum ec_feature_code { 734 /* 735 * This image contains a limited set of features. Another image 736 * in RW partition may support more features. 737 */ 738 EC_FEATURE_LIMITED = 0, 739 /* 740 * Commands for probing/reading/writing/erasing the flash in the 741 * EC are present. 742 */ 743 EC_FEATURE_FLASH = 1, 744 /* 745 * Can control the fan speed directly. 746 */ 747 EC_FEATURE_PWM_FAN = 2, 748 /* 749 * Can control the intensity of the keyboard backlight. 750 */ 751 EC_FEATURE_PWM_KEYB = 3, 752 /* 753 * Support Google lightbar, introduced on Pixel. 754 */ 755 EC_FEATURE_LIGHTBAR = 4, 756 /* Control of LEDs */ 757 EC_FEATURE_LED = 5, 758 /* Exposes an interface to control gyro and sensors. 759 * The host goes through the EC to access these sensors. 760 * In addition, the EC may provide composite sensors, like lid angle. 761 */ 762 EC_FEATURE_MOTION_SENSE = 6, 763 /* The keyboard is controlled by the EC */ 764 EC_FEATURE_KEYB = 7, 765 /* The AP can use part of the EC flash as persistent storage. */ 766 EC_FEATURE_PSTORE = 8, 767 /* The EC monitors BIOS port 80h, and can return POST codes. */ 768 EC_FEATURE_PORT80 = 9, 769 /* 770 * Thermal management: include TMP specific commands. 771 * Higher level than direct fan control. 772 */ 773 EC_FEATURE_THERMAL = 10, 774 /* Can switch the screen backlight on/off */ 775 EC_FEATURE_BKLIGHT_SWITCH = 11, 776 /* Can switch the wifi module on/off */ 777 EC_FEATURE_WIFI_SWITCH = 12, 778 /* Monitor host events, through for example SMI or SCI */ 779 EC_FEATURE_HOST_EVENTS = 13, 780 /* The EC exposes GPIO commands to control/monitor connected devices. */ 781 EC_FEATURE_GPIO = 14, 782 /* The EC can send i2c messages to downstream devices. */ 783 EC_FEATURE_I2C = 15, 784 /* Command to control charger are included */ 785 EC_FEATURE_CHARGER = 16, 786 /* Simple battery support. */ 787 EC_FEATURE_BATTERY = 17, 788 /* 789 * Support Smart battery protocol 790 * (Common Smart Battery System Interface Specification) 791 */ 792 EC_FEATURE_SMART_BATTERY = 18, 793 /* EC can dectect when the host hangs. */ 794 EC_FEATURE_HANG_DETECT = 19, 795 /* Report power information, for pit only */ 796 EC_FEATURE_PMU = 20, 797 /* Another Cros EC device is present downstream of this one */ 798 EC_FEATURE_SUB_MCU = 21, 799 /* Support USB Power delivery (PD) commands */ 800 EC_FEATURE_USB_PD = 22, 801 /* Control USB multiplexer, for audio through USB port for instance. */ 802 EC_FEATURE_USB_MUX = 23, 803 /* Motion Sensor code has an internal software FIFO */ 804 EC_FEATURE_MOTION_SENSE_FIFO = 24, 805 /* EC has RTC feature that can be controlled by host commands */ 806 EC_FEATURE_RTC = 27, 807 /* EC supports CEC commands */ 808 EC_FEATURE_CEC = 35, 809 }; 810 811 #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32)) 812 #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32)) 813 struct ec_response_get_features { 814 uint32_t flags[2]; 815 } __packed; 816 817 /*****************************************************************************/ 818 /* Flash commands */ 819 820 /* Get flash info */ 821 #define EC_CMD_FLASH_INFO 0x10 822 823 /* Version 0 returns these fields */ 824 struct ec_response_flash_info { 825 /* Usable flash size, in bytes */ 826 uint32_t flash_size; 827 /* 828 * Write block size. Write offset and size must be a multiple 829 * of this. 830 */ 831 uint32_t write_block_size; 832 /* 833 * Erase block size. Erase offset and size must be a multiple 834 * of this. 835 */ 836 uint32_t erase_block_size; 837 /* 838 * Protection block size. Protection offset and size must be a 839 * multiple of this. 840 */ 841 uint32_t protect_block_size; 842 } __packed; 843 844 /* Flags for version 1+ flash info command */ 845 /* EC flash erases bits to 0 instead of 1 */ 846 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0) 847 848 /* 849 * Version 1 returns the same initial fields as version 0, with additional 850 * fields following. 851 * 852 * gcc anonymous structs don't seem to get along with the __packed directive; 853 * if they did we'd define the version 0 struct as a sub-struct of this one. 854 */ 855 struct ec_response_flash_info_1 { 856 /* Version 0 fields; see above for description */ 857 uint32_t flash_size; 858 uint32_t write_block_size; 859 uint32_t erase_block_size; 860 uint32_t protect_block_size; 861 862 /* Version 1 adds these fields: */ 863 /* 864 * Ideal write size in bytes. Writes will be fastest if size is 865 * exactly this and offset is a multiple of this. For example, an EC 866 * may have a write buffer which can do half-page operations if data is 867 * aligned, and a slower word-at-a-time write mode. 868 */ 869 uint32_t write_ideal_size; 870 871 /* Flags; see EC_FLASH_INFO_* */ 872 uint32_t flags; 873 } __packed; 874 875 /* 876 * Read flash 877 * 878 * Response is params.size bytes of data. 879 */ 880 #define EC_CMD_FLASH_READ 0x11 881 882 struct ec_params_flash_read { 883 uint32_t offset; /* Byte offset to read */ 884 uint32_t size; /* Size to read in bytes */ 885 } __packed; 886 887 /* Write flash */ 888 #define EC_CMD_FLASH_WRITE 0x12 889 #define EC_VER_FLASH_WRITE 1 890 891 /* Version 0 of the flash command supported only 64 bytes of data */ 892 #define EC_FLASH_WRITE_VER0_SIZE 64 893 894 struct ec_params_flash_write { 895 uint32_t offset; /* Byte offset to write */ 896 uint32_t size; /* Size to write in bytes */ 897 /* Followed by data to write */ 898 } __packed; 899 900 /* Erase flash */ 901 #define EC_CMD_FLASH_ERASE 0x13 902 903 struct ec_params_flash_erase { 904 uint32_t offset; /* Byte offset to erase */ 905 uint32_t size; /* Size to erase in bytes */ 906 } __packed; 907 908 /* 909 * Get/set flash protection. 910 * 911 * If mask!=0, sets/clear the requested bits of flags. Depending on the 912 * firmware write protect GPIO, not all flags will take effect immediately; 913 * some flags require a subsequent hard reset to take effect. Check the 914 * returned flags bits to see what actually happened. 915 * 916 * If mask=0, simply returns the current flags state. 917 */ 918 #define EC_CMD_FLASH_PROTECT 0x15 919 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */ 920 921 /* Flags for flash protection */ 922 /* RO flash code protected when the EC boots */ 923 #define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0) 924 /* 925 * RO flash code protected now. If this bit is set, at-boot status cannot 926 * be changed. 927 */ 928 #define EC_FLASH_PROTECT_RO_NOW (1 << 1) 929 /* Entire flash code protected now, until reboot. */ 930 #define EC_FLASH_PROTECT_ALL_NOW (1 << 2) 931 /* Flash write protect GPIO is asserted now */ 932 #define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3) 933 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */ 934 #define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4) 935 /* 936 * Error - flash protection is in inconsistent state. At least one bank of 937 * flash which should be protected is not protected. Usually fixed by 938 * re-requesting the desired flags, or by a hard reset if that fails. 939 */ 940 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5) 941 /* Entile flash code protected when the EC boots */ 942 #define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6) 943 944 struct ec_params_flash_protect { 945 uint32_t mask; /* Bits in flags to apply */ 946 uint32_t flags; /* New flags to apply */ 947 } __packed; 948 949 struct ec_response_flash_protect { 950 /* Current value of flash protect flags */ 951 uint32_t flags; 952 /* 953 * Flags which are valid on this platform. This allows the caller 954 * to distinguish between flags which aren't set vs. flags which can't 955 * be set on this platform. 956 */ 957 uint32_t valid_flags; 958 /* Flags which can be changed given the current protection state */ 959 uint32_t writable_flags; 960 } __packed; 961 962 /* 963 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash 964 * write protect. These commands may be reused with version > 0. 965 */ 966 967 /* Get the region offset/size */ 968 #define EC_CMD_FLASH_REGION_INFO 0x16 969 #define EC_VER_FLASH_REGION_INFO 1 970 971 enum ec_flash_region { 972 /* Region which holds read-only EC image */ 973 EC_FLASH_REGION_RO = 0, 974 /* Region which holds rewritable EC image */ 975 EC_FLASH_REGION_RW, 976 /* 977 * Region which should be write-protected in the factory (a superset of 978 * EC_FLASH_REGION_RO) 979 */ 980 EC_FLASH_REGION_WP_RO, 981 /* Number of regions */ 982 EC_FLASH_REGION_COUNT, 983 }; 984 985 struct ec_params_flash_region_info { 986 uint32_t region; /* enum ec_flash_region */ 987 } __packed; 988 989 struct ec_response_flash_region_info { 990 uint32_t offset; 991 uint32_t size; 992 } __packed; 993 994 /* Read/write VbNvContext */ 995 #define EC_CMD_VBNV_CONTEXT 0x17 996 #define EC_VER_VBNV_CONTEXT 1 997 #define EC_VBNV_BLOCK_SIZE 16 998 999 enum ec_vbnvcontext_op { 1000 EC_VBNV_CONTEXT_OP_READ, 1001 EC_VBNV_CONTEXT_OP_WRITE, 1002 }; 1003 1004 struct ec_params_vbnvcontext { 1005 uint32_t op; 1006 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1007 } __packed; 1008 1009 struct ec_response_vbnvcontext { 1010 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1011 } __packed; 1012 1013 /*****************************************************************************/ 1014 /* PWM commands */ 1015 1016 /* Get fan target RPM */ 1017 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20 1018 1019 struct ec_response_pwm_get_fan_rpm { 1020 uint32_t rpm; 1021 } __packed; 1022 1023 /* Set target fan RPM */ 1024 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21 1025 1026 struct ec_params_pwm_set_fan_target_rpm { 1027 uint32_t rpm; 1028 } __packed; 1029 1030 /* Get keyboard backlight */ 1031 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22 1032 1033 struct ec_response_pwm_get_keyboard_backlight { 1034 uint8_t percent; 1035 uint8_t enabled; 1036 } __packed; 1037 1038 /* Set keyboard backlight */ 1039 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23 1040 1041 struct ec_params_pwm_set_keyboard_backlight { 1042 uint8_t percent; 1043 } __packed; 1044 1045 /* Set target fan PWM duty cycle */ 1046 #define EC_CMD_PWM_SET_FAN_DUTY 0x24 1047 1048 struct ec_params_pwm_set_fan_duty { 1049 uint32_t percent; 1050 } __packed; 1051 1052 #define EC_CMD_PWM_SET_DUTY 0x25 1053 /* 16 bit duty cycle, 0xffff = 100% */ 1054 #define EC_PWM_MAX_DUTY 0xffff 1055 1056 enum ec_pwm_type { 1057 /* All types, indexed by board-specific enum pwm_channel */ 1058 EC_PWM_TYPE_GENERIC = 0, 1059 /* Keyboard backlight */ 1060 EC_PWM_TYPE_KB_LIGHT, 1061 /* Display backlight */ 1062 EC_PWM_TYPE_DISPLAY_LIGHT, 1063 EC_PWM_TYPE_COUNT, 1064 }; 1065 1066 struct ec_params_pwm_set_duty { 1067 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ 1068 uint8_t pwm_type; /* ec_pwm_type */ 1069 uint8_t index; /* Type-specific index, or 0 if unique */ 1070 } __packed; 1071 1072 #define EC_CMD_PWM_GET_DUTY 0x26 1073 1074 struct ec_params_pwm_get_duty { 1075 uint8_t pwm_type; /* ec_pwm_type */ 1076 uint8_t index; /* Type-specific index, or 0 if unique */ 1077 } __packed; 1078 1079 struct ec_response_pwm_get_duty { 1080 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ 1081 } __packed; 1082 1083 /*****************************************************************************/ 1084 /* 1085 * Lightbar commands. This looks worse than it is. Since we only use one HOST 1086 * command to say "talk to the lightbar", we put the "and tell it to do X" part 1087 * into a subcommand. We'll make separate structs for subcommands with 1088 * different input args, so that we know how much to expect. 1089 */ 1090 #define EC_CMD_LIGHTBAR_CMD 0x28 1091 1092 struct rgb_s { 1093 uint8_t r, g, b; 1094 }; 1095 1096 #define LB_BATTERY_LEVELS 4 1097 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a 1098 * host command, but the alignment is the same regardless. Keep it that way. 1099 */ 1100 struct lightbar_params_v0 { 1101 /* Timing */ 1102 int32_t google_ramp_up; 1103 int32_t google_ramp_down; 1104 int32_t s3s0_ramp_up; 1105 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1106 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1107 int32_t s0s3_ramp_down; 1108 int32_t s3_sleep_for; 1109 int32_t s3_ramp_up; 1110 int32_t s3_ramp_down; 1111 1112 /* Oscillation */ 1113 uint8_t new_s0; 1114 uint8_t osc_min[2]; /* AC=0/1 */ 1115 uint8_t osc_max[2]; /* AC=0/1 */ 1116 uint8_t w_ofs[2]; /* AC=0/1 */ 1117 1118 /* Brightness limits based on the backlight and AC. */ 1119 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1120 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1121 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1122 1123 /* Battery level thresholds */ 1124 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1125 1126 /* Map [AC][battery_level] to color index */ 1127 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1128 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1129 1130 /* Color palette */ 1131 struct rgb_s color[8]; /* 0-3 are Google colors */ 1132 } __packed; 1133 1134 struct lightbar_params_v1 { 1135 /* Timing */ 1136 int32_t google_ramp_up; 1137 int32_t google_ramp_down; 1138 int32_t s3s0_ramp_up; 1139 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1140 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1141 int32_t s0s3_ramp_down; 1142 int32_t s3_sleep_for; 1143 int32_t s3_ramp_up; 1144 int32_t s3_ramp_down; 1145 int32_t tap_tick_delay; 1146 int32_t tap_display_time; 1147 1148 /* Tap-for-battery params */ 1149 uint8_t tap_pct_red; 1150 uint8_t tap_pct_green; 1151 uint8_t tap_seg_min_on; 1152 uint8_t tap_seg_max_on; 1153 uint8_t tap_seg_osc; 1154 uint8_t tap_idx[3]; 1155 1156 /* Oscillation */ 1157 uint8_t osc_min[2]; /* AC=0/1 */ 1158 uint8_t osc_max[2]; /* AC=0/1 */ 1159 uint8_t w_ofs[2]; /* AC=0/1 */ 1160 1161 /* Brightness limits based on the backlight and AC. */ 1162 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1163 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1164 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1165 1166 /* Battery level thresholds */ 1167 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1168 1169 /* Map [AC][battery_level] to color index */ 1170 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1171 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1172 1173 /* Color palette */ 1174 struct rgb_s color[8]; /* 0-3 are Google colors */ 1175 } __packed; 1176 1177 /* Lightbar program */ 1178 #define EC_LB_PROG_LEN 192 1179 struct lightbar_program { 1180 uint8_t size; 1181 uint8_t data[EC_LB_PROG_LEN]; 1182 }; 1183 1184 struct ec_params_lightbar { 1185 uint8_t cmd; /* Command (see enum lightbar_command) */ 1186 union { 1187 struct { 1188 /* no args */ 1189 } dump, off, on, init, get_seq, get_params_v0, get_params_v1, 1190 version, get_brightness, get_demo, suspend, resume; 1191 1192 struct { 1193 uint8_t num; 1194 } set_brightness, seq, demo; 1195 1196 struct { 1197 uint8_t ctrl, reg, value; 1198 } reg; 1199 1200 struct { 1201 uint8_t led, red, green, blue; 1202 } set_rgb; 1203 1204 struct { 1205 uint8_t led; 1206 } get_rgb; 1207 1208 struct { 1209 uint8_t enable; 1210 } manual_suspend_ctrl; 1211 1212 struct lightbar_params_v0 set_params_v0; 1213 struct lightbar_params_v1 set_params_v1; 1214 struct lightbar_program set_program; 1215 }; 1216 } __packed; 1217 1218 struct ec_response_lightbar { 1219 union { 1220 struct { 1221 struct { 1222 uint8_t reg; 1223 uint8_t ic0; 1224 uint8_t ic1; 1225 } vals[23]; 1226 } dump; 1227 1228 struct { 1229 uint8_t num; 1230 } get_seq, get_brightness, get_demo; 1231 1232 struct lightbar_params_v0 get_params_v0; 1233 struct lightbar_params_v1 get_params_v1; 1234 1235 struct { 1236 uint32_t num; 1237 uint32_t flags; 1238 } version; 1239 1240 struct { 1241 uint8_t red, green, blue; 1242 } get_rgb; 1243 1244 struct { 1245 /* no return params */ 1246 } off, on, init, set_brightness, seq, reg, set_rgb, 1247 demo, set_params_v0, set_params_v1, 1248 set_program, manual_suspend_ctrl, suspend, resume; 1249 }; 1250 } __packed; 1251 1252 /* Lightbar commands */ 1253 enum lightbar_command { 1254 LIGHTBAR_CMD_DUMP = 0, 1255 LIGHTBAR_CMD_OFF = 1, 1256 LIGHTBAR_CMD_ON = 2, 1257 LIGHTBAR_CMD_INIT = 3, 1258 LIGHTBAR_CMD_SET_BRIGHTNESS = 4, 1259 LIGHTBAR_CMD_SEQ = 5, 1260 LIGHTBAR_CMD_REG = 6, 1261 LIGHTBAR_CMD_SET_RGB = 7, 1262 LIGHTBAR_CMD_GET_SEQ = 8, 1263 LIGHTBAR_CMD_DEMO = 9, 1264 LIGHTBAR_CMD_GET_PARAMS_V0 = 10, 1265 LIGHTBAR_CMD_SET_PARAMS_V0 = 11, 1266 LIGHTBAR_CMD_VERSION = 12, 1267 LIGHTBAR_CMD_GET_BRIGHTNESS = 13, 1268 LIGHTBAR_CMD_GET_RGB = 14, 1269 LIGHTBAR_CMD_GET_DEMO = 15, 1270 LIGHTBAR_CMD_GET_PARAMS_V1 = 16, 1271 LIGHTBAR_CMD_SET_PARAMS_V1 = 17, 1272 LIGHTBAR_CMD_SET_PROGRAM = 18, 1273 LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19, 1274 LIGHTBAR_CMD_SUSPEND = 20, 1275 LIGHTBAR_CMD_RESUME = 21, 1276 LIGHTBAR_NUM_CMDS 1277 }; 1278 1279 /*****************************************************************************/ 1280 /* LED control commands */ 1281 1282 #define EC_CMD_LED_CONTROL 0x29 1283 1284 enum ec_led_id { 1285 /* LED to indicate battery state of charge */ 1286 EC_LED_ID_BATTERY_LED = 0, 1287 /* 1288 * LED to indicate system power state (on or in suspend). 1289 * May be on power button or on C-panel. 1290 */ 1291 EC_LED_ID_POWER_LED, 1292 /* LED on power adapter or its plug */ 1293 EC_LED_ID_ADAPTER_LED, 1294 1295 EC_LED_ID_COUNT 1296 }; 1297 1298 /* LED control flags */ 1299 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */ 1300 #define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */ 1301 1302 enum ec_led_colors { 1303 EC_LED_COLOR_RED = 0, 1304 EC_LED_COLOR_GREEN, 1305 EC_LED_COLOR_BLUE, 1306 EC_LED_COLOR_YELLOW, 1307 EC_LED_COLOR_WHITE, 1308 1309 EC_LED_COLOR_COUNT 1310 }; 1311 1312 struct ec_params_led_control { 1313 uint8_t led_id; /* Which LED to control */ 1314 uint8_t flags; /* Control flags */ 1315 1316 uint8_t brightness[EC_LED_COLOR_COUNT]; 1317 } __packed; 1318 1319 struct ec_response_led_control { 1320 /* 1321 * Available brightness value range. 1322 * 1323 * Range 0 means color channel not present. 1324 * Range 1 means on/off control. 1325 * Other values means the LED is control by PWM. 1326 */ 1327 uint8_t brightness_range[EC_LED_COLOR_COUNT]; 1328 } __packed; 1329 1330 /*****************************************************************************/ 1331 /* Verified boot commands */ 1332 1333 /* 1334 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be 1335 * reused for other purposes with version > 0. 1336 */ 1337 1338 /* Verified boot hash command */ 1339 #define EC_CMD_VBOOT_HASH 0x2A 1340 1341 struct ec_params_vboot_hash { 1342 uint8_t cmd; /* enum ec_vboot_hash_cmd */ 1343 uint8_t hash_type; /* enum ec_vboot_hash_type */ 1344 uint8_t nonce_size; /* Nonce size; may be 0 */ 1345 uint8_t reserved0; /* Reserved; set 0 */ 1346 uint32_t offset; /* Offset in flash to hash */ 1347 uint32_t size; /* Number of bytes to hash */ 1348 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */ 1349 } __packed; 1350 1351 struct ec_response_vboot_hash { 1352 uint8_t status; /* enum ec_vboot_hash_status */ 1353 uint8_t hash_type; /* enum ec_vboot_hash_type */ 1354 uint8_t digest_size; /* Size of hash digest in bytes */ 1355 uint8_t reserved0; /* Ignore; will be 0 */ 1356 uint32_t offset; /* Offset in flash which was hashed */ 1357 uint32_t size; /* Number of bytes hashed */ 1358 uint8_t hash_digest[64]; /* Hash digest data */ 1359 } __packed; 1360 1361 enum ec_vboot_hash_cmd { 1362 EC_VBOOT_HASH_GET = 0, /* Get current hash status */ 1363 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */ 1364 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */ 1365 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */ 1366 }; 1367 1368 enum ec_vboot_hash_type { 1369 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */ 1370 }; 1371 1372 enum ec_vboot_hash_status { 1373 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */ 1374 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */ 1375 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */ 1376 }; 1377 1378 /* 1379 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC. 1380 * If one of these is specified, the EC will automatically update offset and 1381 * size to the correct values for the specified image (RO or RW). 1382 */ 1383 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe 1384 #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd 1385 1386 /*****************************************************************************/ 1387 /* 1388 * Motion sense commands. We'll make separate structs for sub-commands with 1389 * different input args, so that we know how much to expect. 1390 */ 1391 #define EC_CMD_MOTION_SENSE_CMD 0x2B 1392 1393 /* Motion sense commands */ 1394 enum motionsense_command { 1395 /* 1396 * Dump command returns all motion sensor data including motion sense 1397 * module flags and individual sensor flags. 1398 */ 1399 MOTIONSENSE_CMD_DUMP = 0, 1400 1401 /* 1402 * Info command returns data describing the details of a given sensor, 1403 * including enum motionsensor_type, enum motionsensor_location, and 1404 * enum motionsensor_chip. 1405 */ 1406 MOTIONSENSE_CMD_INFO = 1, 1407 1408 /* 1409 * EC Rate command is a setter/getter command for the EC sampling rate 1410 * of all motion sensors in milliseconds. 1411 */ 1412 MOTIONSENSE_CMD_EC_RATE = 2, 1413 1414 /* 1415 * Sensor ODR command is a setter/getter command for the output data 1416 * rate of a specific motion sensor in millihertz. 1417 */ 1418 MOTIONSENSE_CMD_SENSOR_ODR = 3, 1419 1420 /* 1421 * Sensor range command is a setter/getter command for the range of 1422 * a specified motion sensor in +/-G's or +/- deg/s. 1423 */ 1424 MOTIONSENSE_CMD_SENSOR_RANGE = 4, 1425 1426 /* 1427 * Setter/getter command for the keyboard wake angle. When the lid 1428 * angle is greater than this value, keyboard wake is disabled in S3, 1429 * and when the lid angle goes less than this value, keyboard wake is 1430 * enabled. Note, the lid angle measurement is an approximate, 1431 * un-calibrated value, hence the wake angle isn't exact. 1432 */ 1433 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5, 1434 1435 /* 1436 * Returns a single sensor data. 1437 */ 1438 MOTIONSENSE_CMD_DATA = 6, 1439 1440 /* 1441 * Perform low level calibration.. On sensors that support it, ask to 1442 * do offset calibration. 1443 */ 1444 MOTIONSENSE_CMD_PERFORM_CALIB = 10, 1445 1446 /* 1447 * Sensor Offset command is a setter/getter command for the offset used 1448 * for calibration. The offsets can be calculated by the host, or via 1449 * PERFORM_CALIB command. 1450 */ 1451 MOTIONSENSE_CMD_SENSOR_OFFSET = 11, 1452 1453 /* Number of motionsense sub-commands. */ 1454 MOTIONSENSE_NUM_CMDS 1455 }; 1456 1457 enum motionsensor_id { 1458 EC_MOTION_SENSOR_ACCEL_BASE = 0, 1459 EC_MOTION_SENSOR_ACCEL_LID = 1, 1460 EC_MOTION_SENSOR_GYRO = 2, 1461 1462 /* 1463 * Note, if more sensors are added and this count changes, the padding 1464 * in ec_response_motion_sense dump command must be modified. 1465 */ 1466 EC_MOTION_SENSOR_COUNT = 3 1467 }; 1468 1469 /* List of motion sensor types. */ 1470 enum motionsensor_type { 1471 MOTIONSENSE_TYPE_ACCEL = 0, 1472 MOTIONSENSE_TYPE_GYRO = 1, 1473 MOTIONSENSE_TYPE_MAG = 2, 1474 MOTIONSENSE_TYPE_PROX = 3, 1475 MOTIONSENSE_TYPE_LIGHT = 4, 1476 MOTIONSENSE_TYPE_ACTIVITY = 5, 1477 MOTIONSENSE_TYPE_BARO = 6, 1478 MOTIONSENSE_TYPE_MAX, 1479 }; 1480 1481 /* List of motion sensor locations. */ 1482 enum motionsensor_location { 1483 MOTIONSENSE_LOC_BASE = 0, 1484 MOTIONSENSE_LOC_LID = 1, 1485 MOTIONSENSE_LOC_MAX, 1486 }; 1487 1488 /* List of motion sensor chips. */ 1489 enum motionsensor_chip { 1490 MOTIONSENSE_CHIP_KXCJ9 = 0, 1491 }; 1492 1493 /* Module flag masks used for the dump sub-command. */ 1494 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0) 1495 1496 /* Sensor flag masks used for the dump sub-command. */ 1497 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0) 1498 1499 /* 1500 * Send this value for the data element to only perform a read. If you 1501 * send any other value, the EC will interpret it as data to set and will 1502 * return the actual value set. 1503 */ 1504 #define EC_MOTION_SENSE_NO_VALUE -1 1505 1506 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000 1507 1508 /* Set Calibration information */ 1509 #define MOTION_SENSE_SET_OFFSET 1 1510 1511 struct ec_response_motion_sensor_data { 1512 /* Flags for each sensor. */ 1513 uint8_t flags; 1514 /* Sensor number the data comes from */ 1515 uint8_t sensor_num; 1516 /* Each sensor is up to 3-axis. */ 1517 union { 1518 int16_t data[3]; 1519 struct { 1520 uint16_t rsvd; 1521 uint32_t timestamp; 1522 } __packed; 1523 struct { 1524 uint8_t activity; /* motionsensor_activity */ 1525 uint8_t state; 1526 int16_t add_info[2]; 1527 }; 1528 }; 1529 } __packed; 1530 1531 struct ec_params_motion_sense { 1532 uint8_t cmd; 1533 union { 1534 /* Used for MOTIONSENSE_CMD_DUMP. */ 1535 struct { 1536 /* no args */ 1537 } dump; 1538 1539 /* 1540 * Used for MOTIONSENSE_CMD_EC_RATE and 1541 * MOTIONSENSE_CMD_KB_WAKE_ANGLE. 1542 */ 1543 struct { 1544 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ 1545 int16_t data; 1546 } ec_rate, kb_wake_angle; 1547 1548 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ 1549 struct { 1550 uint8_t sensor_num; 1551 1552 /* 1553 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set 1554 * the calibration information in the EC. 1555 * If unset, just retrieve calibration information. 1556 */ 1557 uint16_t flags; 1558 1559 /* 1560 * Temperature at calibration, in units of 0.01 C 1561 * 0x8000: invalid / unknown. 1562 * 0x0: 0C 1563 * 0x7fff: +327.67C 1564 */ 1565 int16_t temp; 1566 1567 /* 1568 * Offset for calibration. 1569 * Unit: 1570 * Accelerometer: 1/1024 g 1571 * Gyro: 1/1024 deg/s 1572 * Compass: 1/16 uT 1573 */ 1574 int16_t offset[3]; 1575 } __packed sensor_offset; 1576 1577 /* Used for MOTIONSENSE_CMD_INFO. */ 1578 struct { 1579 uint8_t sensor_num; 1580 } info; 1581 1582 /* 1583 * Used for MOTIONSENSE_CMD_SENSOR_ODR and 1584 * MOTIONSENSE_CMD_SENSOR_RANGE. 1585 */ 1586 struct { 1587 /* Should be element of enum motionsensor_id. */ 1588 uint8_t sensor_num; 1589 1590 /* Rounding flag, true for round-up, false for down. */ 1591 uint8_t roundup; 1592 1593 uint16_t reserved; 1594 1595 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ 1596 int32_t data; 1597 } sensor_odr, sensor_range; 1598 }; 1599 } __packed; 1600 1601 struct ec_response_motion_sense { 1602 union { 1603 /* Used for MOTIONSENSE_CMD_DUMP. */ 1604 struct { 1605 /* Flags representing the motion sensor module. */ 1606 uint8_t module_flags; 1607 1608 /* Number of sensors managed directly by the EC. */ 1609 uint8_t sensor_count; 1610 1611 /* 1612 * Sensor data is truncated if response_max is too small 1613 * for holding all the data. 1614 */ 1615 struct ec_response_motion_sensor_data sensor[0]; 1616 } dump; 1617 1618 /* Used for MOTIONSENSE_CMD_INFO. */ 1619 struct { 1620 /* Should be element of enum motionsensor_type. */ 1621 uint8_t type; 1622 1623 /* Should be element of enum motionsensor_location. */ 1624 uint8_t location; 1625 1626 /* Should be element of enum motionsensor_chip. */ 1627 uint8_t chip; 1628 } info; 1629 1630 /* Used for MOTIONSENSE_CMD_DATA */ 1631 struct ec_response_motion_sensor_data data; 1632 1633 /* 1634 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR, 1635 * MOTIONSENSE_CMD_SENSOR_RANGE, and 1636 * MOTIONSENSE_CMD_KB_WAKE_ANGLE. 1637 */ 1638 struct { 1639 /* Current value of the parameter queried. */ 1640 int32_t ret; 1641 } ec_rate, sensor_odr, sensor_range, kb_wake_angle; 1642 1643 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ 1644 struct { 1645 int16_t temp; 1646 int16_t offset[3]; 1647 } sensor_offset, perform_calib; 1648 }; 1649 } __packed; 1650 1651 /*****************************************************************************/ 1652 /* USB charging control commands */ 1653 1654 /* Set USB port charging mode */ 1655 #define EC_CMD_USB_CHARGE_SET_MODE 0x30 1656 1657 struct ec_params_usb_charge_set_mode { 1658 uint8_t usb_port_id; 1659 uint8_t mode; 1660 } __packed; 1661 1662 /*****************************************************************************/ 1663 /* Persistent storage for host */ 1664 1665 /* Maximum bytes that can be read/written in a single command */ 1666 #define EC_PSTORE_SIZE_MAX 64 1667 1668 /* Get persistent storage info */ 1669 #define EC_CMD_PSTORE_INFO 0x40 1670 1671 struct ec_response_pstore_info { 1672 /* Persistent storage size, in bytes */ 1673 uint32_t pstore_size; 1674 /* Access size; read/write offset and size must be a multiple of this */ 1675 uint32_t access_size; 1676 } __packed; 1677 1678 /* 1679 * Read persistent storage 1680 * 1681 * Response is params.size bytes of data. 1682 */ 1683 #define EC_CMD_PSTORE_READ 0x41 1684 1685 struct ec_params_pstore_read { 1686 uint32_t offset; /* Byte offset to read */ 1687 uint32_t size; /* Size to read in bytes */ 1688 } __packed; 1689 1690 /* Write persistent storage */ 1691 #define EC_CMD_PSTORE_WRITE 0x42 1692 1693 struct ec_params_pstore_write { 1694 uint32_t offset; /* Byte offset to write */ 1695 uint32_t size; /* Size to write in bytes */ 1696 uint8_t data[EC_PSTORE_SIZE_MAX]; 1697 } __packed; 1698 1699 /*****************************************************************************/ 1700 /* Real-time clock */ 1701 1702 /* RTC params and response structures */ 1703 struct ec_params_rtc { 1704 uint32_t time; 1705 } __packed; 1706 1707 struct ec_response_rtc { 1708 uint32_t time; 1709 } __packed; 1710 1711 /* These use ec_response_rtc */ 1712 #define EC_CMD_RTC_GET_VALUE 0x44 1713 #define EC_CMD_RTC_GET_ALARM 0x45 1714 1715 /* These all use ec_params_rtc */ 1716 #define EC_CMD_RTC_SET_VALUE 0x46 1717 #define EC_CMD_RTC_SET_ALARM 0x47 1718 1719 /* Pass as param to SET_ALARM to clear the current alarm */ 1720 #define EC_RTC_ALARM_CLEAR 0 1721 1722 /*****************************************************************************/ 1723 /* Port80 log access */ 1724 1725 /* Maximum entries that can be read/written in a single command */ 1726 #define EC_PORT80_SIZE_MAX 32 1727 1728 /* Get last port80 code from previous boot */ 1729 #define EC_CMD_PORT80_LAST_BOOT 0x48 1730 #define EC_CMD_PORT80_READ 0x48 1731 1732 enum ec_port80_subcmd { 1733 EC_PORT80_GET_INFO = 0, 1734 EC_PORT80_READ_BUFFER, 1735 }; 1736 1737 struct ec_params_port80_read { 1738 uint16_t subcmd; 1739 union { 1740 struct { 1741 uint32_t offset; 1742 uint32_t num_entries; 1743 } read_buffer; 1744 }; 1745 } __packed; 1746 1747 struct ec_response_port80_read { 1748 union { 1749 struct { 1750 uint32_t writes; 1751 uint32_t history_size; 1752 uint32_t last_boot; 1753 } get_info; 1754 struct { 1755 uint16_t codes[EC_PORT80_SIZE_MAX]; 1756 } data; 1757 }; 1758 } __packed; 1759 1760 struct ec_response_port80_last_boot { 1761 uint16_t code; 1762 } __packed; 1763 1764 /*****************************************************************************/ 1765 /* Thermal engine commands. Note that there are two implementations. We'll 1766 * reuse the command number, but the data and behavior is incompatible. 1767 * Version 0 is what originally shipped on Link. 1768 * Version 1 separates the CPU thermal limits from the fan control. 1769 */ 1770 1771 #define EC_CMD_THERMAL_SET_THRESHOLD 0x50 1772 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51 1773 1774 /* The version 0 structs are opaque. You have to know what they are for 1775 * the get/set commands to make any sense. 1776 */ 1777 1778 /* Version 0 - set */ 1779 struct ec_params_thermal_set_threshold { 1780 uint8_t sensor_type; 1781 uint8_t threshold_id; 1782 uint16_t value; 1783 } __packed; 1784 1785 /* Version 0 - get */ 1786 struct ec_params_thermal_get_threshold { 1787 uint8_t sensor_type; 1788 uint8_t threshold_id; 1789 } __packed; 1790 1791 struct ec_response_thermal_get_threshold { 1792 uint16_t value; 1793 } __packed; 1794 1795 1796 /* The version 1 structs are visible. */ 1797 enum ec_temp_thresholds { 1798 EC_TEMP_THRESH_WARN = 0, 1799 EC_TEMP_THRESH_HIGH, 1800 EC_TEMP_THRESH_HALT, 1801 1802 EC_TEMP_THRESH_COUNT 1803 }; 1804 1805 /* Thermal configuration for one temperature sensor. Temps are in degrees K. 1806 * Zero values will be silently ignored by the thermal task. 1807 */ 1808 struct ec_thermal_config { 1809 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */ 1810 uint32_t temp_fan_off; /* no active cooling needed */ 1811 uint32_t temp_fan_max; /* max active cooling needed */ 1812 } __packed; 1813 1814 /* Version 1 - get config for one sensor. */ 1815 struct ec_params_thermal_get_threshold_v1 { 1816 uint32_t sensor_num; 1817 } __packed; 1818 /* This returns a struct ec_thermal_config */ 1819 1820 /* Version 1 - set config for one sensor. 1821 * Use read-modify-write for best results! */ 1822 struct ec_params_thermal_set_threshold_v1 { 1823 uint32_t sensor_num; 1824 struct ec_thermal_config cfg; 1825 } __packed; 1826 /* This returns no data */ 1827 1828 /****************************************************************************/ 1829 1830 /* Toggle automatic fan control */ 1831 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52 1832 1833 /* Get TMP006 calibration data */ 1834 #define EC_CMD_TMP006_GET_CALIBRATION 0x53 1835 1836 struct ec_params_tmp006_get_calibration { 1837 uint8_t index; 1838 } __packed; 1839 1840 struct ec_response_tmp006_get_calibration { 1841 float s0; 1842 float b0; 1843 float b1; 1844 float b2; 1845 } __packed; 1846 1847 /* Set TMP006 calibration data */ 1848 #define EC_CMD_TMP006_SET_CALIBRATION 0x54 1849 1850 struct ec_params_tmp006_set_calibration { 1851 uint8_t index; 1852 uint8_t reserved[3]; /* Reserved; set 0 */ 1853 float s0; 1854 float b0; 1855 float b1; 1856 float b2; 1857 } __packed; 1858 1859 /* Read raw TMP006 data */ 1860 #define EC_CMD_TMP006_GET_RAW 0x55 1861 1862 struct ec_params_tmp006_get_raw { 1863 uint8_t index; 1864 } __packed; 1865 1866 struct ec_response_tmp006_get_raw { 1867 int32_t t; /* In 1/100 K */ 1868 int32_t v; /* In nV */ 1869 }; 1870 1871 /*****************************************************************************/ 1872 /* MKBP - Matrix KeyBoard Protocol */ 1873 1874 /* 1875 * Read key state 1876 * 1877 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for 1878 * expected response size. 1879 * 1880 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish 1881 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type 1882 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX. 1883 */ 1884 #define EC_CMD_MKBP_STATE 0x60 1885 1886 /* 1887 * Provide information about various MKBP things. See enum ec_mkbp_info_type. 1888 */ 1889 #define EC_CMD_MKBP_INFO 0x61 1890 1891 struct ec_response_mkbp_info { 1892 uint32_t rows; 1893 uint32_t cols; 1894 /* Formerly "switches", which was 0. */ 1895 uint8_t reserved; 1896 } __packed; 1897 1898 struct ec_params_mkbp_info { 1899 uint8_t info_type; 1900 uint8_t event_type; 1901 } __packed; 1902 1903 enum ec_mkbp_info_type { 1904 /* 1905 * Info about the keyboard matrix: number of rows and columns. 1906 * 1907 * Returns struct ec_response_mkbp_info. 1908 */ 1909 EC_MKBP_INFO_KBD = 0, 1910 1911 /* 1912 * For buttons and switches, info about which specifically are 1913 * supported. event_type must be set to one of the values in enum 1914 * ec_mkbp_event. 1915 * 1916 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte 1917 * bitmask indicating which buttons or switches are present. See the 1918 * bit inidices below. 1919 */ 1920 EC_MKBP_INFO_SUPPORTED = 1, 1921 1922 /* 1923 * Instantaneous state of buttons and switches. 1924 * 1925 * event_type must be set to one of the values in enum ec_mkbp_event. 1926 * 1927 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13] 1928 * indicating the current state of the keyboard matrix. 1929 * 1930 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw 1931 * event state. 1932 * 1933 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the 1934 * state of supported buttons. 1935 * 1936 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the 1937 * state of supported switches. 1938 */ 1939 EC_MKBP_INFO_CURRENT = 2, 1940 }; 1941 1942 /* Simulate key press */ 1943 #define EC_CMD_MKBP_SIMULATE_KEY 0x62 1944 1945 struct ec_params_mkbp_simulate_key { 1946 uint8_t col; 1947 uint8_t row; 1948 uint8_t pressed; 1949 } __packed; 1950 1951 /* Configure keyboard scanning */ 1952 #define EC_CMD_MKBP_SET_CONFIG 0x64 1953 #define EC_CMD_MKBP_GET_CONFIG 0x65 1954 1955 /* flags */ 1956 enum mkbp_config_flags { 1957 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */ 1958 }; 1959 1960 enum mkbp_config_valid { 1961 EC_MKBP_VALID_SCAN_PERIOD = 1 << 0, 1962 EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1, 1963 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3, 1964 EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4, 1965 EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5, 1966 EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6, 1967 EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7, 1968 }; 1969 1970 /* Configuration for our key scanning algorithm */ 1971 struct ec_mkbp_config { 1972 uint32_t valid_mask; /* valid fields */ 1973 uint8_t flags; /* some flags (enum mkbp_config_flags) */ 1974 uint8_t valid_flags; /* which flags are valid */ 1975 uint16_t scan_period_us; /* period between start of scans */ 1976 /* revert to interrupt mode after no activity for this long */ 1977 uint32_t poll_timeout_us; 1978 /* 1979 * minimum post-scan relax time. Once we finish a scan we check 1980 * the time until we are due to start the next one. If this time is 1981 * shorter this field, we use this instead. 1982 */ 1983 uint16_t min_post_scan_delay_us; 1984 /* delay between setting up output and waiting for it to settle */ 1985 uint16_t output_settle_us; 1986 uint16_t debounce_down_us; /* time for debounce on key down */ 1987 uint16_t debounce_up_us; /* time for debounce on key up */ 1988 /* maximum depth to allow for fifo (0 = no keyscan output) */ 1989 uint8_t fifo_max_depth; 1990 } __packed; 1991 1992 struct ec_params_mkbp_set_config { 1993 struct ec_mkbp_config config; 1994 } __packed; 1995 1996 struct ec_response_mkbp_get_config { 1997 struct ec_mkbp_config config; 1998 } __packed; 1999 2000 /* Run the key scan emulation */ 2001 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66 2002 2003 enum ec_keyscan_seq_cmd { 2004 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */ 2005 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */ 2006 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */ 2007 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */ 2008 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */ 2009 }; 2010 2011 enum ec_collect_flags { 2012 /* 2013 * Indicates this scan was processed by the EC. Due to timing, some 2014 * scans may be skipped. 2015 */ 2016 EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0, 2017 }; 2018 2019 struct ec_collect_item { 2020 uint8_t flags; /* some flags (enum ec_collect_flags) */ 2021 }; 2022 2023 struct ec_params_keyscan_seq_ctrl { 2024 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */ 2025 union { 2026 struct { 2027 uint8_t active; /* still active */ 2028 uint8_t num_items; /* number of items */ 2029 /* Current item being presented */ 2030 uint8_t cur_item; 2031 } status; 2032 struct { 2033 /* 2034 * Absolute time for this scan, measured from the 2035 * start of the sequence. 2036 */ 2037 uint32_t time_us; 2038 uint8_t scan[0]; /* keyscan data */ 2039 } add; 2040 struct { 2041 uint8_t start_item; /* First item to return */ 2042 uint8_t num_items; /* Number of items to return */ 2043 } collect; 2044 }; 2045 } __packed; 2046 2047 struct ec_result_keyscan_seq_ctrl { 2048 union { 2049 struct { 2050 uint8_t num_items; /* Number of items */ 2051 /* Data for each item */ 2052 struct ec_collect_item item[0]; 2053 } collect; 2054 }; 2055 } __packed; 2056 2057 /* 2058 * Command for retrieving the next pending MKBP event from the EC device 2059 * 2060 * The device replies with UNAVAILABLE if there aren't any pending events. 2061 */ 2062 #define EC_CMD_GET_NEXT_EVENT 0x67 2063 2064 enum ec_mkbp_event { 2065 /* Keyboard matrix changed. The event data is the new matrix state. */ 2066 EC_MKBP_EVENT_KEY_MATRIX = 0, 2067 2068 /* New host event. The event data is 4 bytes of host event flags. */ 2069 EC_MKBP_EVENT_HOST_EVENT = 1, 2070 2071 /* New Sensor FIFO data. The event data is fifo_info structure. */ 2072 EC_MKBP_EVENT_SENSOR_FIFO = 2, 2073 2074 /* The state of the non-matrixed buttons have changed. */ 2075 EC_MKBP_EVENT_BUTTON = 3, 2076 2077 /* The state of the switches have changed. */ 2078 EC_MKBP_EVENT_SWITCH = 4, 2079 2080 /* EC sent a sysrq command */ 2081 EC_MKBP_EVENT_SYSRQ = 6, 2082 2083 /* Notify the AP that something happened on CEC */ 2084 EC_MKBP_EVENT_CEC_EVENT = 8, 2085 2086 /* Send an incoming CEC message to the AP */ 2087 EC_MKBP_EVENT_CEC_MESSAGE = 9, 2088 2089 /* Number of MKBP events */ 2090 EC_MKBP_EVENT_COUNT, 2091 }; 2092 2093 union ec_response_get_next_data { 2094 uint8_t key_matrix[13]; 2095 2096 /* Unaligned */ 2097 uint32_t host_event; 2098 2099 uint32_t buttons; 2100 uint32_t switches; 2101 uint32_t sysrq; 2102 } __packed; 2103 2104 union ec_response_get_next_data_v1 { 2105 uint8_t key_matrix[16]; 2106 uint32_t host_event; 2107 uint32_t buttons; 2108 uint32_t switches; 2109 uint32_t sysrq; 2110 uint32_t cec_events; 2111 uint8_t cec_message[16]; 2112 } __packed; 2113 2114 struct ec_response_get_next_event { 2115 uint8_t event_type; 2116 /* Followed by event data if any */ 2117 union ec_response_get_next_data data; 2118 } __packed; 2119 2120 struct ec_response_get_next_event_v1 { 2121 uint8_t event_type; 2122 /* Followed by event data if any */ 2123 union ec_response_get_next_data_v1 data; 2124 } __packed; 2125 2126 /* Bit indices for buttons and switches.*/ 2127 /* Buttons */ 2128 #define EC_MKBP_POWER_BUTTON 0 2129 #define EC_MKBP_VOL_UP 1 2130 #define EC_MKBP_VOL_DOWN 2 2131 2132 /* Switches */ 2133 #define EC_MKBP_LID_OPEN 0 2134 #define EC_MKBP_TABLET_MODE 1 2135 2136 /*****************************************************************************/ 2137 /* Temperature sensor commands */ 2138 2139 /* Read temperature sensor info */ 2140 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70 2141 2142 struct ec_params_temp_sensor_get_info { 2143 uint8_t id; 2144 } __packed; 2145 2146 struct ec_response_temp_sensor_get_info { 2147 char sensor_name[32]; 2148 uint8_t sensor_type; 2149 } __packed; 2150 2151 /*****************************************************************************/ 2152 2153 /* 2154 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI 2155 * commands accidentally sent to the wrong interface. See the ACPI section 2156 * below. 2157 */ 2158 2159 /*****************************************************************************/ 2160 /* Host event commands */ 2161 2162 /* 2163 * Host event mask params and response structures, shared by all of the host 2164 * event commands below. 2165 */ 2166 struct ec_params_host_event_mask { 2167 uint32_t mask; 2168 } __packed; 2169 2170 struct ec_response_host_event_mask { 2171 uint32_t mask; 2172 } __packed; 2173 2174 /* These all use ec_response_host_event_mask */ 2175 #define EC_CMD_HOST_EVENT_GET_B 0x87 2176 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x88 2177 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x89 2178 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d 2179 2180 /* These all use ec_params_host_event_mask */ 2181 #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x8a 2182 #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x8b 2183 #define EC_CMD_HOST_EVENT_CLEAR 0x8c 2184 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e 2185 #define EC_CMD_HOST_EVENT_CLEAR_B 0x8f 2186 2187 /*****************************************************************************/ 2188 /* Switch commands */ 2189 2190 /* Enable/disable LCD backlight */ 2191 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90 2192 2193 struct ec_params_switch_enable_backlight { 2194 uint8_t enabled; 2195 } __packed; 2196 2197 /* Enable/disable WLAN/Bluetooth */ 2198 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91 2199 #define EC_VER_SWITCH_ENABLE_WIRELESS 1 2200 2201 /* Version 0 params; no response */ 2202 struct ec_params_switch_enable_wireless_v0 { 2203 uint8_t enabled; 2204 } __packed; 2205 2206 /* Version 1 params */ 2207 struct ec_params_switch_enable_wireless_v1 { 2208 /* Flags to enable now */ 2209 uint8_t now_flags; 2210 2211 /* Which flags to copy from now_flags */ 2212 uint8_t now_mask; 2213 2214 /* 2215 * Flags to leave enabled in S3, if they're on at the S0->S3 2216 * transition. (Other flags will be disabled by the S0->S3 2217 * transition.) 2218 */ 2219 uint8_t suspend_flags; 2220 2221 /* Which flags to copy from suspend_flags */ 2222 uint8_t suspend_mask; 2223 } __packed; 2224 2225 /* Version 1 response */ 2226 struct ec_response_switch_enable_wireless_v1 { 2227 /* Flags to enable now */ 2228 uint8_t now_flags; 2229 2230 /* Flags to leave enabled in S3 */ 2231 uint8_t suspend_flags; 2232 } __packed; 2233 2234 /*****************************************************************************/ 2235 /* GPIO commands. Only available on EC if write protect has been disabled. */ 2236 2237 /* Set GPIO output value */ 2238 #define EC_CMD_GPIO_SET 0x92 2239 2240 struct ec_params_gpio_set { 2241 char name[32]; 2242 uint8_t val; 2243 } __packed; 2244 2245 /* Get GPIO value */ 2246 #define EC_CMD_GPIO_GET 0x93 2247 2248 /* Version 0 of input params and response */ 2249 struct ec_params_gpio_get { 2250 char name[32]; 2251 } __packed; 2252 struct ec_response_gpio_get { 2253 uint8_t val; 2254 } __packed; 2255 2256 /* Version 1 of input params and response */ 2257 struct ec_params_gpio_get_v1 { 2258 uint8_t subcmd; 2259 union { 2260 struct { 2261 char name[32]; 2262 } get_value_by_name; 2263 struct { 2264 uint8_t index; 2265 } get_info; 2266 }; 2267 } __packed; 2268 2269 struct ec_response_gpio_get_v1 { 2270 union { 2271 struct { 2272 uint8_t val; 2273 } get_value_by_name, get_count; 2274 struct { 2275 uint8_t val; 2276 char name[32]; 2277 uint32_t flags; 2278 } get_info; 2279 }; 2280 } __packed; 2281 2282 enum gpio_get_subcmd { 2283 EC_GPIO_GET_BY_NAME = 0, 2284 EC_GPIO_GET_COUNT = 1, 2285 EC_GPIO_GET_INFO = 2, 2286 }; 2287 2288 /*****************************************************************************/ 2289 /* I2C commands. Only available when flash write protect is unlocked. */ 2290 2291 /* 2292 * TODO(crosbug.com/p/23570): These commands are deprecated, and will be 2293 * removed soon. Use EC_CMD_I2C_XFER instead. 2294 */ 2295 2296 /* Read I2C bus */ 2297 #define EC_CMD_I2C_READ 0x94 2298 2299 struct ec_params_i2c_read { 2300 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 2301 uint8_t read_size; /* Either 8 or 16. */ 2302 uint8_t port; 2303 uint8_t offset; 2304 } __packed; 2305 struct ec_response_i2c_read { 2306 uint16_t data; 2307 } __packed; 2308 2309 /* Write I2C bus */ 2310 #define EC_CMD_I2C_WRITE 0x95 2311 2312 struct ec_params_i2c_write { 2313 uint16_t data; 2314 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 2315 uint8_t write_size; /* Either 8 or 16. */ 2316 uint8_t port; 2317 uint8_t offset; 2318 } __packed; 2319 2320 /*****************************************************************************/ 2321 /* Charge state commands. Only available when flash write protect unlocked. */ 2322 2323 /* Force charge state machine to stop charging the battery or force it to 2324 * discharge the battery. 2325 */ 2326 #define EC_CMD_CHARGE_CONTROL 0x96 2327 #define EC_VER_CHARGE_CONTROL 1 2328 2329 enum ec_charge_control_mode { 2330 CHARGE_CONTROL_NORMAL = 0, 2331 CHARGE_CONTROL_IDLE, 2332 CHARGE_CONTROL_DISCHARGE, 2333 }; 2334 2335 struct ec_params_charge_control { 2336 uint32_t mode; /* enum charge_control_mode */ 2337 } __packed; 2338 2339 /*****************************************************************************/ 2340 /* Console commands. Only available when flash write protect is unlocked. */ 2341 2342 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */ 2343 #define EC_CMD_CONSOLE_SNAPSHOT 0x97 2344 2345 /* 2346 * Read data from the saved snapshot. If the subcmd parameter is 2347 * CONSOLE_READ_NEXT, this will return data starting from the beginning of 2348 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the 2349 * end of the previous snapshot. 2350 * 2351 * The params are only looked at in version >= 1 of this command. Prior 2352 * versions will just default to CONSOLE_READ_NEXT behavior. 2353 * 2354 * Response is null-terminated string. Empty string, if there is no more 2355 * remaining output. 2356 */ 2357 #define EC_CMD_CONSOLE_READ 0x98 2358 2359 enum ec_console_read_subcmd { 2360 CONSOLE_READ_NEXT = 0, 2361 CONSOLE_READ_RECENT 2362 }; 2363 2364 struct ec_params_console_read_v1 { 2365 uint8_t subcmd; /* enum ec_console_read_subcmd */ 2366 } __packed; 2367 2368 /*****************************************************************************/ 2369 2370 /* 2371 * Cut off battery power immediately or after the host has shut down. 2372 * 2373 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery. 2374 * EC_RES_SUCCESS if the command was successful. 2375 * EC_RES_ERROR if the cut off command failed. 2376 */ 2377 2378 #define EC_CMD_BATTERY_CUT_OFF 0x99 2379 2380 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN (1 << 0) 2381 2382 struct ec_params_battery_cutoff { 2383 uint8_t flags; 2384 } __packed; 2385 2386 /*****************************************************************************/ 2387 /* USB port mux control. */ 2388 2389 /* 2390 * Switch USB mux or return to automatic switching. 2391 */ 2392 #define EC_CMD_USB_MUX 0x9a 2393 2394 struct ec_params_usb_mux { 2395 uint8_t mux; 2396 } __packed; 2397 2398 /*****************************************************************************/ 2399 /* LDOs / FETs control. */ 2400 2401 enum ec_ldo_state { 2402 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */ 2403 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */ 2404 }; 2405 2406 /* 2407 * Switch on/off a LDO. 2408 */ 2409 #define EC_CMD_LDO_SET 0x9b 2410 2411 struct ec_params_ldo_set { 2412 uint8_t index; 2413 uint8_t state; 2414 } __packed; 2415 2416 /* 2417 * Get LDO state. 2418 */ 2419 #define EC_CMD_LDO_GET 0x9c 2420 2421 struct ec_params_ldo_get { 2422 uint8_t index; 2423 } __packed; 2424 2425 struct ec_response_ldo_get { 2426 uint8_t state; 2427 } __packed; 2428 2429 /*****************************************************************************/ 2430 /* Power info. */ 2431 2432 /* 2433 * Get power info. 2434 */ 2435 #define EC_CMD_POWER_INFO 0x9d 2436 2437 struct ec_response_power_info { 2438 uint32_t usb_dev_type; 2439 uint16_t voltage_ac; 2440 uint16_t voltage_system; 2441 uint16_t current_system; 2442 uint16_t usb_current_limit; 2443 } __packed; 2444 2445 /*****************************************************************************/ 2446 /* I2C passthru command */ 2447 2448 #define EC_CMD_I2C_PASSTHRU 0x9e 2449 2450 /* Read data; if not present, message is a write */ 2451 #define EC_I2C_FLAG_READ (1 << 15) 2452 2453 /* Mask for address */ 2454 #define EC_I2C_ADDR_MASK 0x3ff 2455 2456 #define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */ 2457 #define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */ 2458 2459 /* Any error */ 2460 #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT) 2461 2462 struct ec_params_i2c_passthru_msg { 2463 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */ 2464 uint16_t len; /* Number of bytes to read or write */ 2465 } __packed; 2466 2467 struct ec_params_i2c_passthru { 2468 uint8_t port; /* I2C port number */ 2469 uint8_t num_msgs; /* Number of messages */ 2470 struct ec_params_i2c_passthru_msg msg[]; 2471 /* Data to write for all messages is concatenated here */ 2472 } __packed; 2473 2474 struct ec_response_i2c_passthru { 2475 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */ 2476 uint8_t num_msgs; /* Number of messages processed */ 2477 uint8_t data[]; /* Data read by messages concatenated here */ 2478 } __packed; 2479 2480 /*****************************************************************************/ 2481 /* Power button hang detect */ 2482 2483 #define EC_CMD_HANG_DETECT 0x9f 2484 2485 /* Reasons to start hang detection timer */ 2486 /* Power button pressed */ 2487 #define EC_HANG_START_ON_POWER_PRESS (1 << 0) 2488 2489 /* Lid closed */ 2490 #define EC_HANG_START_ON_LID_CLOSE (1 << 1) 2491 2492 /* Lid opened */ 2493 #define EC_HANG_START_ON_LID_OPEN (1 << 2) 2494 2495 /* Start of AP S3->S0 transition (booting or resuming from suspend) */ 2496 #define EC_HANG_START_ON_RESUME (1 << 3) 2497 2498 /* Reasons to cancel hang detection */ 2499 2500 /* Power button released */ 2501 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8) 2502 2503 /* Any host command from AP received */ 2504 #define EC_HANG_STOP_ON_HOST_COMMAND (1 << 9) 2505 2506 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */ 2507 #define EC_HANG_STOP_ON_SUSPEND (1 << 10) 2508 2509 /* 2510 * If this flag is set, all the other fields are ignored, and the hang detect 2511 * timer is started. This provides the AP a way to start the hang timer 2512 * without reconfiguring any of the other hang detect settings. Note that 2513 * you must previously have configured the timeouts. 2514 */ 2515 #define EC_HANG_START_NOW (1 << 30) 2516 2517 /* 2518 * If this flag is set, all the other fields are ignored (including 2519 * EC_HANG_START_NOW). This provides the AP a way to stop the hang timer 2520 * without reconfiguring any of the other hang detect settings. 2521 */ 2522 #define EC_HANG_STOP_NOW (1 << 31) 2523 2524 struct ec_params_hang_detect { 2525 /* Flags; see EC_HANG_* */ 2526 uint32_t flags; 2527 2528 /* Timeout in msec before generating host event, if enabled */ 2529 uint16_t host_event_timeout_msec; 2530 2531 /* Timeout in msec before generating warm reboot, if enabled */ 2532 uint16_t warm_reboot_timeout_msec; 2533 } __packed; 2534 2535 /*****************************************************************************/ 2536 /* Commands for battery charging */ 2537 2538 /* 2539 * This is the single catch-all host command to exchange data regarding the 2540 * charge state machine (v2 and up). 2541 */ 2542 #define EC_CMD_CHARGE_STATE 0xa0 2543 2544 /* Subcommands for this host command */ 2545 enum charge_state_command { 2546 CHARGE_STATE_CMD_GET_STATE, 2547 CHARGE_STATE_CMD_GET_PARAM, 2548 CHARGE_STATE_CMD_SET_PARAM, 2549 CHARGE_STATE_NUM_CMDS 2550 }; 2551 2552 /* 2553 * Known param numbers are defined here. Ranges are reserved for board-specific 2554 * params, which are handled by the particular implementations. 2555 */ 2556 enum charge_state_params { 2557 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */ 2558 CS_PARAM_CHG_CURRENT, /* charger current limit */ 2559 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */ 2560 CS_PARAM_CHG_STATUS, /* charger-specific status */ 2561 CS_PARAM_CHG_OPTION, /* charger-specific options */ 2562 /* How many so far? */ 2563 CS_NUM_BASE_PARAMS, 2564 2565 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */ 2566 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000, 2567 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff, 2568 2569 /* Other custom param ranges go here... */ 2570 }; 2571 2572 struct ec_params_charge_state { 2573 uint8_t cmd; /* enum charge_state_command */ 2574 union { 2575 struct { 2576 /* no args */ 2577 } get_state; 2578 2579 struct { 2580 uint32_t param; /* enum charge_state_param */ 2581 } get_param; 2582 2583 struct { 2584 uint32_t param; /* param to set */ 2585 uint32_t value; /* value to set */ 2586 } set_param; 2587 }; 2588 } __packed; 2589 2590 struct ec_response_charge_state { 2591 union { 2592 struct { 2593 int ac; 2594 int chg_voltage; 2595 int chg_current; 2596 int chg_input_current; 2597 int batt_state_of_charge; 2598 } get_state; 2599 2600 struct { 2601 uint32_t value; 2602 } get_param; 2603 struct { 2604 /* no return values */ 2605 } set_param; 2606 }; 2607 } __packed; 2608 2609 2610 /* 2611 * Set maximum battery charging current. 2612 */ 2613 #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1 2614 2615 struct ec_params_current_limit { 2616 uint32_t limit; /* in mA */ 2617 } __packed; 2618 2619 /* 2620 * Set maximum external voltage / current. 2621 */ 2622 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2 2623 2624 /* Command v0 is used only on Spring and is obsolete + unsupported */ 2625 struct ec_params_external_power_limit_v1 { 2626 uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */ 2627 uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */ 2628 } __packed; 2629 2630 #define EC_POWER_LIMIT_NONE 0xffff 2631 2632 /* Inform the EC when entering a sleep state */ 2633 #define EC_CMD_HOST_SLEEP_EVENT 0xa9 2634 2635 enum host_sleep_event { 2636 HOST_SLEEP_EVENT_S3_SUSPEND = 1, 2637 HOST_SLEEP_EVENT_S3_RESUME = 2, 2638 HOST_SLEEP_EVENT_S0IX_SUSPEND = 3, 2639 HOST_SLEEP_EVENT_S0IX_RESUME = 4 2640 }; 2641 2642 struct ec_params_host_sleep_event { 2643 uint8_t sleep_event; 2644 } __packed; 2645 2646 /*****************************************************************************/ 2647 /* Smart battery pass-through */ 2648 2649 /* Get / Set 16-bit smart battery registers */ 2650 #define EC_CMD_SB_READ_WORD 0xb0 2651 #define EC_CMD_SB_WRITE_WORD 0xb1 2652 2653 /* Get / Set string smart battery parameters 2654 * formatted as SMBUS "block". 2655 */ 2656 #define EC_CMD_SB_READ_BLOCK 0xb2 2657 #define EC_CMD_SB_WRITE_BLOCK 0xb3 2658 2659 struct ec_params_sb_rd { 2660 uint8_t reg; 2661 } __packed; 2662 2663 struct ec_response_sb_rd_word { 2664 uint16_t value; 2665 } __packed; 2666 2667 struct ec_params_sb_wr_word { 2668 uint8_t reg; 2669 uint16_t value; 2670 } __packed; 2671 2672 struct ec_response_sb_rd_block { 2673 uint8_t data[32]; 2674 } __packed; 2675 2676 struct ec_params_sb_wr_block { 2677 uint8_t reg; 2678 uint16_t data[32]; 2679 } __packed; 2680 2681 /*****************************************************************************/ 2682 /* Battery vendor parameters 2683 * 2684 * Get or set vendor-specific parameters in the battery. Implementations may 2685 * differ between boards or batteries. On a set operation, the response 2686 * contains the actual value set, which may be rounded or clipped from the 2687 * requested value. 2688 */ 2689 2690 #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4 2691 2692 enum ec_battery_vendor_param_mode { 2693 BATTERY_VENDOR_PARAM_MODE_GET = 0, 2694 BATTERY_VENDOR_PARAM_MODE_SET, 2695 }; 2696 2697 struct ec_params_battery_vendor_param { 2698 uint32_t param; 2699 uint32_t value; 2700 uint8_t mode; 2701 } __packed; 2702 2703 struct ec_response_battery_vendor_param { 2704 uint32_t value; 2705 } __packed; 2706 2707 /*****************************************************************************/ 2708 /* System commands */ 2709 2710 /* 2711 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't 2712 * necessarily reboot the EC. Rename to "image" or something similar? 2713 */ 2714 #define EC_CMD_REBOOT_EC 0xd2 2715 2716 /* Command */ 2717 enum ec_reboot_cmd { 2718 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */ 2719 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */ 2720 EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */ 2721 /* (command 3 was jump to RW-B) */ 2722 EC_REBOOT_COLD = 4, /* Cold-reboot */ 2723 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */ 2724 EC_REBOOT_HIBERNATE = 6 /* Hibernate EC */ 2725 }; 2726 2727 /* Flags for ec_params_reboot_ec.reboot_flags */ 2728 #define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */ 2729 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */ 2730 2731 struct ec_params_reboot_ec { 2732 uint8_t cmd; /* enum ec_reboot_cmd */ 2733 uint8_t flags; /* See EC_REBOOT_FLAG_* */ 2734 } __packed; 2735 2736 /* 2737 * Get information on last EC panic. 2738 * 2739 * Returns variable-length platform-dependent panic information. See panic.h 2740 * for details. 2741 */ 2742 #define EC_CMD_GET_PANIC_INFO 0xd3 2743 2744 /*****************************************************************************/ 2745 /* 2746 * ACPI commands 2747 * 2748 * These are valid ONLY on the ACPI command/data port. 2749 */ 2750 2751 /* 2752 * ACPI Read Embedded Controller 2753 * 2754 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 2755 * 2756 * Use the following sequence: 2757 * 2758 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD 2759 * - Wait for EC_LPC_CMDR_PENDING bit to clear 2760 * - Write address to EC_LPC_ADDR_ACPI_DATA 2761 * - Wait for EC_LPC_CMDR_DATA bit to set 2762 * - Read value from EC_LPC_ADDR_ACPI_DATA 2763 */ 2764 #define EC_CMD_ACPI_READ 0x80 2765 2766 /* 2767 * ACPI Write Embedded Controller 2768 * 2769 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 2770 * 2771 * Use the following sequence: 2772 * 2773 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD 2774 * - Wait for EC_LPC_CMDR_PENDING bit to clear 2775 * - Write address to EC_LPC_ADDR_ACPI_DATA 2776 * - Wait for EC_LPC_CMDR_PENDING bit to clear 2777 * - Write value to EC_LPC_ADDR_ACPI_DATA 2778 */ 2779 #define EC_CMD_ACPI_WRITE 0x81 2780 2781 /* 2782 * ACPI Query Embedded Controller 2783 * 2784 * This clears the lowest-order bit in the currently pending host events, and 2785 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1, 2786 * event 0x80000000 = 32), or 0 if no event was pending. 2787 */ 2788 #define EC_CMD_ACPI_QUERY_EVENT 0x84 2789 2790 /* Valid addresses in ACPI memory space, for read/write commands */ 2791 2792 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */ 2793 #define EC_ACPI_MEM_VERSION 0x00 2794 /* 2795 * Test location; writing value here updates test compliment byte to (0xff - 2796 * value). 2797 */ 2798 #define EC_ACPI_MEM_TEST 0x01 2799 /* Test compliment; writes here are ignored. */ 2800 #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02 2801 2802 /* Keyboard backlight brightness percent (0 - 100) */ 2803 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03 2804 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */ 2805 #define EC_ACPI_MEM_FAN_DUTY 0x04 2806 2807 /* 2808 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two 2809 * independent thresholds attached to them. The current value of the ID 2810 * register determines which sensor is affected by the THRESHOLD and COMMIT 2811 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme 2812 * as the memory-mapped sensors. The COMMIT register applies those settings. 2813 * 2814 * The spec does not mandate any way to read back the threshold settings 2815 * themselves, but when a threshold is crossed the AP needs a way to determine 2816 * which sensor(s) are responsible. Each reading of the ID register clears and 2817 * returns one sensor ID that has crossed one of its threshold (in either 2818 * direction) since the last read. A value of 0xFF means "no new thresholds 2819 * have tripped". Setting or enabling the thresholds for a sensor will clear 2820 * the unread event count for that sensor. 2821 */ 2822 #define EC_ACPI_MEM_TEMP_ID 0x05 2823 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06 2824 #define EC_ACPI_MEM_TEMP_COMMIT 0x07 2825 /* 2826 * Here are the bits for the COMMIT register: 2827 * bit 0 selects the threshold index for the chosen sensor (0/1) 2828 * bit 1 enables/disables the selected threshold (0 = off, 1 = on) 2829 * Each write to the commit register affects one threshold. 2830 */ 2831 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0) 2832 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1) 2833 /* 2834 * Example: 2835 * 2836 * Set the thresholds for sensor 2 to 50 C and 60 C: 2837 * write 2 to [0x05] -- select temp sensor 2 2838 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET 2839 * write 0x2 to [0x07] -- enable threshold 0 with this value 2840 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET 2841 * write 0x3 to [0x07] -- enable threshold 1 with this value 2842 * 2843 * Disable the 60 C threshold, leaving the 50 C threshold unchanged: 2844 * write 2 to [0x05] -- select temp sensor 2 2845 * write 0x1 to [0x07] -- disable threshold 1 2846 */ 2847 2848 /* DPTF battery charging current limit */ 2849 #define EC_ACPI_MEM_CHARGING_LIMIT 0x08 2850 2851 /* Charging limit is specified in 64 mA steps */ 2852 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64 2853 /* Value to disable DPTF battery charging limit */ 2854 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff 2855 2856 /* Current version of ACPI memory address space */ 2857 #define EC_ACPI_MEM_VERSION_CURRENT 1 2858 2859 2860 /*****************************************************************************/ 2861 /* 2862 * HDMI CEC commands 2863 * 2864 * These commands are for sending and receiving message via HDMI CEC 2865 */ 2866 #define EC_MAX_CEC_MSG_LEN 16 2867 2868 /* CEC message from the AP to be written on the CEC bus */ 2869 #define EC_CMD_CEC_WRITE_MSG 0x00B8 2870 2871 /** 2872 * struct ec_params_cec_write - Message to write to the CEC bus 2873 * @msg: message content to write to the CEC bus 2874 */ 2875 struct ec_params_cec_write { 2876 uint8_t msg[EC_MAX_CEC_MSG_LEN]; 2877 } __packed; 2878 2879 /* Set various CEC parameters */ 2880 #define EC_CMD_CEC_SET 0x00BA 2881 2882 /** 2883 * struct ec_params_cec_set - CEC parameters set 2884 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS 2885 * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC 2886 * or 1 to enable CEC functionality, in case cmd is CEC_CMD_LOGICAL_ADDRESS, 2887 * this field encodes the requested logical address between 0 and 15 2888 * or 0xff to unregister 2889 */ 2890 struct ec_params_cec_set { 2891 uint8_t cmd; /* enum cec_command */ 2892 uint8_t val; 2893 } __packed; 2894 2895 /* Read various CEC parameters */ 2896 #define EC_CMD_CEC_GET 0x00BB 2897 2898 /** 2899 * struct ec_params_cec_get - CEC parameters get 2900 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS 2901 */ 2902 struct ec_params_cec_get { 2903 uint8_t cmd; /* enum cec_command */ 2904 } __packed; 2905 2906 /** 2907 * struct ec_response_cec_get - CEC parameters get response 2908 * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is 2909 * disabled or 1 if CEC functionality is enabled, 2910 * in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the 2911 * configured logical address between 0 and 15 or 0xff if unregistered 2912 */ 2913 struct ec_response_cec_get { 2914 uint8_t val; 2915 } __packed; 2916 2917 /* CEC parameters command */ 2918 enum ec_cec_command { 2919 /* CEC reading, writing and events enable */ 2920 CEC_CMD_ENABLE, 2921 /* CEC logical address */ 2922 CEC_CMD_LOGICAL_ADDRESS, 2923 }; 2924 2925 /* Events from CEC to AP */ 2926 enum mkbp_cec_event { 2927 /* Outgoing message was acknowledged by a follower */ 2928 EC_MKBP_CEC_SEND_OK = BIT(0), 2929 /* Outgoing message was not acknowledged */ 2930 EC_MKBP_CEC_SEND_FAILED = BIT(1), 2931 }; 2932 2933 /*****************************************************************************/ 2934 /* 2935 * Special commands 2936 * 2937 * These do not follow the normal rules for commands. See each command for 2938 * details. 2939 */ 2940 2941 /* 2942 * Reboot NOW 2943 * 2944 * This command will work even when the EC LPC interface is busy, because the 2945 * reboot command is processed at interrupt level. Note that when the EC 2946 * reboots, the host will reboot too, so there is no response to this command. 2947 * 2948 * Use EC_CMD_REBOOT_EC to reboot the EC more politely. 2949 */ 2950 #define EC_CMD_REBOOT 0xd1 /* Think "die" */ 2951 2952 /* 2953 * Resend last response (not supported on LPC). 2954 * 2955 * Returns EC_RES_UNAVAILABLE if there is no response available - for example, 2956 * there was no previous command, or the previous command's response was too 2957 * big to save. 2958 */ 2959 #define EC_CMD_RESEND_RESPONSE 0xdb 2960 2961 /* 2962 * This header byte on a command indicate version 0. Any header byte less 2963 * than this means that we are talking to an old EC which doesn't support 2964 * versioning. In that case, we assume version 0. 2965 * 2966 * Header bytes greater than this indicate a later version. For example, 2967 * EC_CMD_VERSION0 + 1 means we are using version 1. 2968 * 2969 * The old EC interface must not use commands 0xdc or higher. 2970 */ 2971 #define EC_CMD_VERSION0 0xdc 2972 2973 #endif /* !__ACPI__ */ 2974 2975 /*****************************************************************************/ 2976 /* 2977 * PD commands 2978 * 2979 * These commands are for PD MCU communication. 2980 */ 2981 2982 /* EC to PD MCU exchange status command */ 2983 #define EC_CMD_PD_EXCHANGE_STATUS 0x100 2984 2985 /* Status of EC being sent to PD */ 2986 struct ec_params_pd_status { 2987 int8_t batt_soc; /* battery state of charge */ 2988 } __packed; 2989 2990 /* Status of PD being sent back to EC */ 2991 struct ec_response_pd_status { 2992 int8_t status; /* PD MCU status */ 2993 uint32_t curr_lim_ma; /* input current limit */ 2994 } __packed; 2995 2996 /* Set USB type-C port role and muxes */ 2997 #define EC_CMD_USB_PD_CONTROL 0x101 2998 2999 enum usb_pd_control_role { 3000 USB_PD_CTRL_ROLE_NO_CHANGE = 0, 3001 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */ 3002 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2, 3003 USB_PD_CTRL_ROLE_FORCE_SINK = 3, 3004 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4, 3005 }; 3006 3007 enum usb_pd_control_mux { 3008 USB_PD_CTRL_MUX_NO_CHANGE = 0, 3009 USB_PD_CTRL_MUX_NONE = 1, 3010 USB_PD_CTRL_MUX_USB = 2, 3011 USB_PD_CTRL_MUX_DP = 3, 3012 USB_PD_CTRL_MUX_DOCK = 4, 3013 USB_PD_CTRL_MUX_AUTO = 5, 3014 }; 3015 3016 enum usb_pd_control_swap { 3017 USB_PD_CTRL_SWAP_NONE = 0, 3018 USB_PD_CTRL_SWAP_DATA = 1, 3019 USB_PD_CTRL_SWAP_POWER = 2, 3020 USB_PD_CTRL_SWAP_VCONN = 3, 3021 USB_PD_CTRL_SWAP_COUNT 3022 }; 3023 3024 struct ec_params_usb_pd_control { 3025 uint8_t port; 3026 uint8_t role; 3027 uint8_t mux; 3028 uint8_t swap; 3029 } __packed; 3030 3031 #define PD_CTRL_RESP_ENABLED_COMMS (1 << 0) /* Communication enabled */ 3032 #define PD_CTRL_RESP_ENABLED_CONNECTED (1 << 1) /* Device connected */ 3033 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */ 3034 3035 #define PD_CTRL_RESP_ROLE_POWER BIT(0) /* 0=SNK/1=SRC */ 3036 #define PD_CTRL_RESP_ROLE_DATA BIT(1) /* 0=UFP/1=DFP */ 3037 #define PD_CTRL_RESP_ROLE_VCONN BIT(2) /* Vconn status */ 3038 #define PD_CTRL_RESP_ROLE_DR_POWER BIT(3) /* Partner is dualrole power */ 3039 #define PD_CTRL_RESP_ROLE_DR_DATA BIT(4) /* Partner is dualrole data */ 3040 #define PD_CTRL_RESP_ROLE_USB_COMM BIT(5) /* Partner USB comm capable */ 3041 #define PD_CTRL_RESP_ROLE_EXT_POWERED BIT(6) /* Partner externally powerd */ 3042 3043 struct ec_response_usb_pd_control_v1 { 3044 uint8_t enabled; 3045 uint8_t role; 3046 uint8_t polarity; 3047 char state[32]; 3048 } __packed; 3049 3050 #define EC_CMD_USB_PD_PORTS 0x102 3051 3052 /* Maximum number of PD ports on a device, num_ports will be <= this */ 3053 #define EC_USB_PD_MAX_PORTS 8 3054 3055 struct ec_response_usb_pd_ports { 3056 uint8_t num_ports; 3057 } __packed; 3058 3059 #define EC_CMD_USB_PD_POWER_INFO 0x103 3060 3061 #define PD_POWER_CHARGING_PORT 0xff 3062 struct ec_params_usb_pd_power_info { 3063 uint8_t port; 3064 } __packed; 3065 3066 enum usb_chg_type { 3067 USB_CHG_TYPE_NONE, 3068 USB_CHG_TYPE_PD, 3069 USB_CHG_TYPE_C, 3070 USB_CHG_TYPE_PROPRIETARY, 3071 USB_CHG_TYPE_BC12_DCP, 3072 USB_CHG_TYPE_BC12_CDP, 3073 USB_CHG_TYPE_BC12_SDP, 3074 USB_CHG_TYPE_OTHER, 3075 USB_CHG_TYPE_VBUS, 3076 USB_CHG_TYPE_UNKNOWN, 3077 }; 3078 enum usb_power_roles { 3079 USB_PD_PORT_POWER_DISCONNECTED, 3080 USB_PD_PORT_POWER_SOURCE, 3081 USB_PD_PORT_POWER_SINK, 3082 USB_PD_PORT_POWER_SINK_NOT_CHARGING, 3083 }; 3084 3085 struct usb_chg_measures { 3086 uint16_t voltage_max; 3087 uint16_t voltage_now; 3088 uint16_t current_max; 3089 uint16_t current_lim; 3090 } __packed; 3091 3092 struct ec_response_usb_pd_power_info { 3093 uint8_t role; 3094 uint8_t type; 3095 uint8_t dualrole; 3096 uint8_t reserved1; 3097 struct usb_chg_measures meas; 3098 uint32_t max_power; 3099 } __packed; 3100 3101 struct ec_params_usb_pd_info_request { 3102 uint8_t port; 3103 } __packed; 3104 3105 /* Read USB-PD Device discovery info */ 3106 #define EC_CMD_USB_PD_DISCOVERY 0x0113 3107 struct ec_params_usb_pd_discovery_entry { 3108 uint16_t vid; /* USB-IF VID */ 3109 uint16_t pid; /* USB-IF PID */ 3110 uint8_t ptype; /* product type (hub,periph,cable,ama) */ 3111 } __packed; 3112 3113 /* Override default charge behavior */ 3114 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114 3115 3116 /* Negative port parameters have special meaning */ 3117 enum usb_pd_override_ports { 3118 OVERRIDE_DONT_CHARGE = -2, 3119 OVERRIDE_OFF = -1, 3120 /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */ 3121 }; 3122 3123 struct ec_params_charge_port_override { 3124 int16_t override_port; /* Override port# */ 3125 } __packed; 3126 3127 /* Read (and delete) one entry of PD event log */ 3128 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115 3129 3130 struct ec_response_pd_log { 3131 uint32_t timestamp; /* relative timestamp in milliseconds */ 3132 uint8_t type; /* event type : see PD_EVENT_xx below */ 3133 uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */ 3134 uint16_t data; /* type-defined data payload */ 3135 uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */ 3136 } __packed; 3137 3138 /* The timestamp is the microsecond counter shifted to get about a ms. */ 3139 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */ 3140 3141 #define PD_LOG_SIZE_MASK 0x1f 3142 #define PD_LOG_PORT_MASK 0xe0 3143 #define PD_LOG_PORT_SHIFT 5 3144 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \ 3145 ((size) & PD_LOG_SIZE_MASK)) 3146 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT) 3147 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK) 3148 3149 /* PD event log : entry types */ 3150 /* PD MCU events */ 3151 #define PD_EVENT_MCU_BASE 0x00 3152 #define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0) 3153 #define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1) 3154 /* Reserved for custom board event */ 3155 #define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2) 3156 /* PD generic accessory events */ 3157 #define PD_EVENT_ACC_BASE 0x20 3158 #define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0) 3159 #define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1) 3160 /* PD power supply events */ 3161 #define PD_EVENT_PS_BASE 0x40 3162 #define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0) 3163 /* PD video dongles events */ 3164 #define PD_EVENT_VIDEO_BASE 0x60 3165 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0) 3166 #define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1) 3167 /* Returned in the "type" field, when there is no entry available */ 3168 #define PD_EVENT_NO_ENTRY 0xff 3169 3170 /* 3171 * PD_EVENT_MCU_CHARGE event definition : 3172 * the payload is "struct usb_chg_measures" 3173 * the data field contains the port state flags as defined below : 3174 */ 3175 /* Port partner is a dual role device */ 3176 #define CHARGE_FLAGS_DUAL_ROLE BIT(15) 3177 /* Port is the pending override port */ 3178 #define CHARGE_FLAGS_DELAYED_OVERRIDE BIT(14) 3179 /* Port is the override port */ 3180 #define CHARGE_FLAGS_OVERRIDE BIT(13) 3181 /* Charger type */ 3182 #define CHARGE_FLAGS_TYPE_SHIFT 3 3183 #define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT) 3184 /* Power delivery role */ 3185 #define CHARGE_FLAGS_ROLE_MASK (7 << 0) 3186 3187 /* 3188 * PD_EVENT_PS_FAULT data field flags definition : 3189 */ 3190 #define PS_FAULT_OCP 1 3191 #define PS_FAULT_FAST_OCP 2 3192 #define PS_FAULT_OVP 3 3193 #define PS_FAULT_DISCH 4 3194 3195 /* 3196 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info". 3197 */ 3198 struct mcdp_version { 3199 uint8_t major; 3200 uint8_t minor; 3201 uint16_t build; 3202 } __packed; 3203 3204 struct mcdp_info { 3205 uint8_t family[2]; 3206 uint8_t chipid[2]; 3207 struct mcdp_version irom; 3208 struct mcdp_version fw; 3209 } __packed; 3210 3211 /* struct mcdp_info field decoding */ 3212 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1]) 3213 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1]) 3214 3215 /* Get info about USB-C SS muxes */ 3216 #define EC_CMD_USB_PD_MUX_INFO 0x11a 3217 3218 struct ec_params_usb_pd_mux_info { 3219 uint8_t port; /* USB-C port number */ 3220 } __packed; 3221 3222 /* Flags representing mux state */ 3223 #define USB_PD_MUX_USB_ENABLED (1 << 0) 3224 #define USB_PD_MUX_DP_ENABLED (1 << 1) 3225 #define USB_PD_MUX_POLARITY_INVERTED (1 << 2) 3226 #define USB_PD_MUX_HPD_IRQ (1 << 3) 3227 3228 struct ec_response_usb_pd_mux_info { 3229 uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */ 3230 } __packed; 3231 3232 /*****************************************************************************/ 3233 /* 3234 * Passthru commands 3235 * 3236 * Some platforms have sub-processors chained to each other. For example. 3237 * 3238 * AP <--> EC <--> PD MCU 3239 * 3240 * The top 2 bits of the command number are used to indicate which device the 3241 * command is intended for. Device 0 is always the device receiving the 3242 * command; other device mapping is board-specific. 3243 * 3244 * When a device receives a command to be passed to a sub-processor, it passes 3245 * it on with the device number set back to 0. This allows the sub-processor 3246 * to remain blissfully unaware of whether the command originated on the next 3247 * device up the chain, or was passed through from the AP. 3248 * 3249 * In the above example, if the AP wants to send command 0x0002 to the PD MCU, 3250 * AP sends command 0x4002 to the EC 3251 * EC sends command 0x0002 to the PD MCU 3252 * EC forwards PD MCU response back to the AP 3253 */ 3254 3255 /* Offset and max command number for sub-device n */ 3256 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n)) 3257 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff) 3258 3259 /*****************************************************************************/ 3260 /* 3261 * Deprecated constants. These constants have been renamed for clarity. The 3262 * meaning and size has not changed. Programs that use the old names should 3263 * switch to the new names soon, as the old names may not be carried forward 3264 * forever. 3265 */ 3266 #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE 3267 #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1 3268 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE 3269 3270 #endif /* __CROS_EC_COMMANDS_H */ 3271