1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22
23 #define VMD_CFGBAR 0
24 #define VMD_MEMBAR1 2
25 #define VMD_MEMBAR2 4
26
27 #define PCI_REG_VMCAP 0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG 0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK 0x70
32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET 0x2000
35 #define MB2_SHADOW_SIZE 16
36
37 enum vmd_features {
38 /*
39 * Device may contain registers which hint the physical location of the
40 * membars, in order to allow proper address translation during
41 * resource assignment to enable guest virtualization
42 */
43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
44
45 /*
46 * Device may provide root port configuration information which limits
47 * bus numbering
48 */
49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
50 };
51
52 /*
53 * Lock for manipulating VMD IRQ lists.
54 */
55 static DEFINE_RAW_SPINLOCK(list_lock);
56
57 /**
58 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
59 * @node: list item for parent traversal.
60 * @irq: back pointer to parent.
61 * @enabled: true if driver enabled IRQ
62 * @virq: the virtual IRQ value provided to the requesting driver.
63 *
64 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
65 * a VMD IRQ using this structure.
66 */
67 struct vmd_irq {
68 struct list_head node;
69 struct vmd_irq_list *irq;
70 bool enabled;
71 unsigned int virq;
72 };
73
74 /**
75 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
76 * @irq_list: the list of irq's the VMD one demuxes to.
77 * @srcu: SRCU struct for local synchronization.
78 * @count: number of child IRQs assigned to this vector; used to track
79 * sharing.
80 */
81 struct vmd_irq_list {
82 struct list_head irq_list;
83 struct srcu_struct srcu;
84 unsigned int count;
85 };
86
87 struct vmd_dev {
88 struct pci_dev *dev;
89
90 spinlock_t cfg_lock;
91 char __iomem *cfgbar;
92
93 int msix_count;
94 struct vmd_irq_list *irqs;
95
96 struct pci_sysdata sysdata;
97 struct resource resources[3];
98 struct irq_domain *irq_domain;
99 struct pci_bus *bus;
100 u8 busn_start;
101
102 #ifdef CONFIG_X86_DEV_DMA_OPS
103 struct dma_map_ops dma_ops;
104 struct dma_domain dma_domain;
105 #endif
106 };
107
vmd_from_bus(struct pci_bus * bus)108 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
109 {
110 return container_of(bus->sysdata, struct vmd_dev, sysdata);
111 }
112
index_from_irqs(struct vmd_dev * vmd,struct vmd_irq_list * irqs)113 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
114 struct vmd_irq_list *irqs)
115 {
116 return irqs - vmd->irqs;
117 }
118
119 /*
120 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
121 * but the MSI entry for the hardware it's driving will be programmed with a
122 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
123 * domain into one of its own, and the VMD driver de-muxes these for the
124 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
125 * and irq_chip to set this up.
126 */
vmd_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)127 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
128 {
129 struct vmd_irq *vmdirq = data->chip_data;
130 struct vmd_irq_list *irq = vmdirq->irq;
131 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
132
133 msg->address_hi = MSI_ADDR_BASE_HI;
134 msg->address_lo = MSI_ADDR_BASE_LO |
135 MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
136 msg->data = 0;
137 }
138
139 /*
140 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
141 */
vmd_irq_enable(struct irq_data * data)142 static void vmd_irq_enable(struct irq_data *data)
143 {
144 struct vmd_irq *vmdirq = data->chip_data;
145 unsigned long flags;
146
147 raw_spin_lock_irqsave(&list_lock, flags);
148 WARN_ON(vmdirq->enabled);
149 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
150 vmdirq->enabled = true;
151 raw_spin_unlock_irqrestore(&list_lock, flags);
152
153 data->chip->irq_unmask(data);
154 }
155
vmd_irq_disable(struct irq_data * data)156 static void vmd_irq_disable(struct irq_data *data)
157 {
158 struct vmd_irq *vmdirq = data->chip_data;
159 unsigned long flags;
160
161 data->chip->irq_mask(data);
162
163 raw_spin_lock_irqsave(&list_lock, flags);
164 if (vmdirq->enabled) {
165 list_del_rcu(&vmdirq->node);
166 vmdirq->enabled = false;
167 }
168 raw_spin_unlock_irqrestore(&list_lock, flags);
169 }
170
171 /*
172 * XXX: Stubbed until we develop acceptable way to not create conflicts with
173 * other devices sharing the same vector.
174 */
vmd_irq_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)175 static int vmd_irq_set_affinity(struct irq_data *data,
176 const struct cpumask *dest, bool force)
177 {
178 return -EINVAL;
179 }
180
181 static struct irq_chip vmd_msi_controller = {
182 .name = "VMD-MSI",
183 .irq_enable = vmd_irq_enable,
184 .irq_disable = vmd_irq_disable,
185 .irq_compose_msi_msg = vmd_compose_msi_msg,
186 .irq_set_affinity = vmd_irq_set_affinity,
187 };
188
vmd_get_hwirq(struct msi_domain_info * info,msi_alloc_info_t * arg)189 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
190 msi_alloc_info_t *arg)
191 {
192 return 0;
193 }
194
195 /*
196 * XXX: We can be even smarter selecting the best IRQ once we solve the
197 * affinity problem.
198 */
vmd_next_irq(struct vmd_dev * vmd,struct msi_desc * desc)199 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
200 {
201 int i, best = 1;
202 unsigned long flags;
203
204 if (vmd->msix_count == 1)
205 return &vmd->irqs[0];
206
207 /*
208 * White list for fast-interrupt handlers. All others will share the
209 * "slow" interrupt vector.
210 */
211 switch (msi_desc_to_pci_dev(desc)->class) {
212 case PCI_CLASS_STORAGE_EXPRESS:
213 break;
214 default:
215 return &vmd->irqs[0];
216 }
217
218 raw_spin_lock_irqsave(&list_lock, flags);
219 for (i = 1; i < vmd->msix_count; i++)
220 if (vmd->irqs[i].count < vmd->irqs[best].count)
221 best = i;
222 vmd->irqs[best].count++;
223 raw_spin_unlock_irqrestore(&list_lock, flags);
224
225 return &vmd->irqs[best];
226 }
227
vmd_msi_init(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq,irq_hw_number_t hwirq,msi_alloc_info_t * arg)228 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
229 unsigned int virq, irq_hw_number_t hwirq,
230 msi_alloc_info_t *arg)
231 {
232 struct msi_desc *desc = arg->desc;
233 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
234 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
235 unsigned int index, vector;
236
237 if (!vmdirq)
238 return -ENOMEM;
239
240 INIT_LIST_HEAD(&vmdirq->node);
241 vmdirq->irq = vmd_next_irq(vmd, desc);
242 vmdirq->virq = virq;
243 index = index_from_irqs(vmd, vmdirq->irq);
244 vector = pci_irq_vector(vmd->dev, index);
245
246 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
247 handle_untracked_irq, vmd, NULL);
248 return 0;
249 }
250
vmd_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq)251 static void vmd_msi_free(struct irq_domain *domain,
252 struct msi_domain_info *info, unsigned int virq)
253 {
254 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
255 unsigned long flags;
256
257 synchronize_srcu(&vmdirq->irq->srcu);
258
259 /* XXX: Potential optimization to rebalance */
260 raw_spin_lock_irqsave(&list_lock, flags);
261 vmdirq->irq->count--;
262 raw_spin_unlock_irqrestore(&list_lock, flags);
263
264 kfree(vmdirq);
265 }
266
vmd_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * arg)267 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
268 int nvec, msi_alloc_info_t *arg)
269 {
270 struct pci_dev *pdev = to_pci_dev(dev);
271 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
272
273 if (nvec > vmd->msix_count)
274 return vmd->msix_count;
275
276 memset(arg, 0, sizeof(*arg));
277 return 0;
278 }
279
vmd_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)280 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
281 {
282 arg->desc = desc;
283 }
284
285 static struct msi_domain_ops vmd_msi_domain_ops = {
286 .get_hwirq = vmd_get_hwirq,
287 .msi_init = vmd_msi_init,
288 .msi_free = vmd_msi_free,
289 .msi_prepare = vmd_msi_prepare,
290 .set_desc = vmd_set_desc,
291 };
292
293 static struct msi_domain_info vmd_msi_domain_info = {
294 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
295 MSI_FLAG_PCI_MSIX,
296 .ops = &vmd_msi_domain_ops,
297 .chip = &vmd_msi_controller,
298 };
299
300 #ifdef CONFIG_X86_DEV_DMA_OPS
301 /*
302 * VMD replaces the requester ID with its own. DMA mappings for devices in a
303 * VMD domain need to be mapped for the VMD, not the device requiring
304 * the mapping.
305 */
to_vmd_dev(struct device * dev)306 static struct device *to_vmd_dev(struct device *dev)
307 {
308 struct pci_dev *pdev = to_pci_dev(dev);
309 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
310
311 return &vmd->dev->dev;
312 }
313
vmd_dma_ops(struct device * dev)314 static const struct dma_map_ops *vmd_dma_ops(struct device *dev)
315 {
316 return get_dma_ops(to_vmd_dev(dev));
317 }
318
vmd_alloc(struct device * dev,size_t size,dma_addr_t * addr,gfp_t flag,unsigned long attrs)319 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
320 gfp_t flag, unsigned long attrs)
321 {
322 return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
323 attrs);
324 }
325
vmd_free(struct device * dev,size_t size,void * vaddr,dma_addr_t addr,unsigned long attrs)326 static void vmd_free(struct device *dev, size_t size, void *vaddr,
327 dma_addr_t addr, unsigned long attrs)
328 {
329 return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
330 attrs);
331 }
332
vmd_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t addr,size_t size,unsigned long attrs)333 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
334 void *cpu_addr, dma_addr_t addr, size_t size,
335 unsigned long attrs)
336 {
337 return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
338 size, attrs);
339 }
340
vmd_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t addr,size_t size,unsigned long attrs)341 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
342 void *cpu_addr, dma_addr_t addr, size_t size,
343 unsigned long attrs)
344 {
345 return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
346 addr, size, attrs);
347 }
348
vmd_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)349 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
350 unsigned long offset, size_t size,
351 enum dma_data_direction dir,
352 unsigned long attrs)
353 {
354 return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
355 dir, attrs);
356 }
357
vmd_unmap_page(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)358 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
359 enum dma_data_direction dir, unsigned long attrs)
360 {
361 vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
362 }
363
vmd_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)364 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
365 enum dma_data_direction dir, unsigned long attrs)
366 {
367 return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
368 }
369
vmd_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)370 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
371 enum dma_data_direction dir, unsigned long attrs)
372 {
373 vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
374 }
375
vmd_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)376 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
377 size_t size, enum dma_data_direction dir)
378 {
379 vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
380 }
381
vmd_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)382 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
383 size_t size, enum dma_data_direction dir)
384 {
385 vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
386 dir);
387 }
388
vmd_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)389 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
390 int nents, enum dma_data_direction dir)
391 {
392 vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
393 }
394
vmd_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)395 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
396 int nents, enum dma_data_direction dir)
397 {
398 vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
399 }
400
vmd_mapping_error(struct device * dev,dma_addr_t addr)401 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
402 {
403 return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
404 }
405
vmd_dma_supported(struct device * dev,u64 mask)406 static int vmd_dma_supported(struct device *dev, u64 mask)
407 {
408 return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
409 }
410
411 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
vmd_get_required_mask(struct device * dev)412 static u64 vmd_get_required_mask(struct device *dev)
413 {
414 return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
415 }
416 #endif
417
vmd_teardown_dma_ops(struct vmd_dev * vmd)418 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
419 {
420 struct dma_domain *domain = &vmd->dma_domain;
421
422 if (get_dma_ops(&vmd->dev->dev))
423 del_dma_domain(domain);
424 }
425
426 #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
427 do { \
428 if (source->fn) \
429 dest->fn = vmd_##fn; \
430 } while (0)
431
vmd_setup_dma_ops(struct vmd_dev * vmd)432 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
433 {
434 const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
435 struct dma_map_ops *dest = &vmd->dma_ops;
436 struct dma_domain *domain = &vmd->dma_domain;
437
438 domain->domain_nr = vmd->sysdata.domain;
439 domain->dma_ops = dest;
440
441 if (!source)
442 return;
443 ASSIGN_VMD_DMA_OPS(source, dest, alloc);
444 ASSIGN_VMD_DMA_OPS(source, dest, free);
445 ASSIGN_VMD_DMA_OPS(source, dest, mmap);
446 ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
447 ASSIGN_VMD_DMA_OPS(source, dest, map_page);
448 ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
449 ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
450 ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
451 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
452 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
453 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
454 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
455 ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
456 ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
457 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
458 ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
459 #endif
460 add_dma_domain(domain);
461 }
462 #undef ASSIGN_VMD_DMA_OPS
463 #else
vmd_teardown_dma_ops(struct vmd_dev * vmd)464 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
vmd_setup_dma_ops(struct vmd_dev * vmd)465 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
466 #endif
467
vmd_cfg_addr(struct vmd_dev * vmd,struct pci_bus * bus,unsigned int devfn,int reg,int len)468 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
469 unsigned int devfn, int reg, int len)
470 {
471 char __iomem *addr = vmd->cfgbar +
472 ((bus->number - vmd->busn_start) << 20) +
473 (devfn << 12) + reg;
474
475 if ((addr - vmd->cfgbar) + len >=
476 resource_size(&vmd->dev->resource[VMD_CFGBAR]))
477 return NULL;
478
479 return addr;
480 }
481
482 /*
483 * CPU may deadlock if config space is not serialized on some versions of this
484 * hardware, so all config space access is done under a spinlock.
485 */
vmd_pci_read(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 * value)486 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
487 int len, u32 *value)
488 {
489 struct vmd_dev *vmd = vmd_from_bus(bus);
490 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
491 unsigned long flags;
492 int ret = 0;
493
494 if (!addr)
495 return -EFAULT;
496
497 spin_lock_irqsave(&vmd->cfg_lock, flags);
498 switch (len) {
499 case 1:
500 *value = readb(addr);
501 break;
502 case 2:
503 *value = readw(addr);
504 break;
505 case 4:
506 *value = readl(addr);
507 break;
508 default:
509 ret = -EINVAL;
510 break;
511 }
512 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
513 return ret;
514 }
515
516 /*
517 * VMD h/w converts non-posted config writes to posted memory writes. The
518 * read-back in this function forces the completion so it returns only after
519 * the config space was written, as expected.
520 */
vmd_pci_write(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 value)521 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
522 int len, u32 value)
523 {
524 struct vmd_dev *vmd = vmd_from_bus(bus);
525 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
526 unsigned long flags;
527 int ret = 0;
528
529 if (!addr)
530 return -EFAULT;
531
532 spin_lock_irqsave(&vmd->cfg_lock, flags);
533 switch (len) {
534 case 1:
535 writeb(value, addr);
536 readb(addr);
537 break;
538 case 2:
539 writew(value, addr);
540 readw(addr);
541 break;
542 case 4:
543 writel(value, addr);
544 readl(addr);
545 break;
546 default:
547 ret = -EINVAL;
548 break;
549 }
550 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
551 return ret;
552 }
553
554 static struct pci_ops vmd_ops = {
555 .read = vmd_pci_read,
556 .write = vmd_pci_write,
557 };
558
vmd_attach_resources(struct vmd_dev * vmd)559 static void vmd_attach_resources(struct vmd_dev *vmd)
560 {
561 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
562 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
563 }
564
vmd_detach_resources(struct vmd_dev * vmd)565 static void vmd_detach_resources(struct vmd_dev *vmd)
566 {
567 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
568 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
569 }
570
571 /*
572 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
573 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
574 * 16 bits are the PCI Segment Group (domain) number. Other bits are
575 * currently reserved.
576 */
vmd_find_free_domain(void)577 static int vmd_find_free_domain(void)
578 {
579 int domain = 0xffff;
580 struct pci_bus *bus = NULL;
581
582 while ((bus = pci_find_next_bus(bus)) != NULL)
583 domain = max_t(int, domain, pci_domain_nr(bus));
584 return domain + 1;
585 }
586
vmd_enable_domain(struct vmd_dev * vmd,unsigned long features)587 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
588 {
589 struct pci_sysdata *sd = &vmd->sysdata;
590 struct fwnode_handle *fn;
591 struct resource *res;
592 u32 upper_bits;
593 unsigned long flags;
594 LIST_HEAD(resources);
595 resource_size_t offset[2] = {0};
596 resource_size_t membar2_offset = 0x2000;
597
598 /*
599 * Shadow registers may exist in certain VMD device ids which allow
600 * guests to correctly assign host physical addresses to the root ports
601 * and child devices. These registers will either return the host value
602 * or 0, depending on an enable bit in the VMD device.
603 */
604 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
605 u32 vmlock;
606 int ret;
607
608 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
609 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
610 if (ret || vmlock == ~0)
611 return -ENODEV;
612
613 if (MB2_SHADOW_EN(vmlock)) {
614 void __iomem *membar2;
615
616 membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
617 if (!membar2)
618 return -ENOMEM;
619 offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
620 (readq(membar2 + MB2_SHADOW_OFFSET) &
621 PCI_BASE_ADDRESS_MEM_MASK);
622 offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
623 (readq(membar2 + MB2_SHADOW_OFFSET + 8) &
624 PCI_BASE_ADDRESS_MEM_MASK);
625 pci_iounmap(vmd->dev, membar2);
626 }
627 }
628
629 /*
630 * Certain VMD devices may have a root port configuration option which
631 * limits the bus range to between 0-127 or 128-255
632 */
633 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
634 u32 vmcap, vmconfig;
635
636 pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
637 pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
638 if (BUS_RESTRICT_CAP(vmcap) &&
639 (BUS_RESTRICT_CFG(vmconfig) == 0x1))
640 vmd->busn_start = 128;
641 }
642
643 res = &vmd->dev->resource[VMD_CFGBAR];
644 vmd->resources[0] = (struct resource) {
645 .name = "VMD CFGBAR",
646 .start = vmd->busn_start,
647 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
648 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
649 };
650
651 /*
652 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
653 * put 32-bit resources in the window.
654 *
655 * There's no hardware reason why a 64-bit window *couldn't*
656 * contain a 32-bit resource, but pbus_size_mem() computes the
657 * bridge window size assuming a 64-bit window will contain no
658 * 32-bit resources. __pci_assign_resource() enforces that
659 * artificial restriction to make sure everything will fit.
660 *
661 * The only way we could use a 64-bit non-prefechable MEMBAR is
662 * if its address is <4GB so that we can convert it to a 32-bit
663 * resource. To be visible to the host OS, all VMD endpoints must
664 * be initially configured by platform BIOS, which includes setting
665 * up these resources. We can assume the device is configured
666 * according to the platform needs.
667 */
668 res = &vmd->dev->resource[VMD_MEMBAR1];
669 upper_bits = upper_32_bits(res->end);
670 flags = res->flags & ~IORESOURCE_SIZEALIGN;
671 if (!upper_bits)
672 flags &= ~IORESOURCE_MEM_64;
673 vmd->resources[1] = (struct resource) {
674 .name = "VMD MEMBAR1",
675 .start = res->start,
676 .end = res->end,
677 .flags = flags,
678 .parent = res,
679 };
680
681 res = &vmd->dev->resource[VMD_MEMBAR2];
682 upper_bits = upper_32_bits(res->end);
683 flags = res->flags & ~IORESOURCE_SIZEALIGN;
684 if (!upper_bits)
685 flags &= ~IORESOURCE_MEM_64;
686 vmd->resources[2] = (struct resource) {
687 .name = "VMD MEMBAR2",
688 .start = res->start + membar2_offset,
689 .end = res->end,
690 .flags = flags,
691 .parent = res,
692 };
693
694 sd->vmd_domain = true;
695 sd->domain = vmd_find_free_domain();
696 if (sd->domain < 0)
697 return sd->domain;
698
699 sd->node = pcibus_to_node(vmd->dev->bus);
700
701 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
702 if (!fn)
703 return -ENODEV;
704
705 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
706 x86_vector_domain);
707 if (!vmd->irq_domain) {
708 irq_domain_free_fwnode(fn);
709 return -ENODEV;
710 }
711
712 pci_add_resource(&resources, &vmd->resources[0]);
713 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
714 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
715
716 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
717 &vmd_ops, sd, &resources);
718 if (!vmd->bus) {
719 pci_free_resource_list(&resources);
720 irq_domain_remove(vmd->irq_domain);
721 irq_domain_free_fwnode(fn);
722 return -ENODEV;
723 }
724
725 vmd_attach_resources(vmd);
726 vmd_setup_dma_ops(vmd);
727 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
728 pci_rescan_bus(vmd->bus);
729
730 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
731 "domain"), "Can't create symlink to domain\n");
732 return 0;
733 }
734
vmd_irq(int irq,void * data)735 static irqreturn_t vmd_irq(int irq, void *data)
736 {
737 struct vmd_irq_list *irqs = data;
738 struct vmd_irq *vmdirq;
739 int idx;
740
741 idx = srcu_read_lock(&irqs->srcu);
742 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
743 generic_handle_irq(vmdirq->virq);
744 srcu_read_unlock(&irqs->srcu, idx);
745
746 return IRQ_HANDLED;
747 }
748
vmd_probe(struct pci_dev * dev,const struct pci_device_id * id)749 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
750 {
751 struct vmd_dev *vmd;
752 int i, err;
753
754 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
755 return -ENOMEM;
756
757 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
758 if (!vmd)
759 return -ENOMEM;
760
761 vmd->dev = dev;
762 err = pcim_enable_device(dev);
763 if (err < 0)
764 return err;
765
766 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
767 if (!vmd->cfgbar)
768 return -ENOMEM;
769
770 pci_set_master(dev);
771 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
772 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
773 return -ENODEV;
774
775 vmd->msix_count = pci_msix_vec_count(dev);
776 if (vmd->msix_count < 0)
777 return -ENODEV;
778
779 vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
780 PCI_IRQ_MSIX);
781 if (vmd->msix_count < 0)
782 return vmd->msix_count;
783
784 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
785 GFP_KERNEL);
786 if (!vmd->irqs)
787 return -ENOMEM;
788
789 for (i = 0; i < vmd->msix_count; i++) {
790 err = init_srcu_struct(&vmd->irqs[i].srcu);
791 if (err)
792 return err;
793
794 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
795 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
796 vmd_irq, IRQF_NO_THREAD,
797 "vmd", &vmd->irqs[i]);
798 if (err)
799 return err;
800 }
801
802 spin_lock_init(&vmd->cfg_lock);
803 pci_set_drvdata(dev, vmd);
804 err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
805 if (err)
806 return err;
807
808 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
809 vmd->sysdata.domain);
810 return 0;
811 }
812
vmd_cleanup_srcu(struct vmd_dev * vmd)813 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
814 {
815 int i;
816
817 for (i = 0; i < vmd->msix_count; i++)
818 cleanup_srcu_struct(&vmd->irqs[i].srcu);
819 }
820
vmd_remove(struct pci_dev * dev)821 static void vmd_remove(struct pci_dev *dev)
822 {
823 struct vmd_dev *vmd = pci_get_drvdata(dev);
824 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
825
826 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
827 pci_stop_root_bus(vmd->bus);
828 pci_remove_root_bus(vmd->bus);
829 vmd_cleanup_srcu(vmd);
830 vmd_teardown_dma_ops(vmd);
831 vmd_detach_resources(vmd);
832 irq_domain_remove(vmd->irq_domain);
833 irq_domain_free_fwnode(fn);
834 }
835
836 #ifdef CONFIG_PM_SLEEP
vmd_suspend(struct device * dev)837 static int vmd_suspend(struct device *dev)
838 {
839 struct pci_dev *pdev = to_pci_dev(dev);
840 struct vmd_dev *vmd = pci_get_drvdata(pdev);
841 int i;
842
843 for (i = 0; i < vmd->msix_count; i++)
844 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
845
846 pci_save_state(pdev);
847 return 0;
848 }
849
vmd_resume(struct device * dev)850 static int vmd_resume(struct device *dev)
851 {
852 struct pci_dev *pdev = to_pci_dev(dev);
853 struct vmd_dev *vmd = pci_get_drvdata(pdev);
854 int err, i;
855
856 for (i = 0; i < vmd->msix_count; i++) {
857 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
858 vmd_irq, IRQF_NO_THREAD,
859 "vmd", &vmd->irqs[i]);
860 if (err)
861 return err;
862 }
863
864 pci_restore_state(pdev);
865 return 0;
866 }
867 #endif
868 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
869
870 static const struct pci_device_id vmd_ids[] = {
871 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
872 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
873 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
874 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
875 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
876 .driver_data = VMD_FEAT_HAS_BUS_RESTRICTIONS,},
877 {0,}
878 };
879 MODULE_DEVICE_TABLE(pci, vmd_ids);
880
881 static struct pci_driver vmd_drv = {
882 .name = "vmd",
883 .id_table = vmd_ids,
884 .probe = vmd_probe,
885 .remove = vmd_remove,
886 .driver = {
887 .pm = &vmd_dev_pm_ops,
888 },
889 };
890 module_pci_driver(vmd_drv);
891
892 MODULE_AUTHOR("Intel Corporation");
893 MODULE_LICENSE("GPL v2");
894 MODULE_VERSION("0.6");
895