1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <linux/blk-cgroup.h>
32 
33 #include <trace/events/block.h>
34 #include "blk.h"
35 #include "blk-rq-qos.h"
36 
37 /*
38  * Test patch to inline a certain number of bi_io_vec's inside the bio
39  * itself, to shrink a bio data allocation from two mempool calls to one
40  */
41 #define BIO_INLINE_VECS		4
42 
43 /*
44  * if you change this list, also change bvec_alloc or things will
45  * break badly! cannot be bigger than what you can fit into an
46  * unsigned short
47  */
48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
51 };
52 #undef BV
53 
54 /*
55  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56  * IO code that does not need private memory pools.
57  */
58 struct bio_set fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60 
61 /*
62  * Our slab pool management
63  */
64 struct bio_slab {
65 	struct kmem_cache *slab;
66 	unsigned int slab_ref;
67 	unsigned int slab_size;
68 	char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73 
bio_find_or_create_slab(unsigned int extra_size)74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 	unsigned int sz = sizeof(struct bio) + extra_size;
77 	struct kmem_cache *slab = NULL;
78 	struct bio_slab *bslab, *new_bio_slabs;
79 	unsigned int new_bio_slab_max;
80 	unsigned int i, entry = -1;
81 
82 	mutex_lock(&bio_slab_lock);
83 
84 	i = 0;
85 	while (i < bio_slab_nr) {
86 		bslab = &bio_slabs[i];
87 
88 		if (!bslab->slab && entry == -1)
89 			entry = i;
90 		else if (bslab->slab_size == sz) {
91 			slab = bslab->slab;
92 			bslab->slab_ref++;
93 			break;
94 		}
95 		i++;
96 	}
97 
98 	if (slab)
99 		goto out_unlock;
100 
101 	if (bio_slab_nr == bio_slab_max && entry == -1) {
102 		new_bio_slab_max = bio_slab_max << 1;
103 		new_bio_slabs = krealloc(bio_slabs,
104 					 new_bio_slab_max * sizeof(struct bio_slab),
105 					 GFP_KERNEL);
106 		if (!new_bio_slabs)
107 			goto out_unlock;
108 		bio_slab_max = new_bio_slab_max;
109 		bio_slabs = new_bio_slabs;
110 	}
111 	if (entry == -1)
112 		entry = bio_slab_nr++;
113 
114 	bslab = &bio_slabs[entry];
115 
116 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 				 SLAB_HWCACHE_ALIGN, NULL);
119 	if (!slab)
120 		goto out_unlock;
121 
122 	bslab->slab = slab;
123 	bslab->slab_ref = 1;
124 	bslab->slab_size = sz;
125 out_unlock:
126 	mutex_unlock(&bio_slab_lock);
127 	return slab;
128 }
129 
bio_put_slab(struct bio_set * bs)130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int i;
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	for (i = 0; i < bio_slab_nr; i++) {
138 		if (bs->bio_slab == bio_slabs[i].slab) {
139 			bslab = &bio_slabs[i];
140 			break;
141 		}
142 	}
143 
144 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 		goto out;
146 
147 	WARN_ON(!bslab->slab_ref);
148 
149 	if (--bslab->slab_ref)
150 		goto out;
151 
152 	kmem_cache_destroy(bslab->slab);
153 	bslab->slab = NULL;
154 
155 out:
156 	mutex_unlock(&bio_slab_lock);
157 }
158 
bvec_nr_vecs(unsigned short idx)159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 	return bvec_slabs[--idx].nr_vecs;
162 }
163 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 	if (!idx)
167 		return;
168 	idx--;
169 
170 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
171 
172 	if (idx == BVEC_POOL_MAX) {
173 		mempool_free(bv, pool);
174 	} else {
175 		struct biovec_slab *bvs = bvec_slabs + idx;
176 
177 		kmem_cache_free(bvs->slab, bv);
178 	}
179 }
180 
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 			   mempool_t *pool)
183 {
184 	struct bio_vec *bvl;
185 
186 	/*
187 	 * see comment near bvec_array define!
188 	 */
189 	switch (nr) {
190 	case 1:
191 		*idx = 0;
192 		break;
193 	case 2 ... 4:
194 		*idx = 1;
195 		break;
196 	case 5 ... 16:
197 		*idx = 2;
198 		break;
199 	case 17 ... 64:
200 		*idx = 3;
201 		break;
202 	case 65 ... 128:
203 		*idx = 4;
204 		break;
205 	case 129 ... BIO_MAX_PAGES:
206 		*idx = 5;
207 		break;
208 	default:
209 		return NULL;
210 	}
211 
212 	/*
213 	 * idx now points to the pool we want to allocate from. only the
214 	 * 1-vec entry pool is mempool backed.
215 	 */
216 	if (*idx == BVEC_POOL_MAX) {
217 fallback:
218 		bvl = mempool_alloc(pool, gfp_mask);
219 	} else {
220 		struct biovec_slab *bvs = bvec_slabs + *idx;
221 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222 
223 		/*
224 		 * Make this allocation restricted and don't dump info on
225 		 * allocation failures, since we'll fallback to the mempool
226 		 * in case of failure.
227 		 */
228 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229 
230 		/*
231 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232 		 * is set, retry with the 1-entry mempool
233 		 */
234 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236 			*idx = BVEC_POOL_MAX;
237 			goto fallback;
238 		}
239 	}
240 
241 	(*idx)++;
242 	return bvl;
243 }
244 
bio_uninit(struct bio * bio)245 void bio_uninit(struct bio *bio)
246 {
247 	bio_disassociate_task(bio);
248 }
249 EXPORT_SYMBOL(bio_uninit);
250 
bio_free(struct bio * bio)251 static void bio_free(struct bio *bio)
252 {
253 	struct bio_set *bs = bio->bi_pool;
254 	void *p;
255 
256 	bio_uninit(bio);
257 
258 	if (bs) {
259 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260 
261 		/*
262 		 * If we have front padding, adjust the bio pointer before freeing
263 		 */
264 		p = bio;
265 		p -= bs->front_pad;
266 
267 		mempool_free(p, &bs->bio_pool);
268 	} else {
269 		/* Bio was allocated by bio_kmalloc() */
270 		kfree(bio);
271 	}
272 }
273 
274 /*
275  * Users of this function have their own bio allocation. Subsequently,
276  * they must remember to pair any call to bio_init() with bio_uninit()
277  * when IO has completed, or when the bio is released.
278  */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)279 void bio_init(struct bio *bio, struct bio_vec *table,
280 	      unsigned short max_vecs)
281 {
282 	memset(bio, 0, sizeof(*bio));
283 	atomic_set(&bio->__bi_remaining, 1);
284 	atomic_set(&bio->__bi_cnt, 1);
285 
286 	bio->bi_io_vec = table;
287 	bio->bi_max_vecs = max_vecs;
288 }
289 EXPORT_SYMBOL(bio_init);
290 
291 /**
292  * bio_reset - reinitialize a bio
293  * @bio:	bio to reset
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
bio_reset(struct bio * bio)301 void bio_reset(struct bio *bio)
302 {
303 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304 
305 	bio_uninit(bio);
306 
307 	memset(bio, 0, BIO_RESET_BYTES);
308 	bio->bi_flags = flags;
309 	atomic_set(&bio->__bi_remaining, 1);
310 }
311 EXPORT_SYMBOL(bio_reset);
312 
__bio_chain_endio(struct bio * bio)313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 	struct bio *parent = bio->bi_private;
316 
317 	if (bio->bi_status && !parent->bi_status)
318 		parent->bi_status = bio->bi_status;
319 	bio_put(bio);
320 	return parent;
321 }
322 
bio_chain_endio(struct bio * bio)323 static void bio_chain_endio(struct bio *bio)
324 {
325 	bio_endio(__bio_chain_endio(bio));
326 }
327 
328 /**
329  * bio_chain - chain bio completions
330  * @bio: the target bio
331  * @parent: the @bio's parent bio
332  *
333  * The caller won't have a bi_end_io called when @bio completes - instead,
334  * @parent's bi_end_io won't be called until both @parent and @bio have
335  * completed; the chained bio will also be freed when it completes.
336  *
337  * The caller must not set bi_private or bi_end_io in @bio.
338  */
bio_chain(struct bio * bio,struct bio * parent)339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 	BUG_ON(bio->bi_private || bio->bi_end_io);
342 
343 	bio->bi_private = parent;
344 	bio->bi_end_io	= bio_chain_endio;
345 	bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348 
bio_alloc_rescue(struct work_struct * work)349 static void bio_alloc_rescue(struct work_struct *work)
350 {
351 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 	struct bio *bio;
353 
354 	while (1) {
355 		spin_lock(&bs->rescue_lock);
356 		bio = bio_list_pop(&bs->rescue_list);
357 		spin_unlock(&bs->rescue_lock);
358 
359 		if (!bio)
360 			break;
361 
362 		generic_make_request(bio);
363 	}
364 }
365 
punt_bios_to_rescuer(struct bio_set * bs)366 static void punt_bios_to_rescuer(struct bio_set *bs)
367 {
368 	struct bio_list punt, nopunt;
369 	struct bio *bio;
370 
371 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 		return;
373 	/*
374 	 * In order to guarantee forward progress we must punt only bios that
375 	 * were allocated from this bio_set; otherwise, if there was a bio on
376 	 * there for a stacking driver higher up in the stack, processing it
377 	 * could require allocating bios from this bio_set, and doing that from
378 	 * our own rescuer would be bad.
379 	 *
380 	 * Since bio lists are singly linked, pop them all instead of trying to
381 	 * remove from the middle of the list:
382 	 */
383 
384 	bio_list_init(&punt);
385 	bio_list_init(&nopunt);
386 
387 	while ((bio = bio_list_pop(&current->bio_list[0])))
388 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 	current->bio_list[0] = nopunt;
390 
391 	bio_list_init(&nopunt);
392 	while ((bio = bio_list_pop(&current->bio_list[1])))
393 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 	current->bio_list[1] = nopunt;
395 
396 	spin_lock(&bs->rescue_lock);
397 	bio_list_merge(&bs->rescue_list, &punt);
398 	spin_unlock(&bs->rescue_lock);
399 
400 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
401 }
402 
403 /**
404  * bio_alloc_bioset - allocate a bio for I/O
405  * @gfp_mask:   the GFP_* mask given to the slab allocator
406  * @nr_iovecs:	number of iovecs to pre-allocate
407  * @bs:		the bio_set to allocate from.
408  *
409  * Description:
410  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411  *   backed by the @bs's mempool.
412  *
413  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414  *   always be able to allocate a bio. This is due to the mempool guarantees.
415  *   To make this work, callers must never allocate more than 1 bio at a time
416  *   from this pool. Callers that need to allocate more than 1 bio must always
417  *   submit the previously allocated bio for IO before attempting to allocate
418  *   a new one. Failure to do so can cause deadlocks under memory pressure.
419  *
420  *   Note that when running under generic_make_request() (i.e. any block
421  *   driver), bios are not submitted until after you return - see the code in
422  *   generic_make_request() that converts recursion into iteration, to prevent
423  *   stack overflows.
424  *
425  *   This would normally mean allocating multiple bios under
426  *   generic_make_request() would be susceptible to deadlocks, but we have
427  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
428  *   thread.
429  *
430  *   However, we do not guarantee forward progress for allocations from other
431  *   mempools. Doing multiple allocations from the same mempool under
432  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
433  *   for per bio allocations.
434  *
435  *   RETURNS:
436  *   Pointer to new bio on success, NULL on failure.
437  */
bio_alloc_bioset(gfp_t gfp_mask,unsigned int nr_iovecs,struct bio_set * bs)438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 			     struct bio_set *bs)
440 {
441 	gfp_t saved_gfp = gfp_mask;
442 	unsigned front_pad;
443 	unsigned inline_vecs;
444 	struct bio_vec *bvl = NULL;
445 	struct bio *bio;
446 	void *p;
447 
448 	if (!bs) {
449 		if (nr_iovecs > UIO_MAXIOV)
450 			return NULL;
451 
452 		p = kmalloc(sizeof(struct bio) +
453 			    nr_iovecs * sizeof(struct bio_vec),
454 			    gfp_mask);
455 		front_pad = 0;
456 		inline_vecs = nr_iovecs;
457 	} else {
458 		/* should not use nobvec bioset for nr_iovecs > 0 */
459 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 				 nr_iovecs > 0))
461 			return NULL;
462 		/*
463 		 * generic_make_request() converts recursion to iteration; this
464 		 * means if we're running beneath it, any bios we allocate and
465 		 * submit will not be submitted (and thus freed) until after we
466 		 * return.
467 		 *
468 		 * This exposes us to a potential deadlock if we allocate
469 		 * multiple bios from the same bio_set() while running
470 		 * underneath generic_make_request(). If we were to allocate
471 		 * multiple bios (say a stacking block driver that was splitting
472 		 * bios), we would deadlock if we exhausted the mempool's
473 		 * reserve.
474 		 *
475 		 * We solve this, and guarantee forward progress, with a rescuer
476 		 * workqueue per bio_set. If we go to allocate and there are
477 		 * bios on current->bio_list, we first try the allocation
478 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 		 * bios we would be blocking to the rescuer workqueue before
480 		 * we retry with the original gfp_flags.
481 		 */
482 
483 		if (current->bio_list &&
484 		    (!bio_list_empty(&current->bio_list[0]) ||
485 		     !bio_list_empty(&current->bio_list[1])) &&
486 		    bs->rescue_workqueue)
487 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488 
489 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
490 		if (!p && gfp_mask != saved_gfp) {
491 			punt_bios_to_rescuer(bs);
492 			gfp_mask = saved_gfp;
493 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 		}
495 
496 		front_pad = bs->front_pad;
497 		inline_vecs = BIO_INLINE_VECS;
498 	}
499 
500 	if (unlikely(!p))
501 		return NULL;
502 
503 	bio = p + front_pad;
504 	bio_init(bio, NULL, 0);
505 
506 	if (nr_iovecs > inline_vecs) {
507 		unsigned long idx = 0;
508 
509 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510 		if (!bvl && gfp_mask != saved_gfp) {
511 			punt_bios_to_rescuer(bs);
512 			gfp_mask = saved_gfp;
513 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
514 		}
515 
516 		if (unlikely(!bvl))
517 			goto err_free;
518 
519 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 	} else if (nr_iovecs) {
521 		bvl = bio->bi_inline_vecs;
522 	}
523 
524 	bio->bi_pool = bs;
525 	bio->bi_max_vecs = nr_iovecs;
526 	bio->bi_io_vec = bvl;
527 	return bio;
528 
529 err_free:
530 	mempool_free(p, &bs->bio_pool);
531 	return NULL;
532 }
533 EXPORT_SYMBOL(bio_alloc_bioset);
534 
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536 {
537 	unsigned long flags;
538 	struct bio_vec bv;
539 	struct bvec_iter iter;
540 
541 	__bio_for_each_segment(bv, bio, iter, start) {
542 		char *data = bvec_kmap_irq(&bv, &flags);
543 		memset(data, 0, bv.bv_len);
544 		flush_dcache_page(bv.bv_page);
545 		bvec_kunmap_irq(data, &flags);
546 	}
547 }
548 EXPORT_SYMBOL(zero_fill_bio_iter);
549 
550 /**
551  * bio_put - release a reference to a bio
552  * @bio:   bio to release reference to
553  *
554  * Description:
555  *   Put a reference to a &struct bio, either one you have gotten with
556  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557  **/
bio_put(struct bio * bio)558 void bio_put(struct bio *bio)
559 {
560 	if (!bio_flagged(bio, BIO_REFFED))
561 		bio_free(bio);
562 	else {
563 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564 
565 		/*
566 		 * last put frees it
567 		 */
568 		if (atomic_dec_and_test(&bio->__bi_cnt))
569 			bio_free(bio);
570 	}
571 }
572 EXPORT_SYMBOL(bio_put);
573 
bio_phys_segments(struct request_queue * q,struct bio * bio)574 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
575 {
576 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 		blk_recount_segments(q, bio);
578 
579 	return bio->bi_phys_segments;
580 }
581 EXPORT_SYMBOL(bio_phys_segments);
582 
583 /**
584  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
585  * 	@bio: destination bio
586  * 	@bio_src: bio to clone
587  *
588  *	Clone a &bio. Caller will own the returned bio, but not
589  *	the actual data it points to. Reference count of returned
590  * 	bio will be one.
591  *
592  * 	Caller must ensure that @bio_src is not freed before @bio.
593  */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)594 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595 {
596 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
597 
598 	/*
599 	 * most users will be overriding ->bi_disk with a new target,
600 	 * so we don't set nor calculate new physical/hw segment counts here
601 	 */
602 	bio->bi_disk = bio_src->bi_disk;
603 	bio->bi_partno = bio_src->bi_partno;
604 	bio_set_flag(bio, BIO_CLONED);
605 	if (bio_flagged(bio_src, BIO_THROTTLED))
606 		bio_set_flag(bio, BIO_THROTTLED);
607 	bio->bi_opf = bio_src->bi_opf;
608 	bio->bi_ioprio = bio_src->bi_ioprio;
609 	bio->bi_write_hint = bio_src->bi_write_hint;
610 	bio->bi_iter = bio_src->bi_iter;
611 	bio->bi_io_vec = bio_src->bi_io_vec;
612 
613 	bio_clone_blkcg_association(bio, bio_src);
614 }
615 EXPORT_SYMBOL(__bio_clone_fast);
616 
617 /**
618  *	bio_clone_fast - clone a bio that shares the original bio's biovec
619  *	@bio: bio to clone
620  *	@gfp_mask: allocation priority
621  *	@bs: bio_set to allocate from
622  *
623  * 	Like __bio_clone_fast, only also allocates the returned bio
624  */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)625 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626 {
627 	struct bio *b;
628 
629 	b = bio_alloc_bioset(gfp_mask, 0, bs);
630 	if (!b)
631 		return NULL;
632 
633 	__bio_clone_fast(b, bio);
634 
635 	if (bio_integrity(bio)) {
636 		int ret;
637 
638 		ret = bio_integrity_clone(b, bio, gfp_mask);
639 
640 		if (ret < 0) {
641 			bio_put(b);
642 			return NULL;
643 		}
644 	}
645 
646 	return b;
647 }
648 EXPORT_SYMBOL(bio_clone_fast);
649 
650 /**
651  *	bio_add_pc_page	-	attempt to add page to bio
652  *	@q: the target queue
653  *	@bio: destination bio
654  *	@page: page to add
655  *	@len: vec entry length
656  *	@offset: vec entry offset
657  *
658  *	Attempt to add a page to the bio_vec maplist. This can fail for a
659  *	number of reasons, such as the bio being full or target block device
660  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
661  *	so it is always possible to add a single page to an empty bio.
662  *
663  *	This should only be used by REQ_PC bios.
664  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)665 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666 		    *page, unsigned int len, unsigned int offset)
667 {
668 	int retried_segments = 0;
669 	struct bio_vec *bvec;
670 
671 	/*
672 	 * cloned bio must not modify vec list
673 	 */
674 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
675 		return 0;
676 
677 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
678 		return 0;
679 
680 	/*
681 	 * For filesystems with a blocksize smaller than the pagesize
682 	 * we will often be called with the same page as last time and
683 	 * a consecutive offset.  Optimize this special case.
684 	 */
685 	if (bio->bi_vcnt > 0) {
686 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
687 
688 		if (page == prev->bv_page &&
689 		    offset == prev->bv_offset + prev->bv_len) {
690 			prev->bv_len += len;
691 			bio->bi_iter.bi_size += len;
692 			goto done;
693 		}
694 
695 		/*
696 		 * If the queue doesn't support SG gaps and adding this
697 		 * offset would create a gap, disallow it.
698 		 */
699 		if (bvec_gap_to_prev(q, prev, offset))
700 			return 0;
701 	}
702 
703 	if (bio_full(bio))
704 		return 0;
705 
706 	/*
707 	 * setup the new entry, we might clear it again later if we
708 	 * cannot add the page
709 	 */
710 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
711 	bvec->bv_page = page;
712 	bvec->bv_len = len;
713 	bvec->bv_offset = offset;
714 	bio->bi_vcnt++;
715 	bio->bi_phys_segments++;
716 	bio->bi_iter.bi_size += len;
717 
718 	/*
719 	 * Perform a recount if the number of segments is greater
720 	 * than queue_max_segments(q).
721 	 */
722 
723 	while (bio->bi_phys_segments > queue_max_segments(q)) {
724 
725 		if (retried_segments)
726 			goto failed;
727 
728 		retried_segments = 1;
729 		blk_recount_segments(q, bio);
730 	}
731 
732 	/* If we may be able to merge these biovecs, force a recount */
733 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
734 		bio_clear_flag(bio, BIO_SEG_VALID);
735 
736  done:
737 	return len;
738 
739  failed:
740 	bvec->bv_page = NULL;
741 	bvec->bv_len = 0;
742 	bvec->bv_offset = 0;
743 	bio->bi_vcnt--;
744 	bio->bi_iter.bi_size -= len;
745 	blk_recount_segments(q, bio);
746 	return 0;
747 }
748 EXPORT_SYMBOL(bio_add_pc_page);
749 
750 /**
751  * __bio_try_merge_page - try appending data to an existing bvec.
752  * @bio: destination bio
753  * @page: page to add
754  * @len: length of the data to add
755  * @off: offset of the data in @page
756  *
757  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
758  * a useful optimisation for file systems with a block size smaller than the
759  * page size.
760  *
761  * Return %true on success or %false on failure.
762  */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)763 bool __bio_try_merge_page(struct bio *bio, struct page *page,
764 		unsigned int len, unsigned int off)
765 {
766 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
767 		return false;
768 
769 	if (bio->bi_vcnt > 0) {
770 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
771 
772 		if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
773 			bv->bv_len += len;
774 			bio->bi_iter.bi_size += len;
775 			return true;
776 		}
777 	}
778 	return false;
779 }
780 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
781 
782 /**
783  * __bio_add_page - add page to a bio in a new segment
784  * @bio: destination bio
785  * @page: page to add
786  * @len: length of the data to add
787  * @off: offset of the data in @page
788  *
789  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
790  * that @bio has space for another bvec.
791  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)792 void __bio_add_page(struct bio *bio, struct page *page,
793 		unsigned int len, unsigned int off)
794 {
795 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
796 
797 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
798 	WARN_ON_ONCE(bio_full(bio));
799 
800 	bv->bv_page = page;
801 	bv->bv_offset = off;
802 	bv->bv_len = len;
803 
804 	bio->bi_iter.bi_size += len;
805 	bio->bi_vcnt++;
806 }
807 EXPORT_SYMBOL_GPL(__bio_add_page);
808 
809 /**
810  *	bio_add_page	-	attempt to add page to bio
811  *	@bio: destination bio
812  *	@page: page to add
813  *	@len: vec entry length
814  *	@offset: vec entry offset
815  *
816  *	Attempt to add a page to the bio_vec maplist. This will only fail
817  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
818  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)819 int bio_add_page(struct bio *bio, struct page *page,
820 		 unsigned int len, unsigned int offset)
821 {
822 	if (!__bio_try_merge_page(bio, page, len, offset)) {
823 		if (bio_full(bio))
824 			return 0;
825 		__bio_add_page(bio, page, len, offset);
826 	}
827 	return len;
828 }
829 EXPORT_SYMBOL(bio_add_page);
830 
831 /**
832  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
833  * @bio: bio to add pages to
834  * @iter: iov iterator describing the region to be mapped
835  *
836  * Pins pages from *iter and appends them to @bio's bvec array. The
837  * pages will have to be released using put_page() when done.
838  * For multi-segment *iter, this function only adds pages from the
839  * the next non-empty segment of the iov iterator.
840  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)841 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
842 {
843 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
844 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
845 	struct page **pages = (struct page **)bv;
846 	size_t offset;
847 	ssize_t size;
848 
849 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
850 	if (unlikely(size <= 0))
851 		return size ? size : -EFAULT;
852 	idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
853 
854 	/*
855 	 * Deep magic below:  We need to walk the pinned pages backwards
856 	 * because we are abusing the space allocated for the bio_vecs
857 	 * for the page array.  Because the bio_vecs are larger than the
858 	 * page pointers by definition this will always work.  But it also
859 	 * means we can't use bio_add_page, so any changes to it's semantics
860 	 * need to be reflected here as well.
861 	 */
862 	bio->bi_iter.bi_size += size;
863 	bio->bi_vcnt += nr_pages;
864 
865 	while (idx--) {
866 		bv[idx].bv_page = pages[idx];
867 		bv[idx].bv_len = PAGE_SIZE;
868 		bv[idx].bv_offset = 0;
869 	}
870 
871 	bv[0].bv_offset += offset;
872 	bv[0].bv_len -= offset;
873 	bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
874 
875 	iov_iter_advance(iter, size);
876 	return 0;
877 }
878 
879 /**
880  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
881  * @bio: bio to add pages to
882  * @iter: iov iterator describing the region to be mapped
883  *
884  * Pins pages from *iter and appends them to @bio's bvec array. The
885  * pages will have to be released using put_page() when done.
886  * The function tries, but does not guarantee, to pin as many pages as
887  * fit into the bio, or are requested in *iter, whatever is smaller.
888  * If MM encounters an error pinning the requested pages, it stops.
889  * Error is returned only if 0 pages could be pinned.
890  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)891 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
892 {
893 	unsigned short orig_vcnt = bio->bi_vcnt;
894 
895 	do {
896 		int ret = __bio_iov_iter_get_pages(bio, iter);
897 
898 		if (unlikely(ret))
899 			return bio->bi_vcnt > orig_vcnt ? 0 : ret;
900 
901 	} while (iov_iter_count(iter) && !bio_full(bio));
902 
903 	return 0;
904 }
905 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
906 
submit_bio_wait_endio(struct bio * bio)907 static void submit_bio_wait_endio(struct bio *bio)
908 {
909 	complete(bio->bi_private);
910 }
911 
912 /**
913  * submit_bio_wait - submit a bio, and wait until it completes
914  * @bio: The &struct bio which describes the I/O
915  *
916  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
917  * bio_endio() on failure.
918  *
919  * WARNING: Unlike to how submit_bio() is usually used, this function does not
920  * result in bio reference to be consumed. The caller must drop the reference
921  * on his own.
922  */
submit_bio_wait(struct bio * bio)923 int submit_bio_wait(struct bio *bio)
924 {
925 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
926 
927 	bio->bi_private = &done;
928 	bio->bi_end_io = submit_bio_wait_endio;
929 	bio->bi_opf |= REQ_SYNC;
930 	submit_bio(bio);
931 	wait_for_completion_io(&done);
932 
933 	return blk_status_to_errno(bio->bi_status);
934 }
935 EXPORT_SYMBOL(submit_bio_wait);
936 
937 /**
938  * bio_advance - increment/complete a bio by some number of bytes
939  * @bio:	bio to advance
940  * @bytes:	number of bytes to complete
941  *
942  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
943  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
944  * be updated on the last bvec as well.
945  *
946  * @bio will then represent the remaining, uncompleted portion of the io.
947  */
bio_advance(struct bio * bio,unsigned bytes)948 void bio_advance(struct bio *bio, unsigned bytes)
949 {
950 	if (bio_integrity(bio))
951 		bio_integrity_advance(bio, bytes);
952 
953 	bio_advance_iter(bio, &bio->bi_iter, bytes);
954 }
955 EXPORT_SYMBOL(bio_advance);
956 
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)957 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
958 			struct bio *src, struct bvec_iter *src_iter)
959 {
960 	struct bio_vec src_bv, dst_bv;
961 	void *src_p, *dst_p;
962 	unsigned bytes;
963 
964 	while (src_iter->bi_size && dst_iter->bi_size) {
965 		src_bv = bio_iter_iovec(src, *src_iter);
966 		dst_bv = bio_iter_iovec(dst, *dst_iter);
967 
968 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
969 
970 		src_p = kmap_atomic(src_bv.bv_page);
971 		dst_p = kmap_atomic(dst_bv.bv_page);
972 
973 		memcpy(dst_p + dst_bv.bv_offset,
974 		       src_p + src_bv.bv_offset,
975 		       bytes);
976 
977 		kunmap_atomic(dst_p);
978 		kunmap_atomic(src_p);
979 
980 		flush_dcache_page(dst_bv.bv_page);
981 
982 		bio_advance_iter(src, src_iter, bytes);
983 		bio_advance_iter(dst, dst_iter, bytes);
984 	}
985 }
986 EXPORT_SYMBOL(bio_copy_data_iter);
987 
988 /**
989  * bio_copy_data - copy contents of data buffers from one bio to another
990  * @src: source bio
991  * @dst: destination bio
992  *
993  * Stops when it reaches the end of either @src or @dst - that is, copies
994  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
995  */
bio_copy_data(struct bio * dst,struct bio * src)996 void bio_copy_data(struct bio *dst, struct bio *src)
997 {
998 	struct bvec_iter src_iter = src->bi_iter;
999 	struct bvec_iter dst_iter = dst->bi_iter;
1000 
1001 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1002 }
1003 EXPORT_SYMBOL(bio_copy_data);
1004 
1005 /**
1006  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1007  * another
1008  * @src: source bio list
1009  * @dst: destination bio list
1010  *
1011  * Stops when it reaches the end of either the @src list or @dst list - that is,
1012  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1013  * bios).
1014  */
bio_list_copy_data(struct bio * dst,struct bio * src)1015 void bio_list_copy_data(struct bio *dst, struct bio *src)
1016 {
1017 	struct bvec_iter src_iter = src->bi_iter;
1018 	struct bvec_iter dst_iter = dst->bi_iter;
1019 
1020 	while (1) {
1021 		if (!src_iter.bi_size) {
1022 			src = src->bi_next;
1023 			if (!src)
1024 				break;
1025 
1026 			src_iter = src->bi_iter;
1027 		}
1028 
1029 		if (!dst_iter.bi_size) {
1030 			dst = dst->bi_next;
1031 			if (!dst)
1032 				break;
1033 
1034 			dst_iter = dst->bi_iter;
1035 		}
1036 
1037 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1038 	}
1039 }
1040 EXPORT_SYMBOL(bio_list_copy_data);
1041 
1042 struct bio_map_data {
1043 	int is_our_pages;
1044 	struct iov_iter iter;
1045 	struct iovec iov[];
1046 };
1047 
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)1048 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1049 					       gfp_t gfp_mask)
1050 {
1051 	struct bio_map_data *bmd;
1052 	if (data->nr_segs > UIO_MAXIOV)
1053 		return NULL;
1054 
1055 	bmd = kmalloc(sizeof(struct bio_map_data) +
1056 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1057 	if (!bmd)
1058 		return NULL;
1059 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1060 	bmd->iter = *data;
1061 	bmd->iter.iov = bmd->iov;
1062 	return bmd;
1063 }
1064 
1065 /**
1066  * bio_copy_from_iter - copy all pages from iov_iter to bio
1067  * @bio: The &struct bio which describes the I/O as destination
1068  * @iter: iov_iter as source
1069  *
1070  * Copy all pages from iov_iter to bio.
1071  * Returns 0 on success, or error on failure.
1072  */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)1073 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1074 {
1075 	int i;
1076 	struct bio_vec *bvec;
1077 
1078 	bio_for_each_segment_all(bvec, bio, i) {
1079 		ssize_t ret;
1080 
1081 		ret = copy_page_from_iter(bvec->bv_page,
1082 					  bvec->bv_offset,
1083 					  bvec->bv_len,
1084 					  iter);
1085 
1086 		if (!iov_iter_count(iter))
1087 			break;
1088 
1089 		if (ret < bvec->bv_len)
1090 			return -EFAULT;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 /**
1097  * bio_copy_to_iter - copy all pages from bio to iov_iter
1098  * @bio: The &struct bio which describes the I/O as source
1099  * @iter: iov_iter as destination
1100  *
1101  * Copy all pages from bio to iov_iter.
1102  * Returns 0 on success, or error on failure.
1103  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1104 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1105 {
1106 	int i;
1107 	struct bio_vec *bvec;
1108 
1109 	bio_for_each_segment_all(bvec, bio, i) {
1110 		ssize_t ret;
1111 
1112 		ret = copy_page_to_iter(bvec->bv_page,
1113 					bvec->bv_offset,
1114 					bvec->bv_len,
1115 					&iter);
1116 
1117 		if (!iov_iter_count(&iter))
1118 			break;
1119 
1120 		if (ret < bvec->bv_len)
1121 			return -EFAULT;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
bio_free_pages(struct bio * bio)1127 void bio_free_pages(struct bio *bio)
1128 {
1129 	struct bio_vec *bvec;
1130 	int i;
1131 
1132 	bio_for_each_segment_all(bvec, bio, i)
1133 		__free_page(bvec->bv_page);
1134 }
1135 EXPORT_SYMBOL(bio_free_pages);
1136 
1137 /**
1138  *	bio_uncopy_user	-	finish previously mapped bio
1139  *	@bio: bio being terminated
1140  *
1141  *	Free pages allocated from bio_copy_user_iov() and write back data
1142  *	to user space in case of a read.
1143  */
bio_uncopy_user(struct bio * bio)1144 int bio_uncopy_user(struct bio *bio)
1145 {
1146 	struct bio_map_data *bmd = bio->bi_private;
1147 	int ret = 0;
1148 
1149 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1150 		/*
1151 		 * if we're in a workqueue, the request is orphaned, so
1152 		 * don't copy into a random user address space, just free
1153 		 * and return -EINTR so user space doesn't expect any data.
1154 		 */
1155 		if (!current->mm)
1156 			ret = -EINTR;
1157 		else if (bio_data_dir(bio) == READ)
1158 			ret = bio_copy_to_iter(bio, bmd->iter);
1159 		if (bmd->is_our_pages)
1160 			bio_free_pages(bio);
1161 	}
1162 	kfree(bmd);
1163 	bio_put(bio);
1164 	return ret;
1165 }
1166 
1167 /**
1168  *	bio_copy_user_iov	-	copy user data to bio
1169  *	@q:		destination block queue
1170  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1171  *	@iter:		iovec iterator
1172  *	@gfp_mask:	memory allocation flags
1173  *
1174  *	Prepares and returns a bio for indirect user io, bouncing data
1175  *	to/from kernel pages as necessary. Must be paired with
1176  *	call bio_uncopy_user() on io completion.
1177  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)1178 struct bio *bio_copy_user_iov(struct request_queue *q,
1179 			      struct rq_map_data *map_data,
1180 			      struct iov_iter *iter,
1181 			      gfp_t gfp_mask)
1182 {
1183 	struct bio_map_data *bmd;
1184 	struct page *page;
1185 	struct bio *bio;
1186 	int i = 0, ret;
1187 	int nr_pages;
1188 	unsigned int len = iter->count;
1189 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1190 
1191 	bmd = bio_alloc_map_data(iter, gfp_mask);
1192 	if (!bmd)
1193 		return ERR_PTR(-ENOMEM);
1194 
1195 	/*
1196 	 * We need to do a deep copy of the iov_iter including the iovecs.
1197 	 * The caller provided iov might point to an on-stack or otherwise
1198 	 * shortlived one.
1199 	 */
1200 	bmd->is_our_pages = map_data ? 0 : 1;
1201 
1202 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1203 	if (nr_pages > BIO_MAX_PAGES)
1204 		nr_pages = BIO_MAX_PAGES;
1205 
1206 	ret = -ENOMEM;
1207 	bio = bio_kmalloc(gfp_mask, nr_pages);
1208 	if (!bio)
1209 		goto out_bmd;
1210 
1211 	ret = 0;
1212 
1213 	if (map_data) {
1214 		nr_pages = 1 << map_data->page_order;
1215 		i = map_data->offset / PAGE_SIZE;
1216 	}
1217 	while (len) {
1218 		unsigned int bytes = PAGE_SIZE;
1219 
1220 		bytes -= offset;
1221 
1222 		if (bytes > len)
1223 			bytes = len;
1224 
1225 		if (map_data) {
1226 			if (i == map_data->nr_entries * nr_pages) {
1227 				ret = -ENOMEM;
1228 				break;
1229 			}
1230 
1231 			page = map_data->pages[i / nr_pages];
1232 			page += (i % nr_pages);
1233 
1234 			i++;
1235 		} else {
1236 			page = alloc_page(q->bounce_gfp | gfp_mask);
1237 			if (!page) {
1238 				ret = -ENOMEM;
1239 				break;
1240 			}
1241 		}
1242 
1243 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1244 			if (!map_data)
1245 				__free_page(page);
1246 			break;
1247 		}
1248 
1249 		len -= bytes;
1250 		offset = 0;
1251 	}
1252 
1253 	if (ret)
1254 		goto cleanup;
1255 
1256 	if (map_data)
1257 		map_data->offset += bio->bi_iter.bi_size;
1258 
1259 	/*
1260 	 * success
1261 	 */
1262 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1263 	    (map_data && map_data->from_user)) {
1264 		ret = bio_copy_from_iter(bio, iter);
1265 		if (ret)
1266 			goto cleanup;
1267 	} else {
1268 		if (bmd->is_our_pages)
1269 			zero_fill_bio(bio);
1270 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1271 	}
1272 
1273 	bio->bi_private = bmd;
1274 	if (map_data && map_data->null_mapped)
1275 		bio_set_flag(bio, BIO_NULL_MAPPED);
1276 	return bio;
1277 cleanup:
1278 	if (!map_data)
1279 		bio_free_pages(bio);
1280 	bio_put(bio);
1281 out_bmd:
1282 	kfree(bmd);
1283 	return ERR_PTR(ret);
1284 }
1285 
1286 /**
1287  *	bio_map_user_iov - map user iovec into bio
1288  *	@q:		the struct request_queue for the bio
1289  *	@iter:		iovec iterator
1290  *	@gfp_mask:	memory allocation flags
1291  *
1292  *	Map the user space address into a bio suitable for io to a block
1293  *	device. Returns an error pointer in case of error.
1294  */
bio_map_user_iov(struct request_queue * q,struct iov_iter * iter,gfp_t gfp_mask)1295 struct bio *bio_map_user_iov(struct request_queue *q,
1296 			     struct iov_iter *iter,
1297 			     gfp_t gfp_mask)
1298 {
1299 	int j;
1300 	struct bio *bio;
1301 	int ret;
1302 	struct bio_vec *bvec;
1303 
1304 	if (!iov_iter_count(iter))
1305 		return ERR_PTR(-EINVAL);
1306 
1307 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1308 	if (!bio)
1309 		return ERR_PTR(-ENOMEM);
1310 
1311 	while (iov_iter_count(iter)) {
1312 		struct page **pages;
1313 		ssize_t bytes;
1314 		size_t offs, added = 0;
1315 		int npages;
1316 
1317 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1318 		if (unlikely(bytes <= 0)) {
1319 			ret = bytes ? bytes : -EFAULT;
1320 			goto out_unmap;
1321 		}
1322 
1323 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1324 
1325 		if (unlikely(offs & queue_dma_alignment(q))) {
1326 			ret = -EINVAL;
1327 			j = 0;
1328 		} else {
1329 			for (j = 0; j < npages; j++) {
1330 				struct page *page = pages[j];
1331 				unsigned int n = PAGE_SIZE - offs;
1332 				unsigned short prev_bi_vcnt = bio->bi_vcnt;
1333 
1334 				if (n > bytes)
1335 					n = bytes;
1336 
1337 				if (!bio_add_pc_page(q, bio, page, n, offs))
1338 					break;
1339 
1340 				/*
1341 				 * check if vector was merged with previous
1342 				 * drop page reference if needed
1343 				 */
1344 				if (bio->bi_vcnt == prev_bi_vcnt)
1345 					put_page(page);
1346 
1347 				added += n;
1348 				bytes -= n;
1349 				offs = 0;
1350 			}
1351 			iov_iter_advance(iter, added);
1352 		}
1353 		/*
1354 		 * release the pages we didn't map into the bio, if any
1355 		 */
1356 		while (j < npages)
1357 			put_page(pages[j++]);
1358 		kvfree(pages);
1359 		/* couldn't stuff something into bio? */
1360 		if (bytes)
1361 			break;
1362 	}
1363 
1364 	bio_set_flag(bio, BIO_USER_MAPPED);
1365 
1366 	/*
1367 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1368 	 * it would normally disappear when its bi_end_io is run.
1369 	 * however, we need it for the unmap, so grab an extra
1370 	 * reference to it
1371 	 */
1372 	bio_get(bio);
1373 	return bio;
1374 
1375  out_unmap:
1376 	bio_for_each_segment_all(bvec, bio, j) {
1377 		put_page(bvec->bv_page);
1378 	}
1379 	bio_put(bio);
1380 	return ERR_PTR(ret);
1381 }
1382 
__bio_unmap_user(struct bio * bio)1383 static void __bio_unmap_user(struct bio *bio)
1384 {
1385 	struct bio_vec *bvec;
1386 	int i;
1387 
1388 	/*
1389 	 * make sure we dirty pages we wrote to
1390 	 */
1391 	bio_for_each_segment_all(bvec, bio, i) {
1392 		if (bio_data_dir(bio) == READ)
1393 			set_page_dirty_lock(bvec->bv_page);
1394 
1395 		put_page(bvec->bv_page);
1396 	}
1397 
1398 	bio_put(bio);
1399 }
1400 
1401 /**
1402  *	bio_unmap_user	-	unmap a bio
1403  *	@bio:		the bio being unmapped
1404  *
1405  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1406  *	process context.
1407  *
1408  *	bio_unmap_user() may sleep.
1409  */
bio_unmap_user(struct bio * bio)1410 void bio_unmap_user(struct bio *bio)
1411 {
1412 	__bio_unmap_user(bio);
1413 	bio_put(bio);
1414 }
1415 
bio_map_kern_endio(struct bio * bio)1416 static void bio_map_kern_endio(struct bio *bio)
1417 {
1418 	bio_put(bio);
1419 }
1420 
1421 /**
1422  *	bio_map_kern	-	map kernel address into bio
1423  *	@q: the struct request_queue for the bio
1424  *	@data: pointer to buffer to map
1425  *	@len: length in bytes
1426  *	@gfp_mask: allocation flags for bio allocation
1427  *
1428  *	Map the kernel address into a bio suitable for io to a block
1429  *	device. Returns an error pointer in case of error.
1430  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1431 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1432 			 gfp_t gfp_mask)
1433 {
1434 	unsigned long kaddr = (unsigned long)data;
1435 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436 	unsigned long start = kaddr >> PAGE_SHIFT;
1437 	const int nr_pages = end - start;
1438 	int offset, i;
1439 	struct bio *bio;
1440 
1441 	bio = bio_kmalloc(gfp_mask, nr_pages);
1442 	if (!bio)
1443 		return ERR_PTR(-ENOMEM);
1444 
1445 	offset = offset_in_page(kaddr);
1446 	for (i = 0; i < nr_pages; i++) {
1447 		unsigned int bytes = PAGE_SIZE - offset;
1448 
1449 		if (len <= 0)
1450 			break;
1451 
1452 		if (bytes > len)
1453 			bytes = len;
1454 
1455 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1456 				    offset) < bytes) {
1457 			/* we don't support partial mappings */
1458 			bio_put(bio);
1459 			return ERR_PTR(-EINVAL);
1460 		}
1461 
1462 		data += bytes;
1463 		len -= bytes;
1464 		offset = 0;
1465 	}
1466 
1467 	bio->bi_end_io = bio_map_kern_endio;
1468 	return bio;
1469 }
1470 EXPORT_SYMBOL(bio_map_kern);
1471 
bio_copy_kern_endio(struct bio * bio)1472 static void bio_copy_kern_endio(struct bio *bio)
1473 {
1474 	bio_free_pages(bio);
1475 	bio_put(bio);
1476 }
1477 
bio_copy_kern_endio_read(struct bio * bio)1478 static void bio_copy_kern_endio_read(struct bio *bio)
1479 {
1480 	char *p = bio->bi_private;
1481 	struct bio_vec *bvec;
1482 	int i;
1483 
1484 	bio_for_each_segment_all(bvec, bio, i) {
1485 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1486 		p += bvec->bv_len;
1487 	}
1488 
1489 	bio_copy_kern_endio(bio);
1490 }
1491 
1492 /**
1493  *	bio_copy_kern	-	copy kernel address into bio
1494  *	@q: the struct request_queue for the bio
1495  *	@data: pointer to buffer to copy
1496  *	@len: length in bytes
1497  *	@gfp_mask: allocation flags for bio and page allocation
1498  *	@reading: data direction is READ
1499  *
1500  *	copy the kernel address into a bio suitable for io to a block
1501  *	device. Returns an error pointer in case of error.
1502  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1503 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1504 			  gfp_t gfp_mask, int reading)
1505 {
1506 	unsigned long kaddr = (unsigned long)data;
1507 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1508 	unsigned long start = kaddr >> PAGE_SHIFT;
1509 	struct bio *bio;
1510 	void *p = data;
1511 	int nr_pages = 0;
1512 
1513 	/*
1514 	 * Overflow, abort
1515 	 */
1516 	if (end < start)
1517 		return ERR_PTR(-EINVAL);
1518 
1519 	nr_pages = end - start;
1520 	bio = bio_kmalloc(gfp_mask, nr_pages);
1521 	if (!bio)
1522 		return ERR_PTR(-ENOMEM);
1523 
1524 	while (len) {
1525 		struct page *page;
1526 		unsigned int bytes = PAGE_SIZE;
1527 
1528 		if (bytes > len)
1529 			bytes = len;
1530 
1531 		page = alloc_page(q->bounce_gfp | __GFP_ZERO | gfp_mask);
1532 		if (!page)
1533 			goto cleanup;
1534 
1535 		if (!reading)
1536 			memcpy(page_address(page), p, bytes);
1537 
1538 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1539 			break;
1540 
1541 		len -= bytes;
1542 		p += bytes;
1543 	}
1544 
1545 	if (reading) {
1546 		bio->bi_end_io = bio_copy_kern_endio_read;
1547 		bio->bi_private = data;
1548 	} else {
1549 		bio->bi_end_io = bio_copy_kern_endio;
1550 	}
1551 
1552 	return bio;
1553 
1554 cleanup:
1555 	bio_free_pages(bio);
1556 	bio_put(bio);
1557 	return ERR_PTR(-ENOMEM);
1558 }
1559 
1560 /*
1561  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1562  * for performing direct-IO in BIOs.
1563  *
1564  * The problem is that we cannot run set_page_dirty() from interrupt context
1565  * because the required locks are not interrupt-safe.  So what we can do is to
1566  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1567  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1568  * in process context.
1569  *
1570  * We special-case compound pages here: normally this means reads into hugetlb
1571  * pages.  The logic in here doesn't really work right for compound pages
1572  * because the VM does not uniformly chase down the head page in all cases.
1573  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1574  * handle them at all.  So we skip compound pages here at an early stage.
1575  *
1576  * Note that this code is very hard to test under normal circumstances because
1577  * direct-io pins the pages with get_user_pages().  This makes
1578  * is_page_cache_freeable return false, and the VM will not clean the pages.
1579  * But other code (eg, flusher threads) could clean the pages if they are mapped
1580  * pagecache.
1581  *
1582  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1583  * deferred bio dirtying paths.
1584  */
1585 
1586 /*
1587  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1588  */
bio_set_pages_dirty(struct bio * bio)1589 void bio_set_pages_dirty(struct bio *bio)
1590 {
1591 	struct bio_vec *bvec;
1592 	int i;
1593 
1594 	bio_for_each_segment_all(bvec, bio, i) {
1595 		if (!PageCompound(bvec->bv_page))
1596 			set_page_dirty_lock(bvec->bv_page);
1597 	}
1598 }
1599 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1600 
bio_release_pages(struct bio * bio)1601 static void bio_release_pages(struct bio *bio)
1602 {
1603 	struct bio_vec *bvec;
1604 	int i;
1605 
1606 	bio_for_each_segment_all(bvec, bio, i)
1607 		put_page(bvec->bv_page);
1608 }
1609 
1610 /*
1611  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1612  * If they are, then fine.  If, however, some pages are clean then they must
1613  * have been written out during the direct-IO read.  So we take another ref on
1614  * the BIO and re-dirty the pages in process context.
1615  *
1616  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1617  * here on.  It will run one put_page() against each page and will run one
1618  * bio_put() against the BIO.
1619  */
1620 
1621 static void bio_dirty_fn(struct work_struct *work);
1622 
1623 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1624 static DEFINE_SPINLOCK(bio_dirty_lock);
1625 static struct bio *bio_dirty_list;
1626 
1627 /*
1628  * This runs in process context
1629  */
bio_dirty_fn(struct work_struct * work)1630 static void bio_dirty_fn(struct work_struct *work)
1631 {
1632 	struct bio *bio, *next;
1633 
1634 	spin_lock_irq(&bio_dirty_lock);
1635 	next = bio_dirty_list;
1636 	bio_dirty_list = NULL;
1637 	spin_unlock_irq(&bio_dirty_lock);
1638 
1639 	while ((bio = next) != NULL) {
1640 		next = bio->bi_private;
1641 
1642 		bio_set_pages_dirty(bio);
1643 		bio_release_pages(bio);
1644 		bio_put(bio);
1645 	}
1646 }
1647 
bio_check_pages_dirty(struct bio * bio)1648 void bio_check_pages_dirty(struct bio *bio)
1649 {
1650 	struct bio_vec *bvec;
1651 	unsigned long flags;
1652 	int i;
1653 
1654 	bio_for_each_segment_all(bvec, bio, i) {
1655 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1656 			goto defer;
1657 	}
1658 
1659 	bio_release_pages(bio);
1660 	bio_put(bio);
1661 	return;
1662 defer:
1663 	spin_lock_irqsave(&bio_dirty_lock, flags);
1664 	bio->bi_private = bio_dirty_list;
1665 	bio_dirty_list = bio;
1666 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1667 	schedule_work(&bio_dirty_work);
1668 }
1669 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1670 
generic_start_io_acct(struct request_queue * q,int op,unsigned long sectors,struct hd_struct * part)1671 void generic_start_io_acct(struct request_queue *q, int op,
1672 			   unsigned long sectors, struct hd_struct *part)
1673 {
1674 	const int sgrp = op_stat_group(op);
1675 	int cpu = part_stat_lock();
1676 
1677 	part_round_stats(q, cpu, part);
1678 	part_stat_inc(cpu, part, ios[sgrp]);
1679 	part_stat_add(cpu, part, sectors[sgrp], sectors);
1680 	part_inc_in_flight(q, part, op_is_write(op));
1681 
1682 	part_stat_unlock();
1683 }
1684 EXPORT_SYMBOL(generic_start_io_acct);
1685 
generic_end_io_acct(struct request_queue * q,int req_op,struct hd_struct * part,unsigned long start_time)1686 void generic_end_io_acct(struct request_queue *q, int req_op,
1687 			 struct hd_struct *part, unsigned long start_time)
1688 {
1689 	unsigned long duration = jiffies - start_time;
1690 	const int sgrp = op_stat_group(req_op);
1691 	int cpu = part_stat_lock();
1692 
1693 	part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration));
1694 	part_round_stats(q, cpu, part);
1695 	part_dec_in_flight(q, part, op_is_write(req_op));
1696 
1697 	part_stat_unlock();
1698 }
1699 EXPORT_SYMBOL(generic_end_io_acct);
1700 
1701 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1702 void bio_flush_dcache_pages(struct bio *bi)
1703 {
1704 	struct bio_vec bvec;
1705 	struct bvec_iter iter;
1706 
1707 	bio_for_each_segment(bvec, bi, iter)
1708 		flush_dcache_page(bvec.bv_page);
1709 }
1710 EXPORT_SYMBOL(bio_flush_dcache_pages);
1711 #endif
1712 
bio_remaining_done(struct bio * bio)1713 static inline bool bio_remaining_done(struct bio *bio)
1714 {
1715 	/*
1716 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1717 	 * we always end io on the first invocation.
1718 	 */
1719 	if (!bio_flagged(bio, BIO_CHAIN))
1720 		return true;
1721 
1722 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1723 
1724 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1725 		bio_clear_flag(bio, BIO_CHAIN);
1726 		return true;
1727 	}
1728 
1729 	return false;
1730 }
1731 
1732 /**
1733  * bio_endio - end I/O on a bio
1734  * @bio:	bio
1735  *
1736  * Description:
1737  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1738  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1739  *   bio unless they own it and thus know that it has an end_io function.
1740  *
1741  *   bio_endio() can be called several times on a bio that has been chained
1742  *   using bio_chain().  The ->bi_end_io() function will only be called the
1743  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1744  *   generated if BIO_TRACE_COMPLETION is set.
1745  **/
bio_endio(struct bio * bio)1746 void bio_endio(struct bio *bio)
1747 {
1748 again:
1749 	if (!bio_remaining_done(bio))
1750 		return;
1751 	if (!bio_integrity_endio(bio))
1752 		return;
1753 
1754 	if (bio->bi_disk)
1755 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1756 
1757 	/*
1758 	 * Need to have a real endio function for chained bios, otherwise
1759 	 * various corner cases will break (like stacking block devices that
1760 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1761 	 * recursion and blowing the stack. Tail call optimization would
1762 	 * handle this, but compiling with frame pointers also disables
1763 	 * gcc's sibling call optimization.
1764 	 */
1765 	if (bio->bi_end_io == bio_chain_endio) {
1766 		bio = __bio_chain_endio(bio);
1767 		goto again;
1768 	}
1769 
1770 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1771 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1772 					 blk_status_to_errno(bio->bi_status));
1773 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1774 	}
1775 
1776 	blk_throtl_bio_endio(bio);
1777 	/* release cgroup info */
1778 	bio_uninit(bio);
1779 	if (bio->bi_end_io)
1780 		bio->bi_end_io(bio);
1781 }
1782 EXPORT_SYMBOL(bio_endio);
1783 
1784 /**
1785  * bio_split - split a bio
1786  * @bio:	bio to split
1787  * @sectors:	number of sectors to split from the front of @bio
1788  * @gfp:	gfp mask
1789  * @bs:		bio set to allocate from
1790  *
1791  * Allocates and returns a new bio which represents @sectors from the start of
1792  * @bio, and updates @bio to represent the remaining sectors.
1793  *
1794  * Unless this is a discard request the newly allocated bio will point
1795  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1796  * @bio is not freed before the split.
1797  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1798 struct bio *bio_split(struct bio *bio, int sectors,
1799 		      gfp_t gfp, struct bio_set *bs)
1800 {
1801 	struct bio *split;
1802 
1803 	BUG_ON(sectors <= 0);
1804 	BUG_ON(sectors >= bio_sectors(bio));
1805 
1806 	split = bio_clone_fast(bio, gfp, bs);
1807 	if (!split)
1808 		return NULL;
1809 
1810 	split->bi_iter.bi_size = sectors << 9;
1811 
1812 	if (bio_integrity(split))
1813 		bio_integrity_trim(split);
1814 
1815 	bio_advance(bio, split->bi_iter.bi_size);
1816 	bio->bi_iter.bi_done = 0;
1817 
1818 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1819 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1820 
1821 	return split;
1822 }
1823 EXPORT_SYMBOL(bio_split);
1824 
1825 /**
1826  * bio_trim - trim a bio
1827  * @bio:	bio to trim
1828  * @offset:	number of sectors to trim from the front of @bio
1829  * @size:	size we want to trim @bio to, in sectors
1830  */
bio_trim(struct bio * bio,int offset,int size)1831 void bio_trim(struct bio *bio, int offset, int size)
1832 {
1833 	/* 'bio' is a cloned bio which we need to trim to match
1834 	 * the given offset and size.
1835 	 */
1836 
1837 	size <<= 9;
1838 	if (offset == 0 && size == bio->bi_iter.bi_size)
1839 		return;
1840 
1841 	bio_clear_flag(bio, BIO_SEG_VALID);
1842 
1843 	bio_advance(bio, offset << 9);
1844 
1845 	bio->bi_iter.bi_size = size;
1846 
1847 	if (bio_integrity(bio))
1848 		bio_integrity_trim(bio);
1849 
1850 }
1851 EXPORT_SYMBOL_GPL(bio_trim);
1852 
1853 /*
1854  * create memory pools for biovec's in a bio_set.
1855  * use the global biovec slabs created for general use.
1856  */
biovec_init_pool(mempool_t * pool,int pool_entries)1857 int biovec_init_pool(mempool_t *pool, int pool_entries)
1858 {
1859 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1860 
1861 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1862 }
1863 
1864 /*
1865  * bioset_exit - exit a bioset initialized with bioset_init()
1866  *
1867  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1868  * kzalloc()).
1869  */
bioset_exit(struct bio_set * bs)1870 void bioset_exit(struct bio_set *bs)
1871 {
1872 	if (bs->rescue_workqueue)
1873 		destroy_workqueue(bs->rescue_workqueue);
1874 	bs->rescue_workqueue = NULL;
1875 
1876 	mempool_exit(&bs->bio_pool);
1877 	mempool_exit(&bs->bvec_pool);
1878 
1879 	bioset_integrity_free(bs);
1880 	if (bs->bio_slab)
1881 		bio_put_slab(bs);
1882 	bs->bio_slab = NULL;
1883 }
1884 EXPORT_SYMBOL(bioset_exit);
1885 
1886 /**
1887  * bioset_init - Initialize a bio_set
1888  * @bs:		pool to initialize
1889  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1890  * @front_pad:	Number of bytes to allocate in front of the returned bio
1891  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1892  *              and %BIOSET_NEED_RESCUER
1893  *
1894  * Description:
1895  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1896  *    to ask for a number of bytes to be allocated in front of the bio.
1897  *    Front pad allocation is useful for embedding the bio inside
1898  *    another structure, to avoid allocating extra data to go with the bio.
1899  *    Note that the bio must be embedded at the END of that structure always,
1900  *    or things will break badly.
1901  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1902  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1903  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1904  *    dispatch queued requests when the mempool runs out of space.
1905  *
1906  */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1907 int bioset_init(struct bio_set *bs,
1908 		unsigned int pool_size,
1909 		unsigned int front_pad,
1910 		int flags)
1911 {
1912 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1913 
1914 	bs->front_pad = front_pad;
1915 
1916 	spin_lock_init(&bs->rescue_lock);
1917 	bio_list_init(&bs->rescue_list);
1918 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1919 
1920 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1921 	if (!bs->bio_slab)
1922 		return -ENOMEM;
1923 
1924 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1925 		goto bad;
1926 
1927 	if ((flags & BIOSET_NEED_BVECS) &&
1928 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1929 		goto bad;
1930 
1931 	if (!(flags & BIOSET_NEED_RESCUER))
1932 		return 0;
1933 
1934 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1935 	if (!bs->rescue_workqueue)
1936 		goto bad;
1937 
1938 	return 0;
1939 bad:
1940 	bioset_exit(bs);
1941 	return -ENOMEM;
1942 }
1943 EXPORT_SYMBOL(bioset_init);
1944 
1945 /*
1946  * Initialize and setup a new bio_set, based on the settings from
1947  * another bio_set.
1948  */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)1949 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1950 {
1951 	int flags;
1952 
1953 	flags = 0;
1954 	if (src->bvec_pool.min_nr)
1955 		flags |= BIOSET_NEED_BVECS;
1956 	if (src->rescue_workqueue)
1957 		flags |= BIOSET_NEED_RESCUER;
1958 
1959 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1960 }
1961 EXPORT_SYMBOL(bioset_init_from_src);
1962 
1963 #ifdef CONFIG_BLK_CGROUP
1964 
1965 #ifdef CONFIG_MEMCG
1966 /**
1967  * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
1968  * @bio: target bio
1969  * @page: the page to lookup the blkcg from
1970  *
1971  * Associate @bio with the blkcg from @page's owning memcg.  This works like
1972  * every other associate function wrt references.
1973  */
bio_associate_blkcg_from_page(struct bio * bio,struct page * page)1974 int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
1975 {
1976 	struct cgroup_subsys_state *blkcg_css;
1977 
1978 	if (unlikely(bio->bi_css))
1979 		return -EBUSY;
1980 	if (!page->mem_cgroup)
1981 		return 0;
1982 	blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1983 				     &io_cgrp_subsys);
1984 	bio->bi_css = blkcg_css;
1985 	return 0;
1986 }
1987 #endif /* CONFIG_MEMCG */
1988 
1989 /**
1990  * bio_associate_blkcg - associate a bio with the specified blkcg
1991  * @bio: target bio
1992  * @blkcg_css: css of the blkcg to associate
1993  *
1994  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1995  * treat @bio as if it were issued by a task which belongs to the blkcg.
1996  *
1997  * This function takes an extra reference of @blkcg_css which will be put
1998  * when @bio is released.  The caller must own @bio and is responsible for
1999  * synchronizing calls to this function.
2000  */
bio_associate_blkcg(struct bio * bio,struct cgroup_subsys_state * blkcg_css)2001 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2002 {
2003 	if (unlikely(bio->bi_css))
2004 		return -EBUSY;
2005 	css_get(blkcg_css);
2006 	bio->bi_css = blkcg_css;
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2010 
2011 /**
2012  * bio_associate_blkg - associate a bio with the specified blkg
2013  * @bio: target bio
2014  * @blkg: the blkg to associate
2015  *
2016  * Associate @bio with the blkg specified by @blkg.  This is the queue specific
2017  * blkcg information associated with the @bio, a reference will be taken on the
2018  * @blkg and will be freed when the bio is freed.
2019  */
bio_associate_blkg(struct bio * bio,struct blkcg_gq * blkg)2020 int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2021 {
2022 	if (unlikely(bio->bi_blkg))
2023 		return -EBUSY;
2024 	if (!blkg_try_get(blkg))
2025 		return -ENODEV;
2026 	bio->bi_blkg = blkg;
2027 	return 0;
2028 }
2029 
2030 /**
2031  * bio_disassociate_task - undo bio_associate_current()
2032  * @bio: target bio
2033  */
bio_disassociate_task(struct bio * bio)2034 void bio_disassociate_task(struct bio *bio)
2035 {
2036 	if (bio->bi_ioc) {
2037 		put_io_context(bio->bi_ioc);
2038 		bio->bi_ioc = NULL;
2039 	}
2040 	if (bio->bi_css) {
2041 		css_put(bio->bi_css);
2042 		bio->bi_css = NULL;
2043 	}
2044 	if (bio->bi_blkg) {
2045 		blkg_put(bio->bi_blkg);
2046 		bio->bi_blkg = NULL;
2047 	}
2048 }
2049 
2050 /**
2051  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2052  * @dst: destination bio
2053  * @src: source bio
2054  */
bio_clone_blkcg_association(struct bio * dst,struct bio * src)2055 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2056 {
2057 	if (src->bi_css)
2058 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2059 }
2060 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2061 #endif /* CONFIG_BLK_CGROUP */
2062 
biovec_init_slabs(void)2063 static void __init biovec_init_slabs(void)
2064 {
2065 	int i;
2066 
2067 	for (i = 0; i < BVEC_POOL_NR; i++) {
2068 		int size;
2069 		struct biovec_slab *bvs = bvec_slabs + i;
2070 
2071 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2072 			bvs->slab = NULL;
2073 			continue;
2074 		}
2075 
2076 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2077 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2078                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2079 	}
2080 }
2081 
init_bio(void)2082 static int __init init_bio(void)
2083 {
2084 	bio_slab_max = 2;
2085 	bio_slab_nr = 0;
2086 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2087 			    GFP_KERNEL);
2088 	if (!bio_slabs)
2089 		panic("bio: can't allocate bios\n");
2090 
2091 	bio_integrity_init();
2092 	biovec_init_slabs();
2093 
2094 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2095 		panic("bio: can't allocate bios\n");
2096 
2097 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2098 		panic("bio: can't create integrity pool\n");
2099 
2100 	return 0;
2101 }
2102 subsys_initcall(init_bio);
2103