1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <linux/blk-cgroup.h>
32
33 #include <trace/events/block.h>
34 #include "blk.h"
35 #include "blk-rq-qos.h"
36
37 /*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41 #define BIO_INLINE_VECS 4
42
43 /*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
51 };
52 #undef BV
53
54 /*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
58 struct bio_set fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62 * Our slab pool management
63 */
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
bio_find_or_create_slab(unsigned int extra_size)74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
119 if (!slab)
120 goto out_unlock;
121
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128 }
129
bio_put_slab(struct bio_set * bs)130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155 out:
156 mutex_unlock(&bio_slab_lock);
157 }
158
bvec_nr_vecs(unsigned short idx)159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 return bvec_slabs[--idx].nr_vecs;
162 }
163
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
171
172 if (idx == BVEC_POOL_MAX) {
173 mempool_free(bv, pool);
174 } else {
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179 }
180
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
183 {
184 struct bio_vec *bvl;
185
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
216 if (*idx == BVEC_POOL_MAX) {
217 fallback:
218 bvl = mempool_alloc(pool, gfp_mask);
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222
223 /*
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
227 */
228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229
230 /*
231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232 * is set, retry with the 1-entry mempool
233 */
234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236 *idx = BVEC_POOL_MAX;
237 goto fallback;
238 }
239 }
240
241 (*idx)++;
242 return bvl;
243 }
244
bio_uninit(struct bio * bio)245 void bio_uninit(struct bio *bio)
246 {
247 bio_disassociate_task(bio);
248 }
249 EXPORT_SYMBOL(bio_uninit);
250
bio_free(struct bio * bio)251 static void bio_free(struct bio *bio)
252 {
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
256 bio_uninit(bio);
257
258 if (bs) {
259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
265 p -= bs->front_pad;
266
267 mempool_free(p, &bs->bio_pool);
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
272 }
273
274 /*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)279 void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
281 {
282 memset(bio, 0, sizeof(*bio));
283 atomic_set(&bio->__bi_remaining, 1);
284 atomic_set(&bio->__bi_cnt, 1);
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
288 }
289 EXPORT_SYMBOL(bio_init);
290
291 /**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
bio_reset(struct bio * bio)301 void bio_reset(struct bio *bio)
302 {
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
305 bio_uninit(bio);
306
307 memset(bio, 0, BIO_RESET_BYTES);
308 bio->bi_flags = flags;
309 atomic_set(&bio->__bi_remaining, 1);
310 }
311 EXPORT_SYMBOL(bio_reset);
312
__bio_chain_endio(struct bio * bio)313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 struct bio *parent = bio->bi_private;
316
317 if (bio->bi_status && !parent->bi_status)
318 parent->bi_status = bio->bi_status;
319 bio_put(bio);
320 return parent;
321 }
322
bio_chain_endio(struct bio * bio)323 static void bio_chain_endio(struct bio *bio)
324 {
325 bio_endio(__bio_chain_endio(bio));
326 }
327
328 /**
329 * bio_chain - chain bio completions
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
bio_chain(struct bio * bio,struct bio * parent)339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
345 bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348
bio_alloc_rescue(struct work_struct * work)349 static void bio_alloc_rescue(struct work_struct *work)
350 {
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364 }
365
punt_bios_to_rescuer(struct bio_set * bs)366 static void punt_bios_to_rescuer(struct bio_set *bs)
367 {
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
387 while ((bio = bio_list_pop(¤t->bio_list[0])))
388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 current->bio_list[0] = nopunt;
390
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(¤t->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401 }
402
403 /**
404 * bio_alloc_bioset - allocate a bio for I/O
405 * @gfp_mask: the GFP_* mask given to the slab allocator
406 * @nr_iovecs: number of iovecs to pre-allocate
407 * @bs: the bio_set to allocate from.
408 *
409 * Description:
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
419 *
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
bio_alloc_bioset(gfp_t gfp_mask,unsigned int nr_iovecs,struct bio_set * bs)438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
440 {
441 gfp_t saved_gfp = gfp_mask;
442 unsigned front_pad;
443 unsigned inline_vecs;
444 struct bio_vec *bvl = NULL;
445 struct bio *bio;
446 void *p;
447
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
458 /* should not use nobvec bioset for nr_iovecs > 0 */
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
461 return NULL;
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
481 */
482
483 if (current->bio_list &&
484 (!bio_list_empty(¤t->bio_list[0]) ||
485 !bio_list_empty(¤t->bio_list[1])) &&
486 bs->rescue_workqueue)
487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488
489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 }
495
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
500 if (unlikely(!p))
501 return NULL;
502
503 bio = p + front_pad;
504 bio_init(bio, NULL, 0);
505
506 if (nr_iovecs > inline_vecs) {
507 unsigned long idx = 0;
508
509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
514 }
515
516 if (unlikely(!bvl))
517 goto err_free;
518
519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
522 }
523
524 bio->bi_pool = bs;
525 bio->bi_max_vecs = nr_iovecs;
526 bio->bi_io_vec = bvl;
527 return bio;
528
529 err_free:
530 mempool_free(p, &bs->bio_pool);
531 return NULL;
532 }
533 EXPORT_SYMBOL(bio_alloc_bioset);
534
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536 {
537 unsigned long flags;
538 struct bio_vec bv;
539 struct bvec_iter iter;
540
541 __bio_for_each_segment(bv, bio, iter, start) {
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
545 bvec_kunmap_irq(data, &flags);
546 }
547 }
548 EXPORT_SYMBOL(zero_fill_bio_iter);
549
550 /**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557 **/
bio_put(struct bio * bio)558 void bio_put(struct bio *bio)
559 {
560 if (!bio_flagged(bio, BIO_REFFED))
561 bio_free(bio);
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
571 }
572 EXPORT_SYMBOL(bio_put);
573
bio_phys_segments(struct request_queue * q,struct bio * bio)574 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
575 {
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580 }
581 EXPORT_SYMBOL(bio_phys_segments);
582
583 /**
584 * __bio_clone_fast - clone a bio that shares the original bio's biovec
585 * @bio: destination bio
586 * @bio_src: bio to clone
587 *
588 * Clone a &bio. Caller will own the returned bio, but not
589 * the actual data it points to. Reference count of returned
590 * bio will be one.
591 *
592 * Caller must ensure that @bio_src is not freed before @bio.
593 */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)594 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595 {
596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
597
598 /*
599 * most users will be overriding ->bi_disk with a new target,
600 * so we don't set nor calculate new physical/hw segment counts here
601 */
602 bio->bi_disk = bio_src->bi_disk;
603 bio->bi_partno = bio_src->bi_partno;
604 bio_set_flag(bio, BIO_CLONED);
605 if (bio_flagged(bio_src, BIO_THROTTLED))
606 bio_set_flag(bio, BIO_THROTTLED);
607 bio->bi_opf = bio_src->bi_opf;
608 bio->bi_ioprio = bio_src->bi_ioprio;
609 bio->bi_write_hint = bio_src->bi_write_hint;
610 bio->bi_iter = bio_src->bi_iter;
611 bio->bi_io_vec = bio_src->bi_io_vec;
612
613 bio_clone_blkcg_association(bio, bio_src);
614 }
615 EXPORT_SYMBOL(__bio_clone_fast);
616
617 /**
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
622 *
623 * Like __bio_clone_fast, only also allocates the returned bio
624 */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)625 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626 {
627 struct bio *b;
628
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
632
633 __bio_clone_fast(b, bio);
634
635 if (bio_integrity(bio)) {
636 int ret;
637
638 ret = bio_integrity_clone(b, bio, gfp_mask);
639
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
643 }
644 }
645
646 return b;
647 }
648 EXPORT_SYMBOL(bio_clone_fast);
649
650 /**
651 * bio_add_pc_page - attempt to add page to bio
652 * @q: the target queue
653 * @bio: destination bio
654 * @page: page to add
655 * @len: vec entry length
656 * @offset: vec entry offset
657 *
658 * Attempt to add a page to the bio_vec maplist. This can fail for a
659 * number of reasons, such as the bio being full or target block device
660 * limitations. The target block device must allow bio's up to PAGE_SIZE,
661 * so it is always possible to add a single page to an empty bio.
662 *
663 * This should only be used by REQ_PC bios.
664 */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)665 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666 *page, unsigned int len, unsigned int offset)
667 {
668 int retried_segments = 0;
669 struct bio_vec *bvec;
670
671 /*
672 * cloned bio must not modify vec list
673 */
674 if (unlikely(bio_flagged(bio, BIO_CLONED)))
675 return 0;
676
677 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
678 return 0;
679
680 /*
681 * For filesystems with a blocksize smaller than the pagesize
682 * we will often be called with the same page as last time and
683 * a consecutive offset. Optimize this special case.
684 */
685 if (bio->bi_vcnt > 0) {
686 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
687
688 if (page == prev->bv_page &&
689 offset == prev->bv_offset + prev->bv_len) {
690 prev->bv_len += len;
691 bio->bi_iter.bi_size += len;
692 goto done;
693 }
694
695 /*
696 * If the queue doesn't support SG gaps and adding this
697 * offset would create a gap, disallow it.
698 */
699 if (bvec_gap_to_prev(q, prev, offset))
700 return 0;
701 }
702
703 if (bio_full(bio))
704 return 0;
705
706 /*
707 * setup the new entry, we might clear it again later if we
708 * cannot add the page
709 */
710 bvec = &bio->bi_io_vec[bio->bi_vcnt];
711 bvec->bv_page = page;
712 bvec->bv_len = len;
713 bvec->bv_offset = offset;
714 bio->bi_vcnt++;
715 bio->bi_phys_segments++;
716 bio->bi_iter.bi_size += len;
717
718 /*
719 * Perform a recount if the number of segments is greater
720 * than queue_max_segments(q).
721 */
722
723 while (bio->bi_phys_segments > queue_max_segments(q)) {
724
725 if (retried_segments)
726 goto failed;
727
728 retried_segments = 1;
729 blk_recount_segments(q, bio);
730 }
731
732 /* If we may be able to merge these biovecs, force a recount */
733 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
734 bio_clear_flag(bio, BIO_SEG_VALID);
735
736 done:
737 return len;
738
739 failed:
740 bvec->bv_page = NULL;
741 bvec->bv_len = 0;
742 bvec->bv_offset = 0;
743 bio->bi_vcnt--;
744 bio->bi_iter.bi_size -= len;
745 blk_recount_segments(q, bio);
746 return 0;
747 }
748 EXPORT_SYMBOL(bio_add_pc_page);
749
750 /**
751 * __bio_try_merge_page - try appending data to an existing bvec.
752 * @bio: destination bio
753 * @page: page to add
754 * @len: length of the data to add
755 * @off: offset of the data in @page
756 *
757 * Try to add the data at @page + @off to the last bvec of @bio. This is a
758 * a useful optimisation for file systems with a block size smaller than the
759 * page size.
760 *
761 * Return %true on success or %false on failure.
762 */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)763 bool __bio_try_merge_page(struct bio *bio, struct page *page,
764 unsigned int len, unsigned int off)
765 {
766 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
767 return false;
768
769 if (bio->bi_vcnt > 0) {
770 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
771
772 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
773 bv->bv_len += len;
774 bio->bi_iter.bi_size += len;
775 return true;
776 }
777 }
778 return false;
779 }
780 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
781
782 /**
783 * __bio_add_page - add page to a bio in a new segment
784 * @bio: destination bio
785 * @page: page to add
786 * @len: length of the data to add
787 * @off: offset of the data in @page
788 *
789 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
790 * that @bio has space for another bvec.
791 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)792 void __bio_add_page(struct bio *bio, struct page *page,
793 unsigned int len, unsigned int off)
794 {
795 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
796
797 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
798 WARN_ON_ONCE(bio_full(bio));
799
800 bv->bv_page = page;
801 bv->bv_offset = off;
802 bv->bv_len = len;
803
804 bio->bi_iter.bi_size += len;
805 bio->bi_vcnt++;
806 }
807 EXPORT_SYMBOL_GPL(__bio_add_page);
808
809 /**
810 * bio_add_page - attempt to add page to bio
811 * @bio: destination bio
812 * @page: page to add
813 * @len: vec entry length
814 * @offset: vec entry offset
815 *
816 * Attempt to add a page to the bio_vec maplist. This will only fail
817 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
818 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)819 int bio_add_page(struct bio *bio, struct page *page,
820 unsigned int len, unsigned int offset)
821 {
822 if (!__bio_try_merge_page(bio, page, len, offset)) {
823 if (bio_full(bio))
824 return 0;
825 __bio_add_page(bio, page, len, offset);
826 }
827 return len;
828 }
829 EXPORT_SYMBOL(bio_add_page);
830
831 /**
832 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
833 * @bio: bio to add pages to
834 * @iter: iov iterator describing the region to be mapped
835 *
836 * Pins pages from *iter and appends them to @bio's bvec array. The
837 * pages will have to be released using put_page() when done.
838 * For multi-segment *iter, this function only adds pages from the
839 * the next non-empty segment of the iov iterator.
840 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)841 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
842 {
843 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
844 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
845 struct page **pages = (struct page **)bv;
846 size_t offset;
847 ssize_t size;
848
849 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
850 if (unlikely(size <= 0))
851 return size ? size : -EFAULT;
852 idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
853
854 /*
855 * Deep magic below: We need to walk the pinned pages backwards
856 * because we are abusing the space allocated for the bio_vecs
857 * for the page array. Because the bio_vecs are larger than the
858 * page pointers by definition this will always work. But it also
859 * means we can't use bio_add_page, so any changes to it's semantics
860 * need to be reflected here as well.
861 */
862 bio->bi_iter.bi_size += size;
863 bio->bi_vcnt += nr_pages;
864
865 while (idx--) {
866 bv[idx].bv_page = pages[idx];
867 bv[idx].bv_len = PAGE_SIZE;
868 bv[idx].bv_offset = 0;
869 }
870
871 bv[0].bv_offset += offset;
872 bv[0].bv_len -= offset;
873 bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
874
875 iov_iter_advance(iter, size);
876 return 0;
877 }
878
879 /**
880 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
881 * @bio: bio to add pages to
882 * @iter: iov iterator describing the region to be mapped
883 *
884 * Pins pages from *iter and appends them to @bio's bvec array. The
885 * pages will have to be released using put_page() when done.
886 * The function tries, but does not guarantee, to pin as many pages as
887 * fit into the bio, or are requested in *iter, whatever is smaller.
888 * If MM encounters an error pinning the requested pages, it stops.
889 * Error is returned only if 0 pages could be pinned.
890 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)891 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
892 {
893 unsigned short orig_vcnt = bio->bi_vcnt;
894
895 do {
896 int ret = __bio_iov_iter_get_pages(bio, iter);
897
898 if (unlikely(ret))
899 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
900
901 } while (iov_iter_count(iter) && !bio_full(bio));
902
903 return 0;
904 }
905 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
906
submit_bio_wait_endio(struct bio * bio)907 static void submit_bio_wait_endio(struct bio *bio)
908 {
909 complete(bio->bi_private);
910 }
911
912 /**
913 * submit_bio_wait - submit a bio, and wait until it completes
914 * @bio: The &struct bio which describes the I/O
915 *
916 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
917 * bio_endio() on failure.
918 *
919 * WARNING: Unlike to how submit_bio() is usually used, this function does not
920 * result in bio reference to be consumed. The caller must drop the reference
921 * on his own.
922 */
submit_bio_wait(struct bio * bio)923 int submit_bio_wait(struct bio *bio)
924 {
925 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
926
927 bio->bi_private = &done;
928 bio->bi_end_io = submit_bio_wait_endio;
929 bio->bi_opf |= REQ_SYNC;
930 submit_bio(bio);
931 wait_for_completion_io(&done);
932
933 return blk_status_to_errno(bio->bi_status);
934 }
935 EXPORT_SYMBOL(submit_bio_wait);
936
937 /**
938 * bio_advance - increment/complete a bio by some number of bytes
939 * @bio: bio to advance
940 * @bytes: number of bytes to complete
941 *
942 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
943 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
944 * be updated on the last bvec as well.
945 *
946 * @bio will then represent the remaining, uncompleted portion of the io.
947 */
bio_advance(struct bio * bio,unsigned bytes)948 void bio_advance(struct bio *bio, unsigned bytes)
949 {
950 if (bio_integrity(bio))
951 bio_integrity_advance(bio, bytes);
952
953 bio_advance_iter(bio, &bio->bi_iter, bytes);
954 }
955 EXPORT_SYMBOL(bio_advance);
956
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)957 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
958 struct bio *src, struct bvec_iter *src_iter)
959 {
960 struct bio_vec src_bv, dst_bv;
961 void *src_p, *dst_p;
962 unsigned bytes;
963
964 while (src_iter->bi_size && dst_iter->bi_size) {
965 src_bv = bio_iter_iovec(src, *src_iter);
966 dst_bv = bio_iter_iovec(dst, *dst_iter);
967
968 bytes = min(src_bv.bv_len, dst_bv.bv_len);
969
970 src_p = kmap_atomic(src_bv.bv_page);
971 dst_p = kmap_atomic(dst_bv.bv_page);
972
973 memcpy(dst_p + dst_bv.bv_offset,
974 src_p + src_bv.bv_offset,
975 bytes);
976
977 kunmap_atomic(dst_p);
978 kunmap_atomic(src_p);
979
980 flush_dcache_page(dst_bv.bv_page);
981
982 bio_advance_iter(src, src_iter, bytes);
983 bio_advance_iter(dst, dst_iter, bytes);
984 }
985 }
986 EXPORT_SYMBOL(bio_copy_data_iter);
987
988 /**
989 * bio_copy_data - copy contents of data buffers from one bio to another
990 * @src: source bio
991 * @dst: destination bio
992 *
993 * Stops when it reaches the end of either @src or @dst - that is, copies
994 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
995 */
bio_copy_data(struct bio * dst,struct bio * src)996 void bio_copy_data(struct bio *dst, struct bio *src)
997 {
998 struct bvec_iter src_iter = src->bi_iter;
999 struct bvec_iter dst_iter = dst->bi_iter;
1000
1001 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1002 }
1003 EXPORT_SYMBOL(bio_copy_data);
1004
1005 /**
1006 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1007 * another
1008 * @src: source bio list
1009 * @dst: destination bio list
1010 *
1011 * Stops when it reaches the end of either the @src list or @dst list - that is,
1012 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1013 * bios).
1014 */
bio_list_copy_data(struct bio * dst,struct bio * src)1015 void bio_list_copy_data(struct bio *dst, struct bio *src)
1016 {
1017 struct bvec_iter src_iter = src->bi_iter;
1018 struct bvec_iter dst_iter = dst->bi_iter;
1019
1020 while (1) {
1021 if (!src_iter.bi_size) {
1022 src = src->bi_next;
1023 if (!src)
1024 break;
1025
1026 src_iter = src->bi_iter;
1027 }
1028
1029 if (!dst_iter.bi_size) {
1030 dst = dst->bi_next;
1031 if (!dst)
1032 break;
1033
1034 dst_iter = dst->bi_iter;
1035 }
1036
1037 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1038 }
1039 }
1040 EXPORT_SYMBOL(bio_list_copy_data);
1041
1042 struct bio_map_data {
1043 int is_our_pages;
1044 struct iov_iter iter;
1045 struct iovec iov[];
1046 };
1047
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)1048 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1049 gfp_t gfp_mask)
1050 {
1051 struct bio_map_data *bmd;
1052 if (data->nr_segs > UIO_MAXIOV)
1053 return NULL;
1054
1055 bmd = kmalloc(sizeof(struct bio_map_data) +
1056 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1057 if (!bmd)
1058 return NULL;
1059 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1060 bmd->iter = *data;
1061 bmd->iter.iov = bmd->iov;
1062 return bmd;
1063 }
1064
1065 /**
1066 * bio_copy_from_iter - copy all pages from iov_iter to bio
1067 * @bio: The &struct bio which describes the I/O as destination
1068 * @iter: iov_iter as source
1069 *
1070 * Copy all pages from iov_iter to bio.
1071 * Returns 0 on success, or error on failure.
1072 */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)1073 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1074 {
1075 int i;
1076 struct bio_vec *bvec;
1077
1078 bio_for_each_segment_all(bvec, bio, i) {
1079 ssize_t ret;
1080
1081 ret = copy_page_from_iter(bvec->bv_page,
1082 bvec->bv_offset,
1083 bvec->bv_len,
1084 iter);
1085
1086 if (!iov_iter_count(iter))
1087 break;
1088
1089 if (ret < bvec->bv_len)
1090 return -EFAULT;
1091 }
1092
1093 return 0;
1094 }
1095
1096 /**
1097 * bio_copy_to_iter - copy all pages from bio to iov_iter
1098 * @bio: The &struct bio which describes the I/O as source
1099 * @iter: iov_iter as destination
1100 *
1101 * Copy all pages from bio to iov_iter.
1102 * Returns 0 on success, or error on failure.
1103 */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1104 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1105 {
1106 int i;
1107 struct bio_vec *bvec;
1108
1109 bio_for_each_segment_all(bvec, bio, i) {
1110 ssize_t ret;
1111
1112 ret = copy_page_to_iter(bvec->bv_page,
1113 bvec->bv_offset,
1114 bvec->bv_len,
1115 &iter);
1116
1117 if (!iov_iter_count(&iter))
1118 break;
1119
1120 if (ret < bvec->bv_len)
1121 return -EFAULT;
1122 }
1123
1124 return 0;
1125 }
1126
bio_free_pages(struct bio * bio)1127 void bio_free_pages(struct bio *bio)
1128 {
1129 struct bio_vec *bvec;
1130 int i;
1131
1132 bio_for_each_segment_all(bvec, bio, i)
1133 __free_page(bvec->bv_page);
1134 }
1135 EXPORT_SYMBOL(bio_free_pages);
1136
1137 /**
1138 * bio_uncopy_user - finish previously mapped bio
1139 * @bio: bio being terminated
1140 *
1141 * Free pages allocated from bio_copy_user_iov() and write back data
1142 * to user space in case of a read.
1143 */
bio_uncopy_user(struct bio * bio)1144 int bio_uncopy_user(struct bio *bio)
1145 {
1146 struct bio_map_data *bmd = bio->bi_private;
1147 int ret = 0;
1148
1149 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1150 /*
1151 * if we're in a workqueue, the request is orphaned, so
1152 * don't copy into a random user address space, just free
1153 * and return -EINTR so user space doesn't expect any data.
1154 */
1155 if (!current->mm)
1156 ret = -EINTR;
1157 else if (bio_data_dir(bio) == READ)
1158 ret = bio_copy_to_iter(bio, bmd->iter);
1159 if (bmd->is_our_pages)
1160 bio_free_pages(bio);
1161 }
1162 kfree(bmd);
1163 bio_put(bio);
1164 return ret;
1165 }
1166
1167 /**
1168 * bio_copy_user_iov - copy user data to bio
1169 * @q: destination block queue
1170 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1171 * @iter: iovec iterator
1172 * @gfp_mask: memory allocation flags
1173 *
1174 * Prepares and returns a bio for indirect user io, bouncing data
1175 * to/from kernel pages as necessary. Must be paired with
1176 * call bio_uncopy_user() on io completion.
1177 */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)1178 struct bio *bio_copy_user_iov(struct request_queue *q,
1179 struct rq_map_data *map_data,
1180 struct iov_iter *iter,
1181 gfp_t gfp_mask)
1182 {
1183 struct bio_map_data *bmd;
1184 struct page *page;
1185 struct bio *bio;
1186 int i = 0, ret;
1187 int nr_pages;
1188 unsigned int len = iter->count;
1189 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1190
1191 bmd = bio_alloc_map_data(iter, gfp_mask);
1192 if (!bmd)
1193 return ERR_PTR(-ENOMEM);
1194
1195 /*
1196 * We need to do a deep copy of the iov_iter including the iovecs.
1197 * The caller provided iov might point to an on-stack or otherwise
1198 * shortlived one.
1199 */
1200 bmd->is_our_pages = map_data ? 0 : 1;
1201
1202 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1203 if (nr_pages > BIO_MAX_PAGES)
1204 nr_pages = BIO_MAX_PAGES;
1205
1206 ret = -ENOMEM;
1207 bio = bio_kmalloc(gfp_mask, nr_pages);
1208 if (!bio)
1209 goto out_bmd;
1210
1211 ret = 0;
1212
1213 if (map_data) {
1214 nr_pages = 1 << map_data->page_order;
1215 i = map_data->offset / PAGE_SIZE;
1216 }
1217 while (len) {
1218 unsigned int bytes = PAGE_SIZE;
1219
1220 bytes -= offset;
1221
1222 if (bytes > len)
1223 bytes = len;
1224
1225 if (map_data) {
1226 if (i == map_data->nr_entries * nr_pages) {
1227 ret = -ENOMEM;
1228 break;
1229 }
1230
1231 page = map_data->pages[i / nr_pages];
1232 page += (i % nr_pages);
1233
1234 i++;
1235 } else {
1236 page = alloc_page(q->bounce_gfp | gfp_mask);
1237 if (!page) {
1238 ret = -ENOMEM;
1239 break;
1240 }
1241 }
1242
1243 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1244 if (!map_data)
1245 __free_page(page);
1246 break;
1247 }
1248
1249 len -= bytes;
1250 offset = 0;
1251 }
1252
1253 if (ret)
1254 goto cleanup;
1255
1256 if (map_data)
1257 map_data->offset += bio->bi_iter.bi_size;
1258
1259 /*
1260 * success
1261 */
1262 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1263 (map_data && map_data->from_user)) {
1264 ret = bio_copy_from_iter(bio, iter);
1265 if (ret)
1266 goto cleanup;
1267 } else {
1268 if (bmd->is_our_pages)
1269 zero_fill_bio(bio);
1270 iov_iter_advance(iter, bio->bi_iter.bi_size);
1271 }
1272
1273 bio->bi_private = bmd;
1274 if (map_data && map_data->null_mapped)
1275 bio_set_flag(bio, BIO_NULL_MAPPED);
1276 return bio;
1277 cleanup:
1278 if (!map_data)
1279 bio_free_pages(bio);
1280 bio_put(bio);
1281 out_bmd:
1282 kfree(bmd);
1283 return ERR_PTR(ret);
1284 }
1285
1286 /**
1287 * bio_map_user_iov - map user iovec into bio
1288 * @q: the struct request_queue for the bio
1289 * @iter: iovec iterator
1290 * @gfp_mask: memory allocation flags
1291 *
1292 * Map the user space address into a bio suitable for io to a block
1293 * device. Returns an error pointer in case of error.
1294 */
bio_map_user_iov(struct request_queue * q,struct iov_iter * iter,gfp_t gfp_mask)1295 struct bio *bio_map_user_iov(struct request_queue *q,
1296 struct iov_iter *iter,
1297 gfp_t gfp_mask)
1298 {
1299 int j;
1300 struct bio *bio;
1301 int ret;
1302 struct bio_vec *bvec;
1303
1304 if (!iov_iter_count(iter))
1305 return ERR_PTR(-EINVAL);
1306
1307 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1308 if (!bio)
1309 return ERR_PTR(-ENOMEM);
1310
1311 while (iov_iter_count(iter)) {
1312 struct page **pages;
1313 ssize_t bytes;
1314 size_t offs, added = 0;
1315 int npages;
1316
1317 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1318 if (unlikely(bytes <= 0)) {
1319 ret = bytes ? bytes : -EFAULT;
1320 goto out_unmap;
1321 }
1322
1323 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1324
1325 if (unlikely(offs & queue_dma_alignment(q))) {
1326 ret = -EINVAL;
1327 j = 0;
1328 } else {
1329 for (j = 0; j < npages; j++) {
1330 struct page *page = pages[j];
1331 unsigned int n = PAGE_SIZE - offs;
1332 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1333
1334 if (n > bytes)
1335 n = bytes;
1336
1337 if (!bio_add_pc_page(q, bio, page, n, offs))
1338 break;
1339
1340 /*
1341 * check if vector was merged with previous
1342 * drop page reference if needed
1343 */
1344 if (bio->bi_vcnt == prev_bi_vcnt)
1345 put_page(page);
1346
1347 added += n;
1348 bytes -= n;
1349 offs = 0;
1350 }
1351 iov_iter_advance(iter, added);
1352 }
1353 /*
1354 * release the pages we didn't map into the bio, if any
1355 */
1356 while (j < npages)
1357 put_page(pages[j++]);
1358 kvfree(pages);
1359 /* couldn't stuff something into bio? */
1360 if (bytes)
1361 break;
1362 }
1363
1364 bio_set_flag(bio, BIO_USER_MAPPED);
1365
1366 /*
1367 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1368 * it would normally disappear when its bi_end_io is run.
1369 * however, we need it for the unmap, so grab an extra
1370 * reference to it
1371 */
1372 bio_get(bio);
1373 return bio;
1374
1375 out_unmap:
1376 bio_for_each_segment_all(bvec, bio, j) {
1377 put_page(bvec->bv_page);
1378 }
1379 bio_put(bio);
1380 return ERR_PTR(ret);
1381 }
1382
__bio_unmap_user(struct bio * bio)1383 static void __bio_unmap_user(struct bio *bio)
1384 {
1385 struct bio_vec *bvec;
1386 int i;
1387
1388 /*
1389 * make sure we dirty pages we wrote to
1390 */
1391 bio_for_each_segment_all(bvec, bio, i) {
1392 if (bio_data_dir(bio) == READ)
1393 set_page_dirty_lock(bvec->bv_page);
1394
1395 put_page(bvec->bv_page);
1396 }
1397
1398 bio_put(bio);
1399 }
1400
1401 /**
1402 * bio_unmap_user - unmap a bio
1403 * @bio: the bio being unmapped
1404 *
1405 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1406 * process context.
1407 *
1408 * bio_unmap_user() may sleep.
1409 */
bio_unmap_user(struct bio * bio)1410 void bio_unmap_user(struct bio *bio)
1411 {
1412 __bio_unmap_user(bio);
1413 bio_put(bio);
1414 }
1415
bio_map_kern_endio(struct bio * bio)1416 static void bio_map_kern_endio(struct bio *bio)
1417 {
1418 bio_put(bio);
1419 }
1420
1421 /**
1422 * bio_map_kern - map kernel address into bio
1423 * @q: the struct request_queue for the bio
1424 * @data: pointer to buffer to map
1425 * @len: length in bytes
1426 * @gfp_mask: allocation flags for bio allocation
1427 *
1428 * Map the kernel address into a bio suitable for io to a block
1429 * device. Returns an error pointer in case of error.
1430 */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1431 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1432 gfp_t gfp_mask)
1433 {
1434 unsigned long kaddr = (unsigned long)data;
1435 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436 unsigned long start = kaddr >> PAGE_SHIFT;
1437 const int nr_pages = end - start;
1438 int offset, i;
1439 struct bio *bio;
1440
1441 bio = bio_kmalloc(gfp_mask, nr_pages);
1442 if (!bio)
1443 return ERR_PTR(-ENOMEM);
1444
1445 offset = offset_in_page(kaddr);
1446 for (i = 0; i < nr_pages; i++) {
1447 unsigned int bytes = PAGE_SIZE - offset;
1448
1449 if (len <= 0)
1450 break;
1451
1452 if (bytes > len)
1453 bytes = len;
1454
1455 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1456 offset) < bytes) {
1457 /* we don't support partial mappings */
1458 bio_put(bio);
1459 return ERR_PTR(-EINVAL);
1460 }
1461
1462 data += bytes;
1463 len -= bytes;
1464 offset = 0;
1465 }
1466
1467 bio->bi_end_io = bio_map_kern_endio;
1468 return bio;
1469 }
1470 EXPORT_SYMBOL(bio_map_kern);
1471
bio_copy_kern_endio(struct bio * bio)1472 static void bio_copy_kern_endio(struct bio *bio)
1473 {
1474 bio_free_pages(bio);
1475 bio_put(bio);
1476 }
1477
bio_copy_kern_endio_read(struct bio * bio)1478 static void bio_copy_kern_endio_read(struct bio *bio)
1479 {
1480 char *p = bio->bi_private;
1481 struct bio_vec *bvec;
1482 int i;
1483
1484 bio_for_each_segment_all(bvec, bio, i) {
1485 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1486 p += bvec->bv_len;
1487 }
1488
1489 bio_copy_kern_endio(bio);
1490 }
1491
1492 /**
1493 * bio_copy_kern - copy kernel address into bio
1494 * @q: the struct request_queue for the bio
1495 * @data: pointer to buffer to copy
1496 * @len: length in bytes
1497 * @gfp_mask: allocation flags for bio and page allocation
1498 * @reading: data direction is READ
1499 *
1500 * copy the kernel address into a bio suitable for io to a block
1501 * device. Returns an error pointer in case of error.
1502 */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1503 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1504 gfp_t gfp_mask, int reading)
1505 {
1506 unsigned long kaddr = (unsigned long)data;
1507 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1508 unsigned long start = kaddr >> PAGE_SHIFT;
1509 struct bio *bio;
1510 void *p = data;
1511 int nr_pages = 0;
1512
1513 /*
1514 * Overflow, abort
1515 */
1516 if (end < start)
1517 return ERR_PTR(-EINVAL);
1518
1519 nr_pages = end - start;
1520 bio = bio_kmalloc(gfp_mask, nr_pages);
1521 if (!bio)
1522 return ERR_PTR(-ENOMEM);
1523
1524 while (len) {
1525 struct page *page;
1526 unsigned int bytes = PAGE_SIZE;
1527
1528 if (bytes > len)
1529 bytes = len;
1530
1531 page = alloc_page(q->bounce_gfp | __GFP_ZERO | gfp_mask);
1532 if (!page)
1533 goto cleanup;
1534
1535 if (!reading)
1536 memcpy(page_address(page), p, bytes);
1537
1538 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1539 break;
1540
1541 len -= bytes;
1542 p += bytes;
1543 }
1544
1545 if (reading) {
1546 bio->bi_end_io = bio_copy_kern_endio_read;
1547 bio->bi_private = data;
1548 } else {
1549 bio->bi_end_io = bio_copy_kern_endio;
1550 }
1551
1552 return bio;
1553
1554 cleanup:
1555 bio_free_pages(bio);
1556 bio_put(bio);
1557 return ERR_PTR(-ENOMEM);
1558 }
1559
1560 /*
1561 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1562 * for performing direct-IO in BIOs.
1563 *
1564 * The problem is that we cannot run set_page_dirty() from interrupt context
1565 * because the required locks are not interrupt-safe. So what we can do is to
1566 * mark the pages dirty _before_ performing IO. And in interrupt context,
1567 * check that the pages are still dirty. If so, fine. If not, redirty them
1568 * in process context.
1569 *
1570 * We special-case compound pages here: normally this means reads into hugetlb
1571 * pages. The logic in here doesn't really work right for compound pages
1572 * because the VM does not uniformly chase down the head page in all cases.
1573 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1574 * handle them at all. So we skip compound pages here at an early stage.
1575 *
1576 * Note that this code is very hard to test under normal circumstances because
1577 * direct-io pins the pages with get_user_pages(). This makes
1578 * is_page_cache_freeable return false, and the VM will not clean the pages.
1579 * But other code (eg, flusher threads) could clean the pages if they are mapped
1580 * pagecache.
1581 *
1582 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1583 * deferred bio dirtying paths.
1584 */
1585
1586 /*
1587 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1588 */
bio_set_pages_dirty(struct bio * bio)1589 void bio_set_pages_dirty(struct bio *bio)
1590 {
1591 struct bio_vec *bvec;
1592 int i;
1593
1594 bio_for_each_segment_all(bvec, bio, i) {
1595 if (!PageCompound(bvec->bv_page))
1596 set_page_dirty_lock(bvec->bv_page);
1597 }
1598 }
1599 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1600
bio_release_pages(struct bio * bio)1601 static void bio_release_pages(struct bio *bio)
1602 {
1603 struct bio_vec *bvec;
1604 int i;
1605
1606 bio_for_each_segment_all(bvec, bio, i)
1607 put_page(bvec->bv_page);
1608 }
1609
1610 /*
1611 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1612 * If they are, then fine. If, however, some pages are clean then they must
1613 * have been written out during the direct-IO read. So we take another ref on
1614 * the BIO and re-dirty the pages in process context.
1615 *
1616 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1617 * here on. It will run one put_page() against each page and will run one
1618 * bio_put() against the BIO.
1619 */
1620
1621 static void bio_dirty_fn(struct work_struct *work);
1622
1623 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1624 static DEFINE_SPINLOCK(bio_dirty_lock);
1625 static struct bio *bio_dirty_list;
1626
1627 /*
1628 * This runs in process context
1629 */
bio_dirty_fn(struct work_struct * work)1630 static void bio_dirty_fn(struct work_struct *work)
1631 {
1632 struct bio *bio, *next;
1633
1634 spin_lock_irq(&bio_dirty_lock);
1635 next = bio_dirty_list;
1636 bio_dirty_list = NULL;
1637 spin_unlock_irq(&bio_dirty_lock);
1638
1639 while ((bio = next) != NULL) {
1640 next = bio->bi_private;
1641
1642 bio_set_pages_dirty(bio);
1643 bio_release_pages(bio);
1644 bio_put(bio);
1645 }
1646 }
1647
bio_check_pages_dirty(struct bio * bio)1648 void bio_check_pages_dirty(struct bio *bio)
1649 {
1650 struct bio_vec *bvec;
1651 unsigned long flags;
1652 int i;
1653
1654 bio_for_each_segment_all(bvec, bio, i) {
1655 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1656 goto defer;
1657 }
1658
1659 bio_release_pages(bio);
1660 bio_put(bio);
1661 return;
1662 defer:
1663 spin_lock_irqsave(&bio_dirty_lock, flags);
1664 bio->bi_private = bio_dirty_list;
1665 bio_dirty_list = bio;
1666 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1667 schedule_work(&bio_dirty_work);
1668 }
1669 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1670
generic_start_io_acct(struct request_queue * q,int op,unsigned long sectors,struct hd_struct * part)1671 void generic_start_io_acct(struct request_queue *q, int op,
1672 unsigned long sectors, struct hd_struct *part)
1673 {
1674 const int sgrp = op_stat_group(op);
1675 int cpu = part_stat_lock();
1676
1677 part_round_stats(q, cpu, part);
1678 part_stat_inc(cpu, part, ios[sgrp]);
1679 part_stat_add(cpu, part, sectors[sgrp], sectors);
1680 part_inc_in_flight(q, part, op_is_write(op));
1681
1682 part_stat_unlock();
1683 }
1684 EXPORT_SYMBOL(generic_start_io_acct);
1685
generic_end_io_acct(struct request_queue * q,int req_op,struct hd_struct * part,unsigned long start_time)1686 void generic_end_io_acct(struct request_queue *q, int req_op,
1687 struct hd_struct *part, unsigned long start_time)
1688 {
1689 unsigned long duration = jiffies - start_time;
1690 const int sgrp = op_stat_group(req_op);
1691 int cpu = part_stat_lock();
1692
1693 part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration));
1694 part_round_stats(q, cpu, part);
1695 part_dec_in_flight(q, part, op_is_write(req_op));
1696
1697 part_stat_unlock();
1698 }
1699 EXPORT_SYMBOL(generic_end_io_acct);
1700
1701 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1702 void bio_flush_dcache_pages(struct bio *bi)
1703 {
1704 struct bio_vec bvec;
1705 struct bvec_iter iter;
1706
1707 bio_for_each_segment(bvec, bi, iter)
1708 flush_dcache_page(bvec.bv_page);
1709 }
1710 EXPORT_SYMBOL(bio_flush_dcache_pages);
1711 #endif
1712
bio_remaining_done(struct bio * bio)1713 static inline bool bio_remaining_done(struct bio *bio)
1714 {
1715 /*
1716 * If we're not chaining, then ->__bi_remaining is always 1 and
1717 * we always end io on the first invocation.
1718 */
1719 if (!bio_flagged(bio, BIO_CHAIN))
1720 return true;
1721
1722 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1723
1724 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1725 bio_clear_flag(bio, BIO_CHAIN);
1726 return true;
1727 }
1728
1729 return false;
1730 }
1731
1732 /**
1733 * bio_endio - end I/O on a bio
1734 * @bio: bio
1735 *
1736 * Description:
1737 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1738 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1739 * bio unless they own it and thus know that it has an end_io function.
1740 *
1741 * bio_endio() can be called several times on a bio that has been chained
1742 * using bio_chain(). The ->bi_end_io() function will only be called the
1743 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1744 * generated if BIO_TRACE_COMPLETION is set.
1745 **/
bio_endio(struct bio * bio)1746 void bio_endio(struct bio *bio)
1747 {
1748 again:
1749 if (!bio_remaining_done(bio))
1750 return;
1751 if (!bio_integrity_endio(bio))
1752 return;
1753
1754 if (bio->bi_disk)
1755 rq_qos_done_bio(bio->bi_disk->queue, bio);
1756
1757 /*
1758 * Need to have a real endio function for chained bios, otherwise
1759 * various corner cases will break (like stacking block devices that
1760 * save/restore bi_end_io) - however, we want to avoid unbounded
1761 * recursion and blowing the stack. Tail call optimization would
1762 * handle this, but compiling with frame pointers also disables
1763 * gcc's sibling call optimization.
1764 */
1765 if (bio->bi_end_io == bio_chain_endio) {
1766 bio = __bio_chain_endio(bio);
1767 goto again;
1768 }
1769
1770 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1771 trace_block_bio_complete(bio->bi_disk->queue, bio,
1772 blk_status_to_errno(bio->bi_status));
1773 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1774 }
1775
1776 blk_throtl_bio_endio(bio);
1777 /* release cgroup info */
1778 bio_uninit(bio);
1779 if (bio->bi_end_io)
1780 bio->bi_end_io(bio);
1781 }
1782 EXPORT_SYMBOL(bio_endio);
1783
1784 /**
1785 * bio_split - split a bio
1786 * @bio: bio to split
1787 * @sectors: number of sectors to split from the front of @bio
1788 * @gfp: gfp mask
1789 * @bs: bio set to allocate from
1790 *
1791 * Allocates and returns a new bio which represents @sectors from the start of
1792 * @bio, and updates @bio to represent the remaining sectors.
1793 *
1794 * Unless this is a discard request the newly allocated bio will point
1795 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1796 * @bio is not freed before the split.
1797 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1798 struct bio *bio_split(struct bio *bio, int sectors,
1799 gfp_t gfp, struct bio_set *bs)
1800 {
1801 struct bio *split;
1802
1803 BUG_ON(sectors <= 0);
1804 BUG_ON(sectors >= bio_sectors(bio));
1805
1806 split = bio_clone_fast(bio, gfp, bs);
1807 if (!split)
1808 return NULL;
1809
1810 split->bi_iter.bi_size = sectors << 9;
1811
1812 if (bio_integrity(split))
1813 bio_integrity_trim(split);
1814
1815 bio_advance(bio, split->bi_iter.bi_size);
1816 bio->bi_iter.bi_done = 0;
1817
1818 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1819 bio_set_flag(split, BIO_TRACE_COMPLETION);
1820
1821 return split;
1822 }
1823 EXPORT_SYMBOL(bio_split);
1824
1825 /**
1826 * bio_trim - trim a bio
1827 * @bio: bio to trim
1828 * @offset: number of sectors to trim from the front of @bio
1829 * @size: size we want to trim @bio to, in sectors
1830 */
bio_trim(struct bio * bio,int offset,int size)1831 void bio_trim(struct bio *bio, int offset, int size)
1832 {
1833 /* 'bio' is a cloned bio which we need to trim to match
1834 * the given offset and size.
1835 */
1836
1837 size <<= 9;
1838 if (offset == 0 && size == bio->bi_iter.bi_size)
1839 return;
1840
1841 bio_clear_flag(bio, BIO_SEG_VALID);
1842
1843 bio_advance(bio, offset << 9);
1844
1845 bio->bi_iter.bi_size = size;
1846
1847 if (bio_integrity(bio))
1848 bio_integrity_trim(bio);
1849
1850 }
1851 EXPORT_SYMBOL_GPL(bio_trim);
1852
1853 /*
1854 * create memory pools for biovec's in a bio_set.
1855 * use the global biovec slabs created for general use.
1856 */
biovec_init_pool(mempool_t * pool,int pool_entries)1857 int biovec_init_pool(mempool_t *pool, int pool_entries)
1858 {
1859 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1860
1861 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1862 }
1863
1864 /*
1865 * bioset_exit - exit a bioset initialized with bioset_init()
1866 *
1867 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1868 * kzalloc()).
1869 */
bioset_exit(struct bio_set * bs)1870 void bioset_exit(struct bio_set *bs)
1871 {
1872 if (bs->rescue_workqueue)
1873 destroy_workqueue(bs->rescue_workqueue);
1874 bs->rescue_workqueue = NULL;
1875
1876 mempool_exit(&bs->bio_pool);
1877 mempool_exit(&bs->bvec_pool);
1878
1879 bioset_integrity_free(bs);
1880 if (bs->bio_slab)
1881 bio_put_slab(bs);
1882 bs->bio_slab = NULL;
1883 }
1884 EXPORT_SYMBOL(bioset_exit);
1885
1886 /**
1887 * bioset_init - Initialize a bio_set
1888 * @bs: pool to initialize
1889 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1890 * @front_pad: Number of bytes to allocate in front of the returned bio
1891 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1892 * and %BIOSET_NEED_RESCUER
1893 *
1894 * Description:
1895 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1896 * to ask for a number of bytes to be allocated in front of the bio.
1897 * Front pad allocation is useful for embedding the bio inside
1898 * another structure, to avoid allocating extra data to go with the bio.
1899 * Note that the bio must be embedded at the END of that structure always,
1900 * or things will break badly.
1901 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1902 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1903 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1904 * dispatch queued requests when the mempool runs out of space.
1905 *
1906 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1907 int bioset_init(struct bio_set *bs,
1908 unsigned int pool_size,
1909 unsigned int front_pad,
1910 int flags)
1911 {
1912 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1913
1914 bs->front_pad = front_pad;
1915
1916 spin_lock_init(&bs->rescue_lock);
1917 bio_list_init(&bs->rescue_list);
1918 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1919
1920 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1921 if (!bs->bio_slab)
1922 return -ENOMEM;
1923
1924 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1925 goto bad;
1926
1927 if ((flags & BIOSET_NEED_BVECS) &&
1928 biovec_init_pool(&bs->bvec_pool, pool_size))
1929 goto bad;
1930
1931 if (!(flags & BIOSET_NEED_RESCUER))
1932 return 0;
1933
1934 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1935 if (!bs->rescue_workqueue)
1936 goto bad;
1937
1938 return 0;
1939 bad:
1940 bioset_exit(bs);
1941 return -ENOMEM;
1942 }
1943 EXPORT_SYMBOL(bioset_init);
1944
1945 /*
1946 * Initialize and setup a new bio_set, based on the settings from
1947 * another bio_set.
1948 */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)1949 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1950 {
1951 int flags;
1952
1953 flags = 0;
1954 if (src->bvec_pool.min_nr)
1955 flags |= BIOSET_NEED_BVECS;
1956 if (src->rescue_workqueue)
1957 flags |= BIOSET_NEED_RESCUER;
1958
1959 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1960 }
1961 EXPORT_SYMBOL(bioset_init_from_src);
1962
1963 #ifdef CONFIG_BLK_CGROUP
1964
1965 #ifdef CONFIG_MEMCG
1966 /**
1967 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
1968 * @bio: target bio
1969 * @page: the page to lookup the blkcg from
1970 *
1971 * Associate @bio with the blkcg from @page's owning memcg. This works like
1972 * every other associate function wrt references.
1973 */
bio_associate_blkcg_from_page(struct bio * bio,struct page * page)1974 int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
1975 {
1976 struct cgroup_subsys_state *blkcg_css;
1977
1978 if (unlikely(bio->bi_css))
1979 return -EBUSY;
1980 if (!page->mem_cgroup)
1981 return 0;
1982 blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1983 &io_cgrp_subsys);
1984 bio->bi_css = blkcg_css;
1985 return 0;
1986 }
1987 #endif /* CONFIG_MEMCG */
1988
1989 /**
1990 * bio_associate_blkcg - associate a bio with the specified blkcg
1991 * @bio: target bio
1992 * @blkcg_css: css of the blkcg to associate
1993 *
1994 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1995 * treat @bio as if it were issued by a task which belongs to the blkcg.
1996 *
1997 * This function takes an extra reference of @blkcg_css which will be put
1998 * when @bio is released. The caller must own @bio and is responsible for
1999 * synchronizing calls to this function.
2000 */
bio_associate_blkcg(struct bio * bio,struct cgroup_subsys_state * blkcg_css)2001 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2002 {
2003 if (unlikely(bio->bi_css))
2004 return -EBUSY;
2005 css_get(blkcg_css);
2006 bio->bi_css = blkcg_css;
2007 return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2010
2011 /**
2012 * bio_associate_blkg - associate a bio with the specified blkg
2013 * @bio: target bio
2014 * @blkg: the blkg to associate
2015 *
2016 * Associate @bio with the blkg specified by @blkg. This is the queue specific
2017 * blkcg information associated with the @bio, a reference will be taken on the
2018 * @blkg and will be freed when the bio is freed.
2019 */
bio_associate_blkg(struct bio * bio,struct blkcg_gq * blkg)2020 int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2021 {
2022 if (unlikely(bio->bi_blkg))
2023 return -EBUSY;
2024 if (!blkg_try_get(blkg))
2025 return -ENODEV;
2026 bio->bi_blkg = blkg;
2027 return 0;
2028 }
2029
2030 /**
2031 * bio_disassociate_task - undo bio_associate_current()
2032 * @bio: target bio
2033 */
bio_disassociate_task(struct bio * bio)2034 void bio_disassociate_task(struct bio *bio)
2035 {
2036 if (bio->bi_ioc) {
2037 put_io_context(bio->bi_ioc);
2038 bio->bi_ioc = NULL;
2039 }
2040 if (bio->bi_css) {
2041 css_put(bio->bi_css);
2042 bio->bi_css = NULL;
2043 }
2044 if (bio->bi_blkg) {
2045 blkg_put(bio->bi_blkg);
2046 bio->bi_blkg = NULL;
2047 }
2048 }
2049
2050 /**
2051 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2052 * @dst: destination bio
2053 * @src: source bio
2054 */
bio_clone_blkcg_association(struct bio * dst,struct bio * src)2055 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2056 {
2057 if (src->bi_css)
2058 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2059 }
2060 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2061 #endif /* CONFIG_BLK_CGROUP */
2062
biovec_init_slabs(void)2063 static void __init biovec_init_slabs(void)
2064 {
2065 int i;
2066
2067 for (i = 0; i < BVEC_POOL_NR; i++) {
2068 int size;
2069 struct biovec_slab *bvs = bvec_slabs + i;
2070
2071 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2072 bvs->slab = NULL;
2073 continue;
2074 }
2075
2076 size = bvs->nr_vecs * sizeof(struct bio_vec);
2077 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2078 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2079 }
2080 }
2081
init_bio(void)2082 static int __init init_bio(void)
2083 {
2084 bio_slab_max = 2;
2085 bio_slab_nr = 0;
2086 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2087 GFP_KERNEL);
2088 if (!bio_slabs)
2089 panic("bio: can't allocate bios\n");
2090
2091 bio_integrity_init();
2092 biovec_init_slabs();
2093
2094 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2095 panic("bio: can't allocate bios\n");
2096
2097 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2098 panic("bio: can't create integrity pool\n");
2099
2100 return 0;
2101 }
2102 subsys_initcall(init_bio);
2103