1 /* Instantiate a public key crypto key from an X.509 Certificate
2 *
3 * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
10 */
11
12 #define pr_fmt(fmt) "ASYM: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/err.h>
16 #include <crypto/public_key.h>
17 #include "asymmetric_keys.h"
18
19 static bool use_builtin_keys;
20 static struct asymmetric_key_id *ca_keyid;
21
22 #ifndef MODULE
23 static struct {
24 struct asymmetric_key_id id;
25 unsigned char data[10];
26 } cakey;
27
ca_keys_setup(char * str)28 static int __init ca_keys_setup(char *str)
29 {
30 if (!str) /* default system keyring */
31 return 1;
32
33 if (strncmp(str, "id:", 3) == 0) {
34 struct asymmetric_key_id *p = &cakey.id;
35 size_t hexlen = (strlen(str) - 3) / 2;
36 int ret;
37
38 if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
39 pr_err("Missing or invalid ca_keys id\n");
40 return 1;
41 }
42
43 ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
44 if (ret < 0)
45 pr_err("Unparsable ca_keys id hex string\n");
46 else
47 ca_keyid = p; /* owner key 'id:xxxxxx' */
48 } else if (strcmp(str, "builtin") == 0) {
49 use_builtin_keys = true;
50 }
51
52 return 1;
53 }
54 __setup("ca_keys=", ca_keys_setup);
55 #endif
56
57 /**
58 * restrict_link_by_signature - Restrict additions to a ring of public keys
59 * @dest_keyring: Keyring being linked to.
60 * @type: The type of key being added.
61 * @payload: The payload of the new key.
62 * @trust_keyring: A ring of keys that can be used to vouch for the new cert.
63 *
64 * Check the new certificate against the ones in the trust keyring. If one of
65 * those is the signing key and validates the new certificate, then mark the
66 * new certificate as being trusted.
67 *
68 * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a
69 * matching parent certificate in the trusted list, -EKEYREJECTED if the
70 * signature check fails or the key is blacklisted, -ENOPKG if the signature
71 * uses unsupported crypto, or some other error if there is a matching
72 * certificate but the signature check cannot be performed.
73 */
restrict_link_by_signature(struct key * dest_keyring,const struct key_type * type,const union key_payload * payload,struct key * trust_keyring)74 int restrict_link_by_signature(struct key *dest_keyring,
75 const struct key_type *type,
76 const union key_payload *payload,
77 struct key *trust_keyring)
78 {
79 const struct public_key_signature *sig;
80 struct key *key;
81 int ret;
82
83 pr_devel("==>%s()\n", __func__);
84
85 if (!trust_keyring)
86 return -ENOKEY;
87
88 if (type != &key_type_asymmetric)
89 return -EOPNOTSUPP;
90
91 sig = payload->data[asym_auth];
92 if (!sig)
93 return -ENOPKG;
94 if (!sig->auth_ids[0] && !sig->auth_ids[1])
95 return -ENOKEY;
96
97 if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
98 return -EPERM;
99
100 /* See if we have a key that signed this one. */
101 key = find_asymmetric_key(trust_keyring,
102 sig->auth_ids[0], sig->auth_ids[1],
103 false);
104 if (IS_ERR(key))
105 return -ENOKEY;
106
107 if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags))
108 ret = -ENOKEY;
109 else
110 ret = verify_signature(key, sig);
111 key_put(key);
112 return ret;
113 }
114
match_either_id(const struct asymmetric_key_ids * pair,const struct asymmetric_key_id * single)115 static bool match_either_id(const struct asymmetric_key_ids *pair,
116 const struct asymmetric_key_id *single)
117 {
118 return (asymmetric_key_id_same(pair->id[0], single) ||
119 asymmetric_key_id_same(pair->id[1], single));
120 }
121
key_or_keyring_common(struct key * dest_keyring,const struct key_type * type,const union key_payload * payload,struct key * trusted,bool check_dest)122 static int key_or_keyring_common(struct key *dest_keyring,
123 const struct key_type *type,
124 const union key_payload *payload,
125 struct key *trusted, bool check_dest)
126 {
127 const struct public_key_signature *sig;
128 struct key *key = NULL;
129 int ret;
130
131 pr_devel("==>%s()\n", __func__);
132
133 if (!dest_keyring)
134 return -ENOKEY;
135 else if (dest_keyring->type != &key_type_keyring)
136 return -EOPNOTSUPP;
137
138 if (!trusted && !check_dest)
139 return -ENOKEY;
140
141 if (type != &key_type_asymmetric)
142 return -EOPNOTSUPP;
143
144 sig = payload->data[asym_auth];
145 if (!sig)
146 return -ENOPKG;
147 if (!sig->auth_ids[0] && !sig->auth_ids[1])
148 return -ENOKEY;
149
150 if (trusted) {
151 if (trusted->type == &key_type_keyring) {
152 /* See if we have a key that signed this one. */
153 key = find_asymmetric_key(trusted, sig->auth_ids[0],
154 sig->auth_ids[1], false);
155 if (IS_ERR(key))
156 key = NULL;
157 } else if (trusted->type == &key_type_asymmetric) {
158 const struct asymmetric_key_ids *signer_ids;
159
160 signer_ids = asymmetric_key_ids(trusted);
161
162 /*
163 * The auth_ids come from the candidate key (the
164 * one that is being considered for addition to
165 * dest_keyring) and identify the key that was
166 * used to sign.
167 *
168 * The signer_ids are identifiers for the
169 * signing key specified for dest_keyring.
170 *
171 * The first auth_id is the preferred id, and
172 * the second is the fallback. If only one
173 * auth_id is present, it may match against
174 * either signer_id. If two auth_ids are
175 * present, the first auth_id must match one
176 * signer_id and the second auth_id must match
177 * the second signer_id.
178 */
179 if (!sig->auth_ids[0] || !sig->auth_ids[1]) {
180 const struct asymmetric_key_id *auth_id;
181
182 auth_id = sig->auth_ids[0] ?: sig->auth_ids[1];
183 if (match_either_id(signer_ids, auth_id))
184 key = __key_get(trusted);
185
186 } else if (asymmetric_key_id_same(signer_ids->id[1],
187 sig->auth_ids[1]) &&
188 match_either_id(signer_ids,
189 sig->auth_ids[0])) {
190 key = __key_get(trusted);
191 }
192 } else {
193 return -EOPNOTSUPP;
194 }
195 }
196
197 if (check_dest && !key) {
198 /* See if the destination has a key that signed this one. */
199 key = find_asymmetric_key(dest_keyring, sig->auth_ids[0],
200 sig->auth_ids[1], false);
201 if (IS_ERR(key))
202 key = NULL;
203 }
204
205 if (!key)
206 return -ENOKEY;
207
208 ret = key_validate(key);
209 if (ret == 0)
210 ret = verify_signature(key, sig);
211
212 key_put(key);
213 return ret;
214 }
215
216 /**
217 * restrict_link_by_key_or_keyring - Restrict additions to a ring of public
218 * keys using the restrict_key information stored in the ring.
219 * @dest_keyring: Keyring being linked to.
220 * @type: The type of key being added.
221 * @payload: The payload of the new key.
222 * @trusted: A key or ring of keys that can be used to vouch for the new cert.
223 *
224 * Check the new certificate only against the key or keys passed in the data
225 * parameter. If one of those is the signing key and validates the new
226 * certificate, then mark the new certificate as being ok to link.
227 *
228 * Returns 0 if the new certificate was accepted, -ENOKEY if we
229 * couldn't find a matching parent certificate in the trusted list,
230 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
231 * unsupported crypto, or some other error if there is a matching certificate
232 * but the signature check cannot be performed.
233 */
restrict_link_by_key_or_keyring(struct key * dest_keyring,const struct key_type * type,const union key_payload * payload,struct key * trusted)234 int restrict_link_by_key_or_keyring(struct key *dest_keyring,
235 const struct key_type *type,
236 const union key_payload *payload,
237 struct key *trusted)
238 {
239 return key_or_keyring_common(dest_keyring, type, payload, trusted,
240 false);
241 }
242
243 /**
244 * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of
245 * public keys using the restrict_key information stored in the ring.
246 * @dest_keyring: Keyring being linked to.
247 * @type: The type of key being added.
248 * @payload: The payload of the new key.
249 * @trusted: A key or ring of keys that can be used to vouch for the new cert.
250 *
251 * Check the new certificate only against the key or keys passed in the data
252 * parameter. If one of those is the signing key and validates the new
253 * certificate, then mark the new certificate as being ok to link.
254 *
255 * Returns 0 if the new certificate was accepted, -ENOKEY if we
256 * couldn't find a matching parent certificate in the trusted list,
257 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
258 * unsupported crypto, or some other error if there is a matching certificate
259 * but the signature check cannot be performed.
260 */
restrict_link_by_key_or_keyring_chain(struct key * dest_keyring,const struct key_type * type,const union key_payload * payload,struct key * trusted)261 int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring,
262 const struct key_type *type,
263 const union key_payload *payload,
264 struct key *trusted)
265 {
266 return key_or_keyring_common(dest_keyring, type, payload, trusted,
267 true);
268 }
269