1 /*
2  *  Atheros Communication Bluetooth HCIATH3K UART protocol
3  *
4  *  HCIATH3K (HCI Atheros AR300x Protocol) is a Atheros Communication's
5  *  power management protocol extension to H4 to support AR300x Bluetooth Chip.
6  *
7  *  Copyright (c) 2009-2010 Atheros Communications Inc.
8  *
9  *  Acknowledgements:
10  *  This file is based on hci_h4.c, which was written
11  *  by Maxim Krasnyansky and Marcel Holtmann.
12  *
13  *  This program is free software; you can redistribute it and/or modify
14  *  it under the terms of the GNU General Public License as published by
15  *  the Free Software Foundation; either version 2 of the License, or
16  *  (at your option) any later version.
17  *
18  *  This program is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  *  GNU General Public License for more details.
22  *
23  *  You should have received a copy of the GNU General Public License
24  *  along with this program; if not, write to the Free Software
25  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
26  *
27  */
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 
32 #include <linux/init.h>
33 #include <linux/slab.h>
34 #include <linux/tty.h>
35 #include <linux/errno.h>
36 #include <linux/ioctl.h>
37 #include <linux/skbuff.h>
38 
39 #include <net/bluetooth/bluetooth.h>
40 #include <net/bluetooth/hci_core.h>
41 
42 #include "hci_uart.h"
43 
44 struct ath_struct {
45 	struct hci_uart *hu;
46 	unsigned int cur_sleep;
47 
48 	struct sk_buff *rx_skb;
49 	struct sk_buff_head txq;
50 	struct work_struct ctxtsw;
51 };
52 
53 #define OP_WRITE_TAG	0x01
54 
55 #define INDEX_BDADDR	0x01
56 
57 struct ath_vendor_cmd {
58 	__u8 opcode;
59 	__le16 index;
60 	__u8 len;
61 	__u8 data[251];
62 } __packed;
63 
ath_wakeup_ar3k(struct tty_struct * tty)64 static int ath_wakeup_ar3k(struct tty_struct *tty)
65 {
66 	int status = tty->driver->ops->tiocmget(tty);
67 
68 	if (status & TIOCM_CTS)
69 		return status;
70 
71 	/* Clear RTS first */
72 	tty->driver->ops->tiocmget(tty);
73 	tty->driver->ops->tiocmset(tty, 0x00, TIOCM_RTS);
74 	msleep(20);
75 
76 	/* Set RTS, wake up board */
77 	tty->driver->ops->tiocmget(tty);
78 	tty->driver->ops->tiocmset(tty, TIOCM_RTS, 0x00);
79 	msleep(20);
80 
81 	status = tty->driver->ops->tiocmget(tty);
82 	return status;
83 }
84 
ath_hci_uart_work(struct work_struct * work)85 static void ath_hci_uart_work(struct work_struct *work)
86 {
87 	int status;
88 	struct ath_struct *ath;
89 	struct hci_uart *hu;
90 	struct tty_struct *tty;
91 
92 	ath = container_of(work, struct ath_struct, ctxtsw);
93 
94 	hu = ath->hu;
95 	tty = hu->tty;
96 
97 	/* verify and wake up controller */
98 	if (ath->cur_sleep) {
99 		status = ath_wakeup_ar3k(tty);
100 		if (!(status & TIOCM_CTS))
101 			return;
102 	}
103 
104 	/* Ready to send Data */
105 	clear_bit(HCI_UART_SENDING, &hu->tx_state);
106 	hci_uart_tx_wakeup(hu);
107 }
108 
ath_open(struct hci_uart * hu)109 static int ath_open(struct hci_uart *hu)
110 {
111 	struct ath_struct *ath;
112 
113 	BT_DBG("hu %p", hu);
114 
115 	if (!hci_uart_has_flow_control(hu))
116 		return -EOPNOTSUPP;
117 
118 	ath = kzalloc(sizeof(*ath), GFP_KERNEL);
119 	if (!ath)
120 		return -ENOMEM;
121 
122 	skb_queue_head_init(&ath->txq);
123 
124 	hu->priv = ath;
125 	ath->hu = hu;
126 
127 	INIT_WORK(&ath->ctxtsw, ath_hci_uart_work);
128 
129 	return 0;
130 }
131 
ath_close(struct hci_uart * hu)132 static int ath_close(struct hci_uart *hu)
133 {
134 	struct ath_struct *ath = hu->priv;
135 
136 	BT_DBG("hu %p", hu);
137 
138 	skb_queue_purge(&ath->txq);
139 
140 	kfree_skb(ath->rx_skb);
141 
142 	cancel_work_sync(&ath->ctxtsw);
143 
144 	hu->priv = NULL;
145 	kfree(ath);
146 
147 	return 0;
148 }
149 
ath_flush(struct hci_uart * hu)150 static int ath_flush(struct hci_uart *hu)
151 {
152 	struct ath_struct *ath = hu->priv;
153 
154 	BT_DBG("hu %p", hu);
155 
156 	skb_queue_purge(&ath->txq);
157 
158 	return 0;
159 }
160 
ath_vendor_cmd(struct hci_dev * hdev,uint8_t opcode,uint16_t index,const void * data,size_t dlen)161 static int ath_vendor_cmd(struct hci_dev *hdev, uint8_t opcode, uint16_t index,
162 			  const void *data, size_t dlen)
163 {
164 	struct sk_buff *skb;
165 	struct ath_vendor_cmd cmd;
166 
167 	if (dlen > sizeof(cmd.data))
168 		return -EINVAL;
169 
170 	cmd.opcode = opcode;
171 	cmd.index = cpu_to_le16(index);
172 	cmd.len = dlen;
173 	memcpy(cmd.data, data, dlen);
174 
175 	skb = __hci_cmd_sync(hdev, 0xfc0b, dlen + 4, &cmd, HCI_INIT_TIMEOUT);
176 	if (IS_ERR(skb))
177 		return PTR_ERR(skb);
178 	kfree_skb(skb);
179 
180 	return 0;
181 }
182 
ath_set_bdaddr(struct hci_dev * hdev,const bdaddr_t * bdaddr)183 static int ath_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
184 {
185 	return ath_vendor_cmd(hdev, OP_WRITE_TAG, INDEX_BDADDR, bdaddr,
186 			      sizeof(*bdaddr));
187 }
188 
ath_setup(struct hci_uart * hu)189 static int ath_setup(struct hci_uart *hu)
190 {
191 	BT_DBG("hu %p", hu);
192 
193 	hu->hdev->set_bdaddr = ath_set_bdaddr;
194 
195 	return 0;
196 }
197 
198 static const struct h4_recv_pkt ath_recv_pkts[] = {
199 	{ H4_RECV_ACL,   .recv = hci_recv_frame },
200 	{ H4_RECV_SCO,   .recv = hci_recv_frame },
201 	{ H4_RECV_EVENT, .recv = hci_recv_frame },
202 };
203 
ath_recv(struct hci_uart * hu,const void * data,int count)204 static int ath_recv(struct hci_uart *hu, const void *data, int count)
205 {
206 	struct ath_struct *ath = hu->priv;
207 
208 	ath->rx_skb = h4_recv_buf(hu->hdev, ath->rx_skb, data, count,
209 				  ath_recv_pkts, ARRAY_SIZE(ath_recv_pkts));
210 	if (IS_ERR(ath->rx_skb)) {
211 		int err = PTR_ERR(ath->rx_skb);
212 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
213 		ath->rx_skb = NULL;
214 		return err;
215 	}
216 
217 	return count;
218 }
219 
220 #define HCI_OP_ATH_SLEEP 0xFC04
221 
ath_enqueue(struct hci_uart * hu,struct sk_buff * skb)222 static int ath_enqueue(struct hci_uart *hu, struct sk_buff *skb)
223 {
224 	struct ath_struct *ath = hu->priv;
225 
226 	if (hci_skb_pkt_type(skb) == HCI_SCODATA_PKT) {
227 		kfree_skb(skb);
228 		return 0;
229 	}
230 
231 	/* Update power management enable flag with parameters of
232 	 * HCI sleep enable vendor specific HCI command.
233 	 */
234 	if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
235 		struct hci_command_hdr *hdr = (void *)skb->data;
236 
237 		if (__le16_to_cpu(hdr->opcode) == HCI_OP_ATH_SLEEP)
238 			ath->cur_sleep = skb->data[HCI_COMMAND_HDR_SIZE];
239 	}
240 
241 	BT_DBG("hu %p skb %p", hu, skb);
242 
243 	/* Prepend skb with frame type */
244 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
245 
246 	skb_queue_tail(&ath->txq, skb);
247 	set_bit(HCI_UART_SENDING, &hu->tx_state);
248 
249 	schedule_work(&ath->ctxtsw);
250 
251 	return 0;
252 }
253 
ath_dequeue(struct hci_uart * hu)254 static struct sk_buff *ath_dequeue(struct hci_uart *hu)
255 {
256 	struct ath_struct *ath = hu->priv;
257 
258 	return skb_dequeue(&ath->txq);
259 }
260 
261 static const struct hci_uart_proto athp = {
262 	.id		= HCI_UART_ATH3K,
263 	.name		= "ATH3K",
264 	.manufacturer	= 69,
265 	.open		= ath_open,
266 	.close		= ath_close,
267 	.flush		= ath_flush,
268 	.setup		= ath_setup,
269 	.recv		= ath_recv,
270 	.enqueue	= ath_enqueue,
271 	.dequeue	= ath_dequeue,
272 };
273 
ath_init(void)274 int __init ath_init(void)
275 {
276 	return hci_uart_register_proto(&athp);
277 }
278 
ath_deinit(void)279 int __exit ath_deinit(void)
280 {
281 	return hci_uart_unregister_proto(&athp);
282 }
283