1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 
40 #include "hci_uart.h"
41 #include "btintel.h"
42 
43 #define STATE_BOOTLOADER	0
44 #define STATE_DOWNLOADING	1
45 #define STATE_FIRMWARE_LOADED	2
46 #define STATE_FIRMWARE_FAILED	3
47 #define STATE_BOOTING		4
48 #define STATE_LPM_ENABLED	5
49 #define STATE_TX_ACTIVE		6
50 #define STATE_SUSPENDED		7
51 #define STATE_LPM_TRANSACTION	8
52 
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57 
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61 
62 #define LPM_SUSPEND_DELAY_MS 1000
63 
64 struct hci_lpm_pkt {
65 	__u8 opcode;
66 	__u8 dlen;
67 	__u8 data[0];
68 } __packed;
69 
70 struct intel_device {
71 	struct list_head list;
72 	struct platform_device *pdev;
73 	struct gpio_desc *reset;
74 	struct hci_uart *hu;
75 	struct mutex hu_lock;
76 	int irq;
77 };
78 
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81 
82 struct intel_data {
83 	struct sk_buff *rx_skb;
84 	struct sk_buff_head txq;
85 	struct work_struct busy_work;
86 	struct hci_uart *hu;
87 	unsigned long flags;
88 };
89 
intel_convert_speed(unsigned int speed)90 static u8 intel_convert_speed(unsigned int speed)
91 {
92 	switch (speed) {
93 	case 9600:
94 		return 0x00;
95 	case 19200:
96 		return 0x01;
97 	case 38400:
98 		return 0x02;
99 	case 57600:
100 		return 0x03;
101 	case 115200:
102 		return 0x04;
103 	case 230400:
104 		return 0x05;
105 	case 460800:
106 		return 0x06;
107 	case 921600:
108 		return 0x07;
109 	case 1843200:
110 		return 0x08;
111 	case 3250000:
112 		return 0x09;
113 	case 2000000:
114 		return 0x0a;
115 	case 3000000:
116 		return 0x0b;
117 	default:
118 		return 0xff;
119 	}
120 }
121 
intel_wait_booting(struct hci_uart * hu)122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124 	struct intel_data *intel = hu->priv;
125 	int err;
126 
127 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 				  TASK_INTERRUPTIBLE,
129 				  msecs_to_jiffies(1000));
130 
131 	if (err == -EINTR) {
132 		bt_dev_err(hu->hdev, "Device boot interrupted");
133 		return -EINTR;
134 	}
135 
136 	if (err) {
137 		bt_dev_err(hu->hdev, "Device boot timeout");
138 		return -ETIMEDOUT;
139 	}
140 
141 	return err;
142 }
143 
144 #ifdef CONFIG_PM
intel_wait_lpm_transaction(struct hci_uart * hu)145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147 	struct intel_data *intel = hu->priv;
148 	int err;
149 
150 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 				  TASK_INTERRUPTIBLE,
152 				  msecs_to_jiffies(1000));
153 
154 	if (err == -EINTR) {
155 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 		return -EINTR;
157 	}
158 
159 	if (err) {
160 		bt_dev_err(hu->hdev, "LPM transaction timeout");
161 		return -ETIMEDOUT;
162 	}
163 
164 	return err;
165 }
166 
intel_lpm_suspend(struct hci_uart * hu)167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 	struct intel_data *intel = hu->priv;
171 	struct sk_buff *skb;
172 
173 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 	    test_bit(STATE_SUSPENDED, &intel->flags))
175 		return 0;
176 
177 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 		return -EAGAIN;
179 
180 	bt_dev_dbg(hu->hdev, "Suspending");
181 
182 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 	if (!skb) {
184 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 		return -ENOMEM;
186 	}
187 
188 	skb_put_data(skb, suspend, sizeof(suspend));
189 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190 
191 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192 
193 	/* LPM flow is a priority, enqueue packet at list head */
194 	skb_queue_head(&intel->txq, skb);
195 	hci_uart_tx_wakeup(hu);
196 
197 	intel_wait_lpm_transaction(hu);
198 	/* Even in case of failure, continue and test the suspended flag */
199 
200 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201 
202 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 		bt_dev_err(hu->hdev, "Device suspend error");
204 		return -EINVAL;
205 	}
206 
207 	bt_dev_dbg(hu->hdev, "Suspended");
208 
209 	hci_uart_set_flow_control(hu, true);
210 
211 	return 0;
212 }
213 
intel_lpm_resume(struct hci_uart * hu)214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216 	struct intel_data *intel = hu->priv;
217 	struct sk_buff *skb;
218 
219 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 	    !test_bit(STATE_SUSPENDED, &intel->flags))
221 		return 0;
222 
223 	bt_dev_dbg(hu->hdev, "Resuming");
224 
225 	hci_uart_set_flow_control(hu, false);
226 
227 	skb = bt_skb_alloc(0, GFP_KERNEL);
228 	if (!skb) {
229 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 		return -ENOMEM;
231 	}
232 
233 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234 
235 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236 
237 	/* LPM flow is a priority, enqueue packet at list head */
238 	skb_queue_head(&intel->txq, skb);
239 	hci_uart_tx_wakeup(hu);
240 
241 	intel_wait_lpm_transaction(hu);
242 	/* Even in case of failure, continue and test the suspended flag */
243 
244 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245 
246 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 		bt_dev_err(hu->hdev, "Device resume error");
248 		return -EINVAL;
249 	}
250 
251 	bt_dev_dbg(hu->hdev, "Resumed");
252 
253 	return 0;
254 }
255 #endif /* CONFIG_PM */
256 
intel_lpm_host_wake(struct hci_uart * hu)257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 	struct intel_data *intel = hu->priv;
261 	struct sk_buff *skb;
262 
263 	hci_uart_set_flow_control(hu, false);
264 
265 	clear_bit(STATE_SUSPENDED, &intel->flags);
266 
267 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 	if (!skb) {
269 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 		return -ENOMEM;
271 	}
272 
273 	skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
274 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
275 
276 	/* LPM flow is a priority, enqueue packet at list head */
277 	skb_queue_head(&intel->txq, skb);
278 	hci_uart_tx_wakeup(hu);
279 
280 	bt_dev_dbg(hu->hdev, "Resumed by controller");
281 
282 	return 0;
283 }
284 
intel_irq(int irq,void * dev_id)285 static irqreturn_t intel_irq(int irq, void *dev_id)
286 {
287 	struct intel_device *idev = dev_id;
288 
289 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
290 
291 	mutex_lock(&idev->hu_lock);
292 	if (idev->hu)
293 		intel_lpm_host_wake(idev->hu);
294 	mutex_unlock(&idev->hu_lock);
295 
296 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
297 	pm_runtime_get(&idev->pdev->dev);
298 	pm_runtime_mark_last_busy(&idev->pdev->dev);
299 	pm_runtime_put_autosuspend(&idev->pdev->dev);
300 
301 	return IRQ_HANDLED;
302 }
303 
intel_set_power(struct hci_uart * hu,bool powered)304 static int intel_set_power(struct hci_uart *hu, bool powered)
305 {
306 	struct list_head *p;
307 	int err = -ENODEV;
308 
309 	if (!hu->tty->dev)
310 		return err;
311 
312 	mutex_lock(&intel_device_list_lock);
313 
314 	list_for_each(p, &intel_device_list) {
315 		struct intel_device *idev = list_entry(p, struct intel_device,
316 						       list);
317 
318 		/* tty device and pdev device should share the same parent
319 		 * which is the UART port.
320 		 */
321 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
322 			continue;
323 
324 		if (!idev->reset) {
325 			err = -ENOTSUPP;
326 			break;
327 		}
328 
329 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
330 			hu, dev_name(&idev->pdev->dev), powered);
331 
332 		gpiod_set_value(idev->reset, powered);
333 
334 		/* Provide to idev a hu reference which is used to run LPM
335 		 * transactions (lpm suspend/resume) from PM callbacks.
336 		 * hu needs to be protected against concurrent removing during
337 		 * these PM ops.
338 		 */
339 		mutex_lock(&idev->hu_lock);
340 		idev->hu = powered ? hu : NULL;
341 		mutex_unlock(&idev->hu_lock);
342 
343 		if (idev->irq < 0)
344 			break;
345 
346 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
347 			err = devm_request_threaded_irq(&idev->pdev->dev,
348 							idev->irq, NULL,
349 							intel_irq,
350 							IRQF_ONESHOT,
351 							"bt-host-wake", idev);
352 			if (err) {
353 				BT_ERR("hu %p, unable to allocate irq-%d",
354 				       hu, idev->irq);
355 				break;
356 			}
357 
358 			device_wakeup_enable(&idev->pdev->dev);
359 
360 			pm_runtime_set_active(&idev->pdev->dev);
361 			pm_runtime_use_autosuspend(&idev->pdev->dev);
362 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
363 							 LPM_SUSPEND_DELAY_MS);
364 			pm_runtime_enable(&idev->pdev->dev);
365 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
366 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
367 			device_wakeup_disable(&idev->pdev->dev);
368 
369 			pm_runtime_disable(&idev->pdev->dev);
370 		}
371 	}
372 
373 	mutex_unlock(&intel_device_list_lock);
374 
375 	return err;
376 }
377 
intel_busy_work(struct work_struct * work)378 static void intel_busy_work(struct work_struct *work)
379 {
380 	struct list_head *p;
381 	struct intel_data *intel = container_of(work, struct intel_data,
382 						busy_work);
383 
384 	if (!intel->hu->tty->dev)
385 		return;
386 
387 	/* Link is busy, delay the suspend */
388 	mutex_lock(&intel_device_list_lock);
389 	list_for_each(p, &intel_device_list) {
390 		struct intel_device *idev = list_entry(p, struct intel_device,
391 						       list);
392 
393 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
394 			pm_runtime_get(&idev->pdev->dev);
395 			pm_runtime_mark_last_busy(&idev->pdev->dev);
396 			pm_runtime_put_autosuspend(&idev->pdev->dev);
397 			break;
398 		}
399 	}
400 	mutex_unlock(&intel_device_list_lock);
401 }
402 
intel_open(struct hci_uart * hu)403 static int intel_open(struct hci_uart *hu)
404 {
405 	struct intel_data *intel;
406 
407 	BT_DBG("hu %p", hu);
408 
409 	if (!hci_uart_has_flow_control(hu))
410 		return -EOPNOTSUPP;
411 
412 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
413 	if (!intel)
414 		return -ENOMEM;
415 
416 	skb_queue_head_init(&intel->txq);
417 	INIT_WORK(&intel->busy_work, intel_busy_work);
418 
419 	intel->hu = hu;
420 
421 	hu->priv = intel;
422 
423 	if (!intel_set_power(hu, true))
424 		set_bit(STATE_BOOTING, &intel->flags);
425 
426 	return 0;
427 }
428 
intel_close(struct hci_uart * hu)429 static int intel_close(struct hci_uart *hu)
430 {
431 	struct intel_data *intel = hu->priv;
432 
433 	BT_DBG("hu %p", hu);
434 
435 	cancel_work_sync(&intel->busy_work);
436 
437 	intel_set_power(hu, false);
438 
439 	skb_queue_purge(&intel->txq);
440 	kfree_skb(intel->rx_skb);
441 	kfree(intel);
442 
443 	hu->priv = NULL;
444 	return 0;
445 }
446 
intel_flush(struct hci_uart * hu)447 static int intel_flush(struct hci_uart *hu)
448 {
449 	struct intel_data *intel = hu->priv;
450 
451 	BT_DBG("hu %p", hu);
452 
453 	skb_queue_purge(&intel->txq);
454 
455 	return 0;
456 }
457 
inject_cmd_complete(struct hci_dev * hdev,__u16 opcode)458 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
459 {
460 	struct sk_buff *skb;
461 	struct hci_event_hdr *hdr;
462 	struct hci_ev_cmd_complete *evt;
463 
464 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
465 	if (!skb)
466 		return -ENOMEM;
467 
468 	hdr = skb_put(skb, sizeof(*hdr));
469 	hdr->evt = HCI_EV_CMD_COMPLETE;
470 	hdr->plen = sizeof(*evt) + 1;
471 
472 	evt = skb_put(skb, sizeof(*evt));
473 	evt->ncmd = 0x01;
474 	evt->opcode = cpu_to_le16(opcode);
475 
476 	skb_put_u8(skb, 0x00);
477 
478 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
479 
480 	return hci_recv_frame(hdev, skb);
481 }
482 
intel_set_baudrate(struct hci_uart * hu,unsigned int speed)483 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
484 {
485 	struct intel_data *intel = hu->priv;
486 	struct hci_dev *hdev = hu->hdev;
487 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
488 	struct sk_buff *skb;
489 	int err;
490 
491 	/* This can be the first command sent to the chip, check
492 	 * that the controller is ready.
493 	 */
494 	err = intel_wait_booting(hu);
495 
496 	clear_bit(STATE_BOOTING, &intel->flags);
497 
498 	/* In case of timeout, try to continue anyway */
499 	if (err && err != -ETIMEDOUT)
500 		return err;
501 
502 	bt_dev_info(hdev, "Change controller speed to %d", speed);
503 
504 	speed_cmd[3] = intel_convert_speed(speed);
505 	if (speed_cmd[3] == 0xff) {
506 		bt_dev_err(hdev, "Unsupported speed");
507 		return -EINVAL;
508 	}
509 
510 	/* Device will not accept speed change if Intel version has not been
511 	 * previously requested.
512 	 */
513 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
514 	if (IS_ERR(skb)) {
515 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
516 			   PTR_ERR(skb));
517 		return PTR_ERR(skb);
518 	}
519 	kfree_skb(skb);
520 
521 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
522 	if (!skb) {
523 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
524 		return -ENOMEM;
525 	}
526 
527 	skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
528 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
529 
530 	hci_uart_set_flow_control(hu, true);
531 
532 	skb_queue_tail(&intel->txq, skb);
533 	hci_uart_tx_wakeup(hu);
534 
535 	/* wait 100ms to change baudrate on controller side */
536 	msleep(100);
537 
538 	hci_uart_set_baudrate(hu, speed);
539 	hci_uart_set_flow_control(hu, false);
540 
541 	return 0;
542 }
543 
intel_setup(struct hci_uart * hu)544 static int intel_setup(struct hci_uart *hu)
545 {
546 	struct intel_data *intel = hu->priv;
547 	struct hci_dev *hdev = hu->hdev;
548 	struct sk_buff *skb;
549 	struct intel_version ver;
550 	struct intel_boot_params params;
551 	struct list_head *p;
552 	const struct firmware *fw;
553 	char fwname[64];
554 	u32 boot_param;
555 	ktime_t calltime, delta, rettime;
556 	unsigned long long duration;
557 	unsigned int init_speed, oper_speed;
558 	int speed_change = 0;
559 	int err;
560 
561 	bt_dev_dbg(hdev, "start intel_setup");
562 
563 	hu->hdev->set_diag = btintel_set_diag;
564 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
565 
566 	/* Set the default boot parameter to 0x0 and it is updated to
567 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
568 	 * command while downloading the firmware.
569 	 */
570 	boot_param = 0x00000000;
571 
572 	calltime = ktime_get();
573 
574 	if (hu->init_speed)
575 		init_speed = hu->init_speed;
576 	else
577 		init_speed = hu->proto->init_speed;
578 
579 	if (hu->oper_speed)
580 		oper_speed = hu->oper_speed;
581 	else
582 		oper_speed = hu->proto->oper_speed;
583 
584 	if (oper_speed && init_speed && oper_speed != init_speed)
585 		speed_change = 1;
586 
587 	/* Check that the controller is ready */
588 	err = intel_wait_booting(hu);
589 
590 	clear_bit(STATE_BOOTING, &intel->flags);
591 
592 	/* In case of timeout, try to continue anyway */
593 	if (err && err != -ETIMEDOUT)
594 		return err;
595 
596 	set_bit(STATE_BOOTLOADER, &intel->flags);
597 
598 	/* Read the Intel version information to determine if the device
599 	 * is in bootloader mode or if it already has operational firmware
600 	 * loaded.
601 	 */
602 	 err = btintel_read_version(hdev, &ver);
603 	 if (err)
604 		return err;
605 
606 	/* The hardware platform number has a fixed value of 0x37 and
607 	 * for now only accept this single value.
608 	 */
609 	if (ver.hw_platform != 0x37) {
610 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
611 			   ver.hw_platform);
612 		return -EINVAL;
613 	}
614 
615         /* Check for supported iBT hardware variants of this firmware
616          * loading method.
617          *
618          * This check has been put in place to ensure correct forward
619          * compatibility options when newer hardware variants come along.
620          */
621 	switch (ver.hw_variant) {
622 	case 0x0b:	/* LnP */
623 	case 0x0c:	/* WsP */
624 	case 0x12:	/* ThP */
625 		break;
626 	default:
627 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
628 			   ver.hw_variant);
629 		return -EINVAL;
630 	}
631 
632 	btintel_version_info(hdev, &ver);
633 
634 	/* The firmware variant determines if the device is in bootloader
635 	 * mode or is running operational firmware. The value 0x06 identifies
636 	 * the bootloader and the value 0x23 identifies the operational
637 	 * firmware.
638 	 *
639 	 * When the operational firmware is already present, then only
640 	 * the check for valid Bluetooth device address is needed. This
641 	 * determines if the device will be added as configured or
642 	 * unconfigured controller.
643 	 *
644 	 * It is not possible to use the Secure Boot Parameters in this
645 	 * case since that command is only available in bootloader mode.
646 	 */
647 	if (ver.fw_variant == 0x23) {
648 		clear_bit(STATE_BOOTLOADER, &intel->flags);
649 		btintel_check_bdaddr(hdev);
650 		return 0;
651 	}
652 
653 	/* If the device is not in bootloader mode, then the only possible
654 	 * choice is to return an error and abort the device initialization.
655 	 */
656 	if (ver.fw_variant != 0x06) {
657 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
658 			   ver.fw_variant);
659 		return -ENODEV;
660 	}
661 
662 	/* Read the secure boot parameters to identify the operating
663 	 * details of the bootloader.
664 	 */
665 	err = btintel_read_boot_params(hdev, &params);
666 	if (err)
667 		return err;
668 
669 	/* It is required that every single firmware fragment is acknowledged
670 	 * with a command complete event. If the boot parameters indicate
671 	 * that this bootloader does not send them, then abort the setup.
672 	 */
673 	if (params.limited_cce != 0x00) {
674 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
675 			   params.limited_cce);
676 		return -EINVAL;
677 	}
678 
679 	/* If the OTP has no valid Bluetooth device address, then there will
680 	 * also be no valid address for the operational firmware.
681 	 */
682 	if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
683 		bt_dev_info(hdev, "No device address configured");
684 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
685 	}
686 
687 	/* With this Intel bootloader only the hardware variant and device
688 	 * revision information are used to select the right firmware for SfP
689 	 * and WsP.
690 	 *
691 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
692 	 *
693 	 * Currently the supported hardware variants are:
694 	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
695 	 *   12 (0x0c) for iBT 3.5 (WsP)
696 	 *
697 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
698 	 * variant, HW revision and FW revision, as these are dependent on CNVi
699 	 * and RF Combination.
700 	 *
701 	 *   18 (0x12) for iBT3.5 (ThP/JfP)
702 	 *
703 	 * The firmware file name for these will be
704 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
705 	 *
706 	 */
707 	switch (ver.hw_variant) {
708 	case 0x0b:      /* SfP */
709 	case 0x0c:      /* WsP */
710 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
711 			 le16_to_cpu(ver.hw_variant),
712 			 le16_to_cpu(params.dev_revid));
713 		break;
714 	case 0x12:      /* ThP */
715 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
716 			 le16_to_cpu(ver.hw_variant),
717 			 le16_to_cpu(ver.hw_revision),
718 			 le16_to_cpu(ver.fw_revision));
719 		break;
720 	default:
721 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
722 			   ver.hw_variant);
723 		return -EINVAL;
724 	}
725 
726 	err = request_firmware(&fw, fwname, &hdev->dev);
727 	if (err < 0) {
728 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
729 			   err);
730 		return err;
731 	}
732 
733 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
734 
735 	/* Save the DDC file name for later */
736 	switch (ver.hw_variant) {
737 	case 0x0b:      /* SfP */
738 	case 0x0c:      /* WsP */
739 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
740 			 le16_to_cpu(ver.hw_variant),
741 			 le16_to_cpu(params.dev_revid));
742 		break;
743 	case 0x12:      /* ThP */
744 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
745 			 le16_to_cpu(ver.hw_variant),
746 			 le16_to_cpu(ver.hw_revision),
747 			 le16_to_cpu(ver.fw_revision));
748 		break;
749 	default:
750 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
751 			   ver.hw_variant);
752 		return -EINVAL;
753 	}
754 
755 	if (fw->size < 644) {
756 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
757 			   fw->size);
758 		err = -EBADF;
759 		goto done;
760 	}
761 
762 	set_bit(STATE_DOWNLOADING, &intel->flags);
763 
764 	/* Start firmware downloading and get boot parameter */
765 	err = btintel_download_firmware(hdev, fw, &boot_param);
766 	if (err < 0)
767 		goto done;
768 
769 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
770 
771 	bt_dev_info(hdev, "Waiting for firmware download to complete");
772 
773 	/* Before switching the device into operational mode and with that
774 	 * booting the loaded firmware, wait for the bootloader notification
775 	 * that all fragments have been successfully received.
776 	 *
777 	 * When the event processing receives the notification, then the
778 	 * STATE_DOWNLOADING flag will be cleared.
779 	 *
780 	 * The firmware loading should not take longer than 5 seconds
781 	 * and thus just timeout if that happens and fail the setup
782 	 * of this device.
783 	 */
784 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
785 				  TASK_INTERRUPTIBLE,
786 				  msecs_to_jiffies(5000));
787 	if (err == -EINTR) {
788 		bt_dev_err(hdev, "Firmware loading interrupted");
789 		err = -EINTR;
790 		goto done;
791 	}
792 
793 	if (err) {
794 		bt_dev_err(hdev, "Firmware loading timeout");
795 		err = -ETIMEDOUT;
796 		goto done;
797 	}
798 
799 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
800 		bt_dev_err(hdev, "Firmware loading failed");
801 		err = -ENOEXEC;
802 		goto done;
803 	}
804 
805 	rettime = ktime_get();
806 	delta = ktime_sub(rettime, calltime);
807 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
808 
809 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
810 
811 done:
812 	release_firmware(fw);
813 
814 	if (err < 0)
815 		return err;
816 
817 	/* We need to restore the default speed before Intel reset */
818 	if (speed_change) {
819 		err = intel_set_baudrate(hu, init_speed);
820 		if (err)
821 			return err;
822 	}
823 
824 	calltime = ktime_get();
825 
826 	set_bit(STATE_BOOTING, &intel->flags);
827 
828 	err = btintel_send_intel_reset(hdev, boot_param);
829 	if (err)
830 		return err;
831 
832 	/* The bootloader will not indicate when the device is ready. This
833 	 * is done by the operational firmware sending bootup notification.
834 	 *
835 	 * Booting into operational firmware should not take longer than
836 	 * 1 second. However if that happens, then just fail the setup
837 	 * since something went wrong.
838 	 */
839 	bt_dev_info(hdev, "Waiting for device to boot");
840 
841 	err = intel_wait_booting(hu);
842 	if (err)
843 		return err;
844 
845 	clear_bit(STATE_BOOTING, &intel->flags);
846 
847 	rettime = ktime_get();
848 	delta = ktime_sub(rettime, calltime);
849 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
850 
851 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
852 
853 	/* Enable LPM if matching pdev with wakeup enabled, set TX active
854 	 * until further LPM TX notification.
855 	 */
856 	mutex_lock(&intel_device_list_lock);
857 	list_for_each(p, &intel_device_list) {
858 		struct intel_device *dev = list_entry(p, struct intel_device,
859 						      list);
860 		if (!hu->tty->dev)
861 			break;
862 		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
863 			if (device_may_wakeup(&dev->pdev->dev)) {
864 				set_bit(STATE_LPM_ENABLED, &intel->flags);
865 				set_bit(STATE_TX_ACTIVE, &intel->flags);
866 			}
867 			break;
868 		}
869 	}
870 	mutex_unlock(&intel_device_list_lock);
871 
872 	/* Ignore errors, device can work without DDC parameters */
873 	btintel_load_ddc_config(hdev, fwname);
874 
875 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
876 	if (IS_ERR(skb))
877 		return PTR_ERR(skb);
878 	kfree_skb(skb);
879 
880 	if (speed_change) {
881 		err = intel_set_baudrate(hu, oper_speed);
882 		if (err)
883 			return err;
884 	}
885 
886 	bt_dev_info(hdev, "Setup complete");
887 
888 	clear_bit(STATE_BOOTLOADER, &intel->flags);
889 
890 	return 0;
891 }
892 
intel_recv_event(struct hci_dev * hdev,struct sk_buff * skb)893 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
894 {
895 	struct hci_uart *hu = hci_get_drvdata(hdev);
896 	struct intel_data *intel = hu->priv;
897 	struct hci_event_hdr *hdr;
898 
899 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
900 	    !test_bit(STATE_BOOTING, &intel->flags))
901 		goto recv;
902 
903 	hdr = (void *)skb->data;
904 
905 	/* When the firmware loading completes the device sends
906 	 * out a vendor specific event indicating the result of
907 	 * the firmware loading.
908 	 */
909 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
910 	    skb->data[2] == 0x06) {
911 		if (skb->data[3] != 0x00)
912 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
913 
914 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
915 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
916 			smp_mb__after_atomic();
917 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
918 		}
919 
920 	/* When switching to the operational firmware the device
921 	 * sends a vendor specific event indicating that the bootup
922 	 * completed.
923 	 */
924 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
925 		   skb->data[2] == 0x02) {
926 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
927 			smp_mb__after_atomic();
928 			wake_up_bit(&intel->flags, STATE_BOOTING);
929 		}
930 	}
931 recv:
932 	return hci_recv_frame(hdev, skb);
933 }
934 
intel_recv_lpm_notify(struct hci_dev * hdev,int value)935 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
936 {
937 	struct hci_uart *hu = hci_get_drvdata(hdev);
938 	struct intel_data *intel = hu->priv;
939 
940 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
941 
942 	if (value) {
943 		set_bit(STATE_TX_ACTIVE, &intel->flags);
944 		schedule_work(&intel->busy_work);
945 	} else {
946 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
947 	}
948 }
949 
intel_recv_lpm(struct hci_dev * hdev,struct sk_buff * skb)950 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
951 {
952 	struct hci_lpm_pkt *lpm = (void *)skb->data;
953 	struct hci_uart *hu = hci_get_drvdata(hdev);
954 	struct intel_data *intel = hu->priv;
955 
956 	switch (lpm->opcode) {
957 	case LPM_OP_TX_NOTIFY:
958 		if (lpm->dlen < 1) {
959 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
960 			break;
961 		}
962 		intel_recv_lpm_notify(hdev, lpm->data[0]);
963 		break;
964 	case LPM_OP_SUSPEND_ACK:
965 		set_bit(STATE_SUSPENDED, &intel->flags);
966 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
967 			smp_mb__after_atomic();
968 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
969 		}
970 		break;
971 	case LPM_OP_RESUME_ACK:
972 		clear_bit(STATE_SUSPENDED, &intel->flags);
973 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
974 			smp_mb__after_atomic();
975 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
976 		}
977 		break;
978 	default:
979 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
980 		break;
981 	}
982 
983 	kfree_skb(skb);
984 
985 	return 0;
986 }
987 
988 #define INTEL_RECV_LPM \
989 	.type = HCI_LPM_PKT, \
990 	.hlen = HCI_LPM_HDR_SIZE, \
991 	.loff = 1, \
992 	.lsize = 1, \
993 	.maxlen = HCI_LPM_MAX_SIZE
994 
995 static const struct h4_recv_pkt intel_recv_pkts[] = {
996 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
997 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
998 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
999 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1000 };
1001 
intel_recv(struct hci_uart * hu,const void * data,int count)1002 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1003 {
1004 	struct intel_data *intel = hu->priv;
1005 
1006 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1007 		return -EUNATCH;
1008 
1009 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1010 				    intel_recv_pkts,
1011 				    ARRAY_SIZE(intel_recv_pkts));
1012 	if (IS_ERR(intel->rx_skb)) {
1013 		int err = PTR_ERR(intel->rx_skb);
1014 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1015 		intel->rx_skb = NULL;
1016 		return err;
1017 	}
1018 
1019 	return count;
1020 }
1021 
intel_enqueue(struct hci_uart * hu,struct sk_buff * skb)1022 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1023 {
1024 	struct intel_data *intel = hu->priv;
1025 	struct list_head *p;
1026 
1027 	BT_DBG("hu %p skb %p", hu, skb);
1028 
1029 	if (!hu->tty->dev)
1030 		goto out_enqueue;
1031 
1032 	/* Be sure our controller is resumed and potential LPM transaction
1033 	 * completed before enqueuing any packet.
1034 	 */
1035 	mutex_lock(&intel_device_list_lock);
1036 	list_for_each(p, &intel_device_list) {
1037 		struct intel_device *idev = list_entry(p, struct intel_device,
1038 						       list);
1039 
1040 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1041 			pm_runtime_get_sync(&idev->pdev->dev);
1042 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1043 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1044 			break;
1045 		}
1046 	}
1047 	mutex_unlock(&intel_device_list_lock);
1048 out_enqueue:
1049 	skb_queue_tail(&intel->txq, skb);
1050 
1051 	return 0;
1052 }
1053 
intel_dequeue(struct hci_uart * hu)1054 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1055 {
1056 	struct intel_data *intel = hu->priv;
1057 	struct sk_buff *skb;
1058 
1059 	skb = skb_dequeue(&intel->txq);
1060 	if (!skb)
1061 		return skb;
1062 
1063 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1064 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1065 		struct hci_command_hdr *cmd = (void *)skb->data;
1066 		__u16 opcode = le16_to_cpu(cmd->opcode);
1067 
1068 		/* When the 0xfc01 command is issued to boot into
1069 		 * the operational firmware, it will actually not
1070 		 * send a command complete event. To keep the flow
1071 		 * control working inject that event here.
1072 		 */
1073 		if (opcode == 0xfc01)
1074 			inject_cmd_complete(hu->hdev, opcode);
1075 	}
1076 
1077 	/* Prepend skb with frame type */
1078 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1079 
1080 	return skb;
1081 }
1082 
1083 static const struct hci_uart_proto intel_proto = {
1084 	.id		= HCI_UART_INTEL,
1085 	.name		= "Intel",
1086 	.manufacturer	= 2,
1087 	.init_speed	= 115200,
1088 	.oper_speed	= 3000000,
1089 	.open		= intel_open,
1090 	.close		= intel_close,
1091 	.flush		= intel_flush,
1092 	.setup		= intel_setup,
1093 	.set_baudrate	= intel_set_baudrate,
1094 	.recv		= intel_recv,
1095 	.enqueue	= intel_enqueue,
1096 	.dequeue	= intel_dequeue,
1097 };
1098 
1099 #ifdef CONFIG_ACPI
1100 static const struct acpi_device_id intel_acpi_match[] = {
1101 	{ "INT33E1", 0 },
1102 	{ },
1103 };
1104 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1105 #endif
1106 
1107 #ifdef CONFIG_PM
intel_suspend_device(struct device * dev)1108 static int intel_suspend_device(struct device *dev)
1109 {
1110 	struct intel_device *idev = dev_get_drvdata(dev);
1111 
1112 	mutex_lock(&idev->hu_lock);
1113 	if (idev->hu)
1114 		intel_lpm_suspend(idev->hu);
1115 	mutex_unlock(&idev->hu_lock);
1116 
1117 	return 0;
1118 }
1119 
intel_resume_device(struct device * dev)1120 static int intel_resume_device(struct device *dev)
1121 {
1122 	struct intel_device *idev = dev_get_drvdata(dev);
1123 
1124 	mutex_lock(&idev->hu_lock);
1125 	if (idev->hu)
1126 		intel_lpm_resume(idev->hu);
1127 	mutex_unlock(&idev->hu_lock);
1128 
1129 	return 0;
1130 }
1131 #endif
1132 
1133 #ifdef CONFIG_PM_SLEEP
intel_suspend(struct device * dev)1134 static int intel_suspend(struct device *dev)
1135 {
1136 	struct intel_device *idev = dev_get_drvdata(dev);
1137 
1138 	if (device_may_wakeup(dev))
1139 		enable_irq_wake(idev->irq);
1140 
1141 	return intel_suspend_device(dev);
1142 }
1143 
intel_resume(struct device * dev)1144 static int intel_resume(struct device *dev)
1145 {
1146 	struct intel_device *idev = dev_get_drvdata(dev);
1147 
1148 	if (device_may_wakeup(dev))
1149 		disable_irq_wake(idev->irq);
1150 
1151 	return intel_resume_device(dev);
1152 }
1153 #endif
1154 
1155 static const struct dev_pm_ops intel_pm_ops = {
1156 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1157 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1158 };
1159 
1160 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1161 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1162 
1163 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1164 	{ "reset-gpios", &reset_gpios, 1 },
1165 	{ "host-wake-gpios", &host_wake_gpios, 1 },
1166 	{ },
1167 };
1168 
intel_probe(struct platform_device * pdev)1169 static int intel_probe(struct platform_device *pdev)
1170 {
1171 	struct intel_device *idev;
1172 	int ret;
1173 
1174 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1175 	if (!idev)
1176 		return -ENOMEM;
1177 
1178 	mutex_init(&idev->hu_lock);
1179 
1180 	idev->pdev = pdev;
1181 
1182 	ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1183 	if (ret)
1184 		dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1185 
1186 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1187 	if (IS_ERR(idev->reset)) {
1188 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1189 		return PTR_ERR(idev->reset);
1190 	}
1191 
1192 	idev->irq = platform_get_irq(pdev, 0);
1193 	if (idev->irq < 0) {
1194 		struct gpio_desc *host_wake;
1195 
1196 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1197 
1198 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1199 		if (IS_ERR(host_wake)) {
1200 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1201 			goto no_irq;
1202 		}
1203 
1204 		idev->irq = gpiod_to_irq(host_wake);
1205 		if (idev->irq < 0) {
1206 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1207 			goto no_irq;
1208 		}
1209 	}
1210 
1211 	/* Only enable wake-up/irq when controller is powered */
1212 	device_set_wakeup_capable(&pdev->dev, true);
1213 	device_wakeup_disable(&pdev->dev);
1214 
1215 no_irq:
1216 	platform_set_drvdata(pdev, idev);
1217 
1218 	/* Place this instance on the device list */
1219 	mutex_lock(&intel_device_list_lock);
1220 	list_add_tail(&idev->list, &intel_device_list);
1221 	mutex_unlock(&intel_device_list_lock);
1222 
1223 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1224 		 desc_to_gpio(idev->reset), idev->irq);
1225 
1226 	return 0;
1227 }
1228 
intel_remove(struct platform_device * pdev)1229 static int intel_remove(struct platform_device *pdev)
1230 {
1231 	struct intel_device *idev = platform_get_drvdata(pdev);
1232 
1233 	device_wakeup_disable(&pdev->dev);
1234 
1235 	mutex_lock(&intel_device_list_lock);
1236 	list_del(&idev->list);
1237 	mutex_unlock(&intel_device_list_lock);
1238 
1239 	dev_info(&pdev->dev, "unregistered.\n");
1240 
1241 	return 0;
1242 }
1243 
1244 static struct platform_driver intel_driver = {
1245 	.probe = intel_probe,
1246 	.remove = intel_remove,
1247 	.driver = {
1248 		.name = "hci_intel",
1249 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1250 		.pm = &intel_pm_ops,
1251 	},
1252 };
1253 
intel_init(void)1254 int __init intel_init(void)
1255 {
1256 	int err;
1257 
1258 	err = platform_driver_register(&intel_driver);
1259 	if (err)
1260 		return err;
1261 
1262 	return hci_uart_register_proto(&intel_proto);
1263 }
1264 
intel_deinit(void)1265 int __exit intel_deinit(void)
1266 {
1267 	platform_driver_unregister(&intel_driver);
1268 
1269 	return hci_uart_unregister_proto(&intel_proto);
1270 }
1271