1 /*
2  *	Real Time Clock interface for Linux
3  *
4  *	Copyright (C) 1996 Paul Gortmaker
5  *
6  *	This driver allows use of the real time clock (built into
7  *	nearly all computers) from user space. It exports the /dev/rtc
8  *	interface supporting various ioctl() and also the
9  *	/proc/driver/rtc pseudo-file for status information.
10  *
11  *	The ioctls can be used to set the interrupt behaviour and
12  *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13  *	interface can be used to make use of these timer interrupts,
14  *	be they interval or alarm based.
15  *
16  *	The /dev/rtc interface will block on reads until an interrupt
17  *	has been received. If a RTC interrupt has already happened,
18  *	it will output an unsigned long and then block. The output value
19  *	contains the interrupt status in the low byte and the number of
20  *	interrupts since the last read in the remaining high bytes. The
21  *	/dev/rtc interface can also be used with the select(2) call.
22  *
23  *	This program is free software; you can redistribute it and/or
24  *	modify it under the terms of the GNU General Public License
25  *	as published by the Free Software Foundation; either version
26  *	2 of the License, or (at your option) any later version.
27  *
28  *	Based on other minimal char device drivers, like Alan's
29  *	watchdog, Ted's random, etc. etc.
30  *
31  *	1.07	Paul Gortmaker.
32  *	1.08	Miquel van Smoorenburg: disallow certain things on the
33  *		DEC Alpha as the CMOS clock is also used for other things.
34  *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35  *	1.09a	Pete Zaitcev: Sun SPARC
36  *	1.09b	Jeff Garzik: Modularize, init cleanup
37  *	1.09c	Jeff Garzik: SMP cleanup
38  *	1.10	Paul Barton-Davis: add support for async I/O
39  *	1.10a	Andrea Arcangeli: Alpha updates
40  *	1.10b	Andrew Morton: SMP lock fix
41  *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42  *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43  *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44  *	1.11	Takashi Iwai: Kernel access functions
45  *			      rtc_register/rtc_unregister/rtc_control
46  *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47  *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48  *		CONFIG_HPET_EMULATE_RTC
49  *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50  *	1.12ac	Alan Cox: Allow read access to the day of week register
51  *	1.12b	David John: Remove calls to the BKL.
52  */
53 
54 #define RTC_VERSION		"1.12b"
55 
56 /*
57  *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58  *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59  *	design of the RTC, we don't want two different things trying to
60  *	get to it at once. (e.g. the periodic 11 min sync from
61  *      kernel/time/ntp.c vs. this driver.)
62  */
63 
64 #include <linux/interrupt.h>
65 #include <linux/module.h>
66 #include <linux/kernel.h>
67 #include <linux/types.h>
68 #include <linux/miscdevice.h>
69 #include <linux/ioport.h>
70 #include <linux/fcntl.h>
71 #include <linux/mc146818rtc.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/proc_fs.h>
75 #include <linux/seq_file.h>
76 #include <linux/spinlock.h>
77 #include <linux/sched/signal.h>
78 #include <linux/sysctl.h>
79 #include <linux/wait.h>
80 #include <linux/bcd.h>
81 #include <linux/delay.h>
82 #include <linux/uaccess.h>
83 #include <linux/ratelimit.h>
84 
85 #include <asm/current.h>
86 
87 #ifdef CONFIG_X86
88 #include <asm/hpet.h>
89 #endif
90 
91 #ifdef CONFIG_SPARC32
92 #include <linux/of.h>
93 #include <linux/of_device.h>
94 #include <asm/io.h>
95 
96 static unsigned long rtc_port;
97 static int rtc_irq;
98 #endif
99 
100 #ifdef	CONFIG_HPET_EMULATE_RTC
101 #undef	RTC_IRQ
102 #endif
103 
104 #ifdef RTC_IRQ
105 static int rtc_has_irq = 1;
106 #endif
107 
108 #ifndef CONFIG_HPET_EMULATE_RTC
109 #define is_hpet_enabled()			0
110 #define hpet_set_alarm_time(hrs, min, sec)	0
111 #define hpet_set_periodic_freq(arg)		0
112 #define hpet_mask_rtc_irq_bit(arg)		0
113 #define hpet_set_rtc_irq_bit(arg)		0
114 #define hpet_rtc_timer_init()			do { } while (0)
115 #define hpet_rtc_dropped_irq()			0
116 #define hpet_register_irq_handler(h)		({ 0; })
117 #define hpet_unregister_irq_handler(h)		({ 0; })
118 #ifdef RTC_IRQ
hpet_rtc_interrupt(int irq,void * dev_id)119 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
120 {
121 	return 0;
122 }
123 #endif
124 #endif
125 
126 /*
127  *	We sponge a minor off of the misc major. No need slurping
128  *	up another valuable major dev number for this. If you add
129  *	an ioctl, make sure you don't conflict with SPARC's RTC
130  *	ioctls.
131  */
132 
133 static struct fasync_struct *rtc_async_queue;
134 
135 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136 
137 #ifdef RTC_IRQ
138 static void rtc_dropped_irq(struct timer_list *unused);
139 
140 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq);
141 #endif
142 
143 static ssize_t rtc_read(struct file *file, char __user *buf,
144 			size_t count, loff_t *ppos);
145 
146 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
148 
149 #ifdef RTC_IRQ
150 static __poll_t rtc_poll(struct file *file, poll_table *wait);
151 #endif
152 
153 static void get_rtc_alm_time(struct rtc_time *alm_tm);
154 #ifdef RTC_IRQ
155 static void set_rtc_irq_bit_locked(unsigned char bit);
156 static void mask_rtc_irq_bit_locked(unsigned char bit);
157 
set_rtc_irq_bit(unsigned char bit)158 static inline void set_rtc_irq_bit(unsigned char bit)
159 {
160 	spin_lock_irq(&rtc_lock);
161 	set_rtc_irq_bit_locked(bit);
162 	spin_unlock_irq(&rtc_lock);
163 }
164 
mask_rtc_irq_bit(unsigned char bit)165 static void mask_rtc_irq_bit(unsigned char bit)
166 {
167 	spin_lock_irq(&rtc_lock);
168 	mask_rtc_irq_bit_locked(bit);
169 	spin_unlock_irq(&rtc_lock);
170 }
171 #endif
172 
173 #ifdef CONFIG_PROC_FS
174 static int rtc_proc_show(struct seq_file *seq, void *v);
175 #endif
176 
177 /*
178  *	Bits in rtc_status. (6 bits of room for future expansion)
179  */
180 
181 #define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
182 #define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
183 
184 /*
185  * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186  * protected by the spin lock rtc_lock. However, ioctl can still disable the
187  * timer in rtc_status and then with del_timer after the interrupt has read
188  * rtc_status but before mod_timer is called, which would then reenable the
189  * timer (but you would need to have an awful timing before you'd trip on it)
190  */
191 static unsigned long rtc_status;	/* bitmapped status byte.	*/
192 static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
193 static unsigned long rtc_irq_data;	/* our output to the world	*/
194 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
195 
196 /*
197  *	If this driver ever becomes modularised, it will be really nice
198  *	to make the epoch retain its value across module reload...
199  */
200 
201 static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
202 
203 static const unsigned char days_in_mo[] =
204 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
205 
206 /*
207  * Returns true if a clock update is in progress
208  */
rtc_is_updating(void)209 static inline unsigned char rtc_is_updating(void)
210 {
211 	unsigned long flags;
212 	unsigned char uip;
213 
214 	spin_lock_irqsave(&rtc_lock, flags);
215 	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
216 	spin_unlock_irqrestore(&rtc_lock, flags);
217 	return uip;
218 }
219 
220 #ifdef RTC_IRQ
221 /*
222  *	A very tiny interrupt handler. It runs with interrupts disabled,
223  *	but there is possibility of conflicting with the set_rtc_mmss()
224  *	call (the rtc irq and the timer irq can easily run at the same
225  *	time in two different CPUs). So we need to serialize
226  *	accesses to the chip with the rtc_lock spinlock that each
227  *	architecture should implement in the timer code.
228  *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
229  */
230 
rtc_interrupt(int irq,void * dev_id)231 static irqreturn_t rtc_interrupt(int irq, void *dev_id)
232 {
233 	/*
234 	 *	Can be an alarm interrupt, update complete interrupt,
235 	 *	or a periodic interrupt. We store the status in the
236 	 *	low byte and the number of interrupts received since
237 	 *	the last read in the remainder of rtc_irq_data.
238 	 */
239 
240 	spin_lock(&rtc_lock);
241 	rtc_irq_data += 0x100;
242 	rtc_irq_data &= ~0xff;
243 	if (is_hpet_enabled()) {
244 		/*
245 		 * In this case it is HPET RTC interrupt handler
246 		 * calling us, with the interrupt information
247 		 * passed as arg1, instead of irq.
248 		 */
249 		rtc_irq_data |= (unsigned long)irq & 0xF0;
250 	} else {
251 		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
252 	}
253 
254 	if (rtc_status & RTC_TIMER_ON)
255 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
256 
257 	spin_unlock(&rtc_lock);
258 
259 	wake_up_interruptible(&rtc_wait);
260 
261 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
262 
263 	return IRQ_HANDLED;
264 }
265 #endif
266 
267 /*
268  * sysctl-tuning infrastructure.
269  */
270 static struct ctl_table rtc_table[] = {
271 	{
272 		.procname	= "max-user-freq",
273 		.data		= &rtc_max_user_freq,
274 		.maxlen		= sizeof(int),
275 		.mode		= 0644,
276 		.proc_handler	= proc_dointvec,
277 	},
278 	{ }
279 };
280 
281 static struct ctl_table rtc_root[] = {
282 	{
283 		.procname	= "rtc",
284 		.mode		= 0555,
285 		.child		= rtc_table,
286 	},
287 	{ }
288 };
289 
290 static struct ctl_table dev_root[] = {
291 	{
292 		.procname	= "dev",
293 		.mode		= 0555,
294 		.child		= rtc_root,
295 	},
296 	{ }
297 };
298 
299 static struct ctl_table_header *sysctl_header;
300 
init_sysctl(void)301 static int __init init_sysctl(void)
302 {
303     sysctl_header = register_sysctl_table(dev_root);
304     return 0;
305 }
306 
cleanup_sysctl(void)307 static void __exit cleanup_sysctl(void)
308 {
309     unregister_sysctl_table(sysctl_header);
310 }
311 
312 /*
313  *	Now all the various file operations that we export.
314  */
315 
rtc_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)316 static ssize_t rtc_read(struct file *file, char __user *buf,
317 			size_t count, loff_t *ppos)
318 {
319 #ifndef RTC_IRQ
320 	return -EIO;
321 #else
322 	DECLARE_WAITQUEUE(wait, current);
323 	unsigned long data;
324 	ssize_t retval;
325 
326 	if (rtc_has_irq == 0)
327 		return -EIO;
328 
329 	/*
330 	 * Historically this function used to assume that sizeof(unsigned long)
331 	 * is the same in userspace and kernelspace.  This lead to problems
332 	 * for configurations with multiple ABIs such a the MIPS o32 and 64
333 	 * ABIs supported on the same kernel.  So now we support read of both
334 	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
335 	 * userspace ABI.
336 	 */
337 	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
338 		return -EINVAL;
339 
340 	add_wait_queue(&rtc_wait, &wait);
341 
342 	do {
343 		/* First make it right. Then make it fast. Putting this whole
344 		 * block within the parentheses of a while would be too
345 		 * confusing. And no, xchg() is not the answer. */
346 
347 		__set_current_state(TASK_INTERRUPTIBLE);
348 
349 		spin_lock_irq(&rtc_lock);
350 		data = rtc_irq_data;
351 		rtc_irq_data = 0;
352 		spin_unlock_irq(&rtc_lock);
353 
354 		if (data != 0)
355 			break;
356 
357 		if (file->f_flags & O_NONBLOCK) {
358 			retval = -EAGAIN;
359 			goto out;
360 		}
361 		if (signal_pending(current)) {
362 			retval = -ERESTARTSYS;
363 			goto out;
364 		}
365 		schedule();
366 	} while (1);
367 
368 	if (count == sizeof(unsigned int)) {
369 		retval = put_user(data,
370 				  (unsigned int __user *)buf) ?: sizeof(int);
371 	} else {
372 		retval = put_user(data,
373 				  (unsigned long __user *)buf) ?: sizeof(long);
374 	}
375 	if (!retval)
376 		retval = count;
377  out:
378 	__set_current_state(TASK_RUNNING);
379 	remove_wait_queue(&rtc_wait, &wait);
380 
381 	return retval;
382 #endif
383 }
384 
rtc_do_ioctl(unsigned int cmd,unsigned long arg,int kernel)385 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
386 {
387 	struct rtc_time wtime;
388 
389 #ifdef RTC_IRQ
390 	if (rtc_has_irq == 0) {
391 		switch (cmd) {
392 		case RTC_AIE_OFF:
393 		case RTC_AIE_ON:
394 		case RTC_PIE_OFF:
395 		case RTC_PIE_ON:
396 		case RTC_UIE_OFF:
397 		case RTC_UIE_ON:
398 		case RTC_IRQP_READ:
399 		case RTC_IRQP_SET:
400 			return -EINVAL;
401 		}
402 	}
403 #endif
404 
405 	switch (cmd) {
406 #ifdef RTC_IRQ
407 	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
408 	{
409 		mask_rtc_irq_bit(RTC_AIE);
410 		return 0;
411 	}
412 	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
413 	{
414 		set_rtc_irq_bit(RTC_AIE);
415 		return 0;
416 	}
417 	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
418 	{
419 		/* can be called from isr via rtc_control() */
420 		unsigned long flags;
421 
422 		spin_lock_irqsave(&rtc_lock, flags);
423 		mask_rtc_irq_bit_locked(RTC_PIE);
424 		if (rtc_status & RTC_TIMER_ON) {
425 			rtc_status &= ~RTC_TIMER_ON;
426 			del_timer(&rtc_irq_timer);
427 		}
428 		spin_unlock_irqrestore(&rtc_lock, flags);
429 
430 		return 0;
431 	}
432 	case RTC_PIE_ON:	/* Allow periodic ints		*/
433 	{
434 		/* can be called from isr via rtc_control() */
435 		unsigned long flags;
436 
437 		/*
438 		 * We don't really want Joe User enabling more
439 		 * than 64Hz of interrupts on a multi-user machine.
440 		 */
441 		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
442 						(!capable(CAP_SYS_RESOURCE)))
443 			return -EACCES;
444 
445 		spin_lock_irqsave(&rtc_lock, flags);
446 		if (!(rtc_status & RTC_TIMER_ON)) {
447 			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
448 					2*HZ/100);
449 			rtc_status |= RTC_TIMER_ON;
450 		}
451 		set_rtc_irq_bit_locked(RTC_PIE);
452 		spin_unlock_irqrestore(&rtc_lock, flags);
453 
454 		return 0;
455 	}
456 	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
457 	{
458 		mask_rtc_irq_bit(RTC_UIE);
459 		return 0;
460 	}
461 	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
462 	{
463 		set_rtc_irq_bit(RTC_UIE);
464 		return 0;
465 	}
466 #endif
467 	case RTC_ALM_READ:	/* Read the present alarm time */
468 	{
469 		/*
470 		 * This returns a struct rtc_time. Reading >= 0xc0
471 		 * means "don't care" or "match all". Only the tm_hour,
472 		 * tm_min, and tm_sec values are filled in.
473 		 */
474 		memset(&wtime, 0, sizeof(struct rtc_time));
475 		get_rtc_alm_time(&wtime);
476 		break;
477 	}
478 	case RTC_ALM_SET:	/* Store a time into the alarm */
479 	{
480 		/*
481 		 * This expects a struct rtc_time. Writing 0xff means
482 		 * "don't care" or "match all". Only the tm_hour,
483 		 * tm_min and tm_sec are used.
484 		 */
485 		unsigned char hrs, min, sec;
486 		struct rtc_time alm_tm;
487 
488 		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
489 				   sizeof(struct rtc_time)))
490 			return -EFAULT;
491 
492 		hrs = alm_tm.tm_hour;
493 		min = alm_tm.tm_min;
494 		sec = alm_tm.tm_sec;
495 
496 		spin_lock_irq(&rtc_lock);
497 		if (hpet_set_alarm_time(hrs, min, sec)) {
498 			/*
499 			 * Fallthru and set alarm time in CMOS too,
500 			 * so that we will get proper value in RTC_ALM_READ
501 			 */
502 		}
503 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
504 							RTC_ALWAYS_BCD) {
505 			if (sec < 60)
506 				sec = bin2bcd(sec);
507 			else
508 				sec = 0xff;
509 
510 			if (min < 60)
511 				min = bin2bcd(min);
512 			else
513 				min = 0xff;
514 
515 			if (hrs < 24)
516 				hrs = bin2bcd(hrs);
517 			else
518 				hrs = 0xff;
519 		}
520 		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
521 		CMOS_WRITE(min, RTC_MINUTES_ALARM);
522 		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
523 		spin_unlock_irq(&rtc_lock);
524 
525 		return 0;
526 	}
527 	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
528 	{
529 		memset(&wtime, 0, sizeof(struct rtc_time));
530 		rtc_get_rtc_time(&wtime);
531 		break;
532 	}
533 	case RTC_SET_TIME:	/* Set the RTC */
534 	{
535 		struct rtc_time rtc_tm;
536 		unsigned char mon, day, hrs, min, sec, leap_yr;
537 		unsigned char save_control, save_freq_select;
538 		unsigned int yrs;
539 #ifdef CONFIG_MACH_DECSTATION
540 		unsigned int real_yrs;
541 #endif
542 
543 		if (!capable(CAP_SYS_TIME))
544 			return -EACCES;
545 
546 		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
547 				   sizeof(struct rtc_time)))
548 			return -EFAULT;
549 
550 		yrs = rtc_tm.tm_year + 1900;
551 		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
552 		day = rtc_tm.tm_mday;
553 		hrs = rtc_tm.tm_hour;
554 		min = rtc_tm.tm_min;
555 		sec = rtc_tm.tm_sec;
556 
557 		if (yrs < 1970)
558 			return -EINVAL;
559 
560 		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
561 
562 		if ((mon > 12) || (day == 0))
563 			return -EINVAL;
564 
565 		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
566 			return -EINVAL;
567 
568 		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
569 			return -EINVAL;
570 
571 		yrs -= epoch;
572 		if (yrs > 255)		/* They are unsigned */
573 			return -EINVAL;
574 
575 		spin_lock_irq(&rtc_lock);
576 #ifdef CONFIG_MACH_DECSTATION
577 		real_yrs = yrs;
578 		yrs = 72;
579 
580 		/*
581 		 * We want to keep the year set to 73 until March
582 		 * for non-leap years, so that Feb, 29th is handled
583 		 * correctly.
584 		 */
585 		if (!leap_yr && mon < 3) {
586 			real_yrs--;
587 			yrs = 73;
588 		}
589 #endif
590 		/* These limits and adjustments are independent of
591 		 * whether the chip is in binary mode or not.
592 		 */
593 		if (yrs > 169) {
594 			spin_unlock_irq(&rtc_lock);
595 			return -EINVAL;
596 		}
597 		if (yrs >= 100)
598 			yrs -= 100;
599 
600 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
601 		    || RTC_ALWAYS_BCD) {
602 			sec = bin2bcd(sec);
603 			min = bin2bcd(min);
604 			hrs = bin2bcd(hrs);
605 			day = bin2bcd(day);
606 			mon = bin2bcd(mon);
607 			yrs = bin2bcd(yrs);
608 		}
609 
610 		save_control = CMOS_READ(RTC_CONTROL);
611 		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
612 		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
613 		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
614 
615 #ifdef CONFIG_MACH_DECSTATION
616 		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
617 #endif
618 		CMOS_WRITE(yrs, RTC_YEAR);
619 		CMOS_WRITE(mon, RTC_MONTH);
620 		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
621 		CMOS_WRITE(hrs, RTC_HOURS);
622 		CMOS_WRITE(min, RTC_MINUTES);
623 		CMOS_WRITE(sec, RTC_SECONDS);
624 
625 		CMOS_WRITE(save_control, RTC_CONTROL);
626 		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
627 
628 		spin_unlock_irq(&rtc_lock);
629 		return 0;
630 	}
631 #ifdef RTC_IRQ
632 	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
633 	{
634 		return put_user(rtc_freq, (unsigned long __user *)arg);
635 	}
636 	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
637 	{
638 		int tmp = 0;
639 		unsigned char val;
640 		/* can be called from isr via rtc_control() */
641 		unsigned long flags;
642 
643 		/*
644 		 * The max we can do is 8192Hz.
645 		 */
646 		if ((arg < 2) || (arg > 8192))
647 			return -EINVAL;
648 		/*
649 		 * We don't really want Joe User generating more
650 		 * than 64Hz of interrupts on a multi-user machine.
651 		 */
652 		if (!kernel && (arg > rtc_max_user_freq) &&
653 					!capable(CAP_SYS_RESOURCE))
654 			return -EACCES;
655 
656 		while (arg > (1<<tmp))
657 			tmp++;
658 
659 		/*
660 		 * Check that the input was really a power of 2.
661 		 */
662 		if (arg != (1<<tmp))
663 			return -EINVAL;
664 
665 		rtc_freq = arg;
666 
667 		spin_lock_irqsave(&rtc_lock, flags);
668 		if (hpet_set_periodic_freq(arg)) {
669 			spin_unlock_irqrestore(&rtc_lock, flags);
670 			return 0;
671 		}
672 
673 		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
674 		val |= (16 - tmp);
675 		CMOS_WRITE(val, RTC_FREQ_SELECT);
676 		spin_unlock_irqrestore(&rtc_lock, flags);
677 		return 0;
678 	}
679 #endif
680 	case RTC_EPOCH_READ:	/* Read the epoch.	*/
681 	{
682 		return put_user(epoch, (unsigned long __user *)arg);
683 	}
684 	case RTC_EPOCH_SET:	/* Set the epoch.	*/
685 	{
686 		/*
687 		 * There were no RTC clocks before 1900.
688 		 */
689 		if (arg < 1900)
690 			return -EINVAL;
691 
692 		if (!capable(CAP_SYS_TIME))
693 			return -EACCES;
694 
695 		epoch = arg;
696 		return 0;
697 	}
698 	default:
699 		return -ENOTTY;
700 	}
701 	return copy_to_user((void __user *)arg,
702 			    &wtime, sizeof wtime) ? -EFAULT : 0;
703 }
704 
rtc_ioctl(struct file * file,unsigned int cmd,unsigned long arg)705 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
706 {
707 	long ret;
708 	ret = rtc_do_ioctl(cmd, arg, 0);
709 	return ret;
710 }
711 
712 /*
713  *	We enforce only one user at a time here with the open/close.
714  *	Also clear the previous interrupt data on an open, and clean
715  *	up things on a close.
716  */
rtc_open(struct inode * inode,struct file * file)717 static int rtc_open(struct inode *inode, struct file *file)
718 {
719 	spin_lock_irq(&rtc_lock);
720 
721 	if (rtc_status & RTC_IS_OPEN)
722 		goto out_busy;
723 
724 	rtc_status |= RTC_IS_OPEN;
725 
726 	rtc_irq_data = 0;
727 	spin_unlock_irq(&rtc_lock);
728 	return 0;
729 
730 out_busy:
731 	spin_unlock_irq(&rtc_lock);
732 	return -EBUSY;
733 }
734 
rtc_fasync(int fd,struct file * filp,int on)735 static int rtc_fasync(int fd, struct file *filp, int on)
736 {
737 	return fasync_helper(fd, filp, on, &rtc_async_queue);
738 }
739 
rtc_release(struct inode * inode,struct file * file)740 static int rtc_release(struct inode *inode, struct file *file)
741 {
742 #ifdef RTC_IRQ
743 	unsigned char tmp;
744 
745 	if (rtc_has_irq == 0)
746 		goto no_irq;
747 
748 	/*
749 	 * Turn off all interrupts once the device is no longer
750 	 * in use, and clear the data.
751 	 */
752 
753 	spin_lock_irq(&rtc_lock);
754 	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
755 		tmp = CMOS_READ(RTC_CONTROL);
756 		tmp &=  ~RTC_PIE;
757 		tmp &=  ~RTC_AIE;
758 		tmp &=  ~RTC_UIE;
759 		CMOS_WRITE(tmp, RTC_CONTROL);
760 		CMOS_READ(RTC_INTR_FLAGS);
761 	}
762 	if (rtc_status & RTC_TIMER_ON) {
763 		rtc_status &= ~RTC_TIMER_ON;
764 		del_timer(&rtc_irq_timer);
765 	}
766 	spin_unlock_irq(&rtc_lock);
767 
768 no_irq:
769 #endif
770 
771 	spin_lock_irq(&rtc_lock);
772 	rtc_irq_data = 0;
773 	rtc_status &= ~RTC_IS_OPEN;
774 	spin_unlock_irq(&rtc_lock);
775 
776 	return 0;
777 }
778 
779 #ifdef RTC_IRQ
rtc_poll(struct file * file,poll_table * wait)780 static __poll_t rtc_poll(struct file *file, poll_table *wait)
781 {
782 	unsigned long l;
783 
784 	if (rtc_has_irq == 0)
785 		return 0;
786 
787 	poll_wait(file, &rtc_wait, wait);
788 
789 	spin_lock_irq(&rtc_lock);
790 	l = rtc_irq_data;
791 	spin_unlock_irq(&rtc_lock);
792 
793 	if (l != 0)
794 		return EPOLLIN | EPOLLRDNORM;
795 	return 0;
796 }
797 #endif
798 
799 /*
800  *	The various file operations we support.
801  */
802 
803 static const struct file_operations rtc_fops = {
804 	.owner		= THIS_MODULE,
805 	.llseek		= no_llseek,
806 	.read		= rtc_read,
807 #ifdef RTC_IRQ
808 	.poll		= rtc_poll,
809 #endif
810 	.unlocked_ioctl	= rtc_ioctl,
811 	.open		= rtc_open,
812 	.release	= rtc_release,
813 	.fasync		= rtc_fasync,
814 };
815 
816 static struct miscdevice rtc_dev = {
817 	.minor		= RTC_MINOR,
818 	.name		= "rtc",
819 	.fops		= &rtc_fops,
820 };
821 
822 static resource_size_t rtc_size;
823 
rtc_request_region(resource_size_t size)824 static struct resource * __init rtc_request_region(resource_size_t size)
825 {
826 	struct resource *r;
827 
828 	if (RTC_IOMAPPED)
829 		r = request_region(RTC_PORT(0), size, "rtc");
830 	else
831 		r = request_mem_region(RTC_PORT(0), size, "rtc");
832 
833 	if (r)
834 		rtc_size = size;
835 
836 	return r;
837 }
838 
rtc_release_region(void)839 static void rtc_release_region(void)
840 {
841 	if (RTC_IOMAPPED)
842 		release_region(RTC_PORT(0), rtc_size);
843 	else
844 		release_mem_region(RTC_PORT(0), rtc_size);
845 }
846 
rtc_init(void)847 static int __init rtc_init(void)
848 {
849 #ifdef CONFIG_PROC_FS
850 	struct proc_dir_entry *ent;
851 #endif
852 #if defined(__alpha__) || defined(__mips__)
853 	unsigned int year, ctrl;
854 	char *guess = NULL;
855 #endif
856 #ifdef CONFIG_SPARC32
857 	struct device_node *ebus_dp;
858 	struct platform_device *op;
859 #else
860 	void *r;
861 #ifdef RTC_IRQ
862 	irq_handler_t rtc_int_handler_ptr;
863 #endif
864 #endif
865 
866 #ifdef CONFIG_SPARC32
867 	for_each_node_by_name(ebus_dp, "ebus") {
868 		struct device_node *dp;
869 		for (dp = ebus_dp; dp; dp = dp->sibling) {
870 			if (!strcmp(dp->name, "rtc")) {
871 				op = of_find_device_by_node(dp);
872 				if (op) {
873 					rtc_port = op->resource[0].start;
874 					rtc_irq = op->irqs[0];
875 					goto found;
876 				}
877 			}
878 		}
879 	}
880 	rtc_has_irq = 0;
881 	printk(KERN_ERR "rtc_init: no PC rtc found\n");
882 	return -EIO;
883 
884 found:
885 	if (!rtc_irq) {
886 		rtc_has_irq = 0;
887 		goto no_irq;
888 	}
889 
890 	/*
891 	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
892 	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
893 	 */
894 	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
895 			(void *)&rtc_port)) {
896 		rtc_has_irq = 0;
897 		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
898 		return -EIO;
899 	}
900 no_irq:
901 #else
902 	r = rtc_request_region(RTC_IO_EXTENT);
903 
904 	/*
905 	 * If we've already requested a smaller range (for example, because
906 	 * PNPBIOS or ACPI told us how the device is configured), the request
907 	 * above might fail because it's too big.
908 	 *
909 	 * If so, request just the range we actually use.
910 	 */
911 	if (!r)
912 		r = rtc_request_region(RTC_IO_EXTENT_USED);
913 	if (!r) {
914 #ifdef RTC_IRQ
915 		rtc_has_irq = 0;
916 #endif
917 		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
918 		       (long)(RTC_PORT(0)));
919 		return -EIO;
920 	}
921 
922 #ifdef RTC_IRQ
923 	if (is_hpet_enabled()) {
924 		int err;
925 
926 		rtc_int_handler_ptr = hpet_rtc_interrupt;
927 		err = hpet_register_irq_handler(rtc_interrupt);
928 		if (err != 0) {
929 			printk(KERN_WARNING "hpet_register_irq_handler failed "
930 					"in rtc_init().");
931 			return err;
932 		}
933 	} else {
934 		rtc_int_handler_ptr = rtc_interrupt;
935 	}
936 
937 	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, 0, "rtc", NULL)) {
938 		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
939 		rtc_has_irq = 0;
940 		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
941 		rtc_release_region();
942 
943 		return -EIO;
944 	}
945 	hpet_rtc_timer_init();
946 
947 #endif
948 
949 #endif /* CONFIG_SPARC32 vs. others */
950 
951 	if (misc_register(&rtc_dev)) {
952 #ifdef RTC_IRQ
953 		free_irq(RTC_IRQ, NULL);
954 		hpet_unregister_irq_handler(rtc_interrupt);
955 		rtc_has_irq = 0;
956 #endif
957 		rtc_release_region();
958 		return -ENODEV;
959 	}
960 
961 #ifdef CONFIG_PROC_FS
962 	ent = proc_create_single("driver/rtc", 0, NULL, rtc_proc_show);
963 	if (!ent)
964 		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
965 #endif
966 
967 #if defined(__alpha__) || defined(__mips__)
968 	rtc_freq = HZ;
969 
970 	/* Each operating system on an Alpha uses its own epoch.
971 	   Let's try to guess which one we are using now. */
972 
973 	if (rtc_is_updating() != 0)
974 		msleep(20);
975 
976 	spin_lock_irq(&rtc_lock);
977 	year = CMOS_READ(RTC_YEAR);
978 	ctrl = CMOS_READ(RTC_CONTROL);
979 	spin_unlock_irq(&rtc_lock);
980 
981 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
982 		year = bcd2bin(year);       /* This should never happen... */
983 
984 	if (year < 20) {
985 		epoch = 2000;
986 		guess = "SRM (post-2000)";
987 	} else if (year >= 20 && year < 48) {
988 		epoch = 1980;
989 		guess = "ARC console";
990 	} else if (year >= 48 && year < 72) {
991 		epoch = 1952;
992 		guess = "Digital UNIX";
993 #if defined(__mips__)
994 	} else if (year >= 72 && year < 74) {
995 		epoch = 2000;
996 		guess = "Digital DECstation";
997 #else
998 	} else if (year >= 70) {
999 		epoch = 1900;
1000 		guess = "Standard PC (1900)";
1001 #endif
1002 	}
1003 	if (guess)
1004 		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1005 			guess, epoch);
1006 #endif
1007 #ifdef RTC_IRQ
1008 	if (rtc_has_irq == 0)
1009 		goto no_irq2;
1010 
1011 	spin_lock_irq(&rtc_lock);
1012 	rtc_freq = 1024;
1013 	if (!hpet_set_periodic_freq(rtc_freq)) {
1014 		/*
1015 		 * Initialize periodic frequency to CMOS reset default,
1016 		 * which is 1024Hz
1017 		 */
1018 		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1019 			   RTC_FREQ_SELECT);
1020 	}
1021 	spin_unlock_irq(&rtc_lock);
1022 no_irq2:
1023 #endif
1024 
1025 	(void) init_sysctl();
1026 
1027 	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1028 
1029 	return 0;
1030 }
1031 
rtc_exit(void)1032 static void __exit rtc_exit(void)
1033 {
1034 	cleanup_sysctl();
1035 	remove_proc_entry("driver/rtc", NULL);
1036 	misc_deregister(&rtc_dev);
1037 
1038 #ifdef CONFIG_SPARC32
1039 	if (rtc_has_irq)
1040 		free_irq(rtc_irq, &rtc_port);
1041 #else
1042 	rtc_release_region();
1043 #ifdef RTC_IRQ
1044 	if (rtc_has_irq) {
1045 		free_irq(RTC_IRQ, NULL);
1046 		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1047 	}
1048 #endif
1049 #endif /* CONFIG_SPARC32 */
1050 }
1051 
1052 module_init(rtc_init);
1053 module_exit(rtc_exit);
1054 
1055 #ifdef RTC_IRQ
1056 /*
1057  *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1058  *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1059  *	Since the interrupt handler doesn't get called, the IRQ status
1060  *	byte doesn't get read, and the RTC stops generating interrupts.
1061  *	A timer is set, and will call this function if/when that happens.
1062  *	To get it out of this stalled state, we just read the status.
1063  *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1064  *	(You *really* shouldn't be trying to use a non-realtime system
1065  *	for something that requires a steady > 1KHz signal anyways.)
1066  */
1067 
rtc_dropped_irq(struct timer_list * unused)1068 static void rtc_dropped_irq(struct timer_list *unused)
1069 {
1070 	unsigned long freq;
1071 
1072 	spin_lock_irq(&rtc_lock);
1073 
1074 	if (hpet_rtc_dropped_irq()) {
1075 		spin_unlock_irq(&rtc_lock);
1076 		return;
1077 	}
1078 
1079 	/* Just in case someone disabled the timer from behind our back... */
1080 	if (rtc_status & RTC_TIMER_ON)
1081 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1082 
1083 	rtc_irq_data += ((rtc_freq/HZ)<<8);
1084 	rtc_irq_data &= ~0xff;
1085 	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1086 
1087 	freq = rtc_freq;
1088 
1089 	spin_unlock_irq(&rtc_lock);
1090 
1091 	printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1092 			   freq);
1093 
1094 	/* Now we have new data */
1095 	wake_up_interruptible(&rtc_wait);
1096 
1097 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1098 }
1099 #endif
1100 
1101 #ifdef CONFIG_PROC_FS
1102 /*
1103  *	Info exported via "/proc/driver/rtc".
1104  */
1105 
rtc_proc_show(struct seq_file * seq,void * v)1106 static int rtc_proc_show(struct seq_file *seq, void *v)
1107 {
1108 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1109 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1110 	struct rtc_time tm;
1111 	unsigned char batt, ctrl;
1112 	unsigned long freq;
1113 
1114 	spin_lock_irq(&rtc_lock);
1115 	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1116 	ctrl = CMOS_READ(RTC_CONTROL);
1117 	freq = rtc_freq;
1118 	spin_unlock_irq(&rtc_lock);
1119 
1120 
1121 	rtc_get_rtc_time(&tm);
1122 
1123 	/*
1124 	 * There is no way to tell if the luser has the RTC set for local
1125 	 * time or for Universal Standard Time (GMT). Probably local though.
1126 	 */
1127 	seq_printf(seq,
1128 		   "rtc_time\t: %02d:%02d:%02d\n"
1129 		   "rtc_date\t: %04d-%02d-%02d\n"
1130 		   "rtc_epoch\t: %04lu\n",
1131 		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1132 		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1133 
1134 	get_rtc_alm_time(&tm);
1135 
1136 	/*
1137 	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1138 	 * match any value for that particular field. Values that are
1139 	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1140 	 */
1141 	seq_puts(seq, "alarm\t\t: ");
1142 	if (tm.tm_hour <= 24)
1143 		seq_printf(seq, "%02d:", tm.tm_hour);
1144 	else
1145 		seq_puts(seq, "**:");
1146 
1147 	if (tm.tm_min <= 59)
1148 		seq_printf(seq, "%02d:", tm.tm_min);
1149 	else
1150 		seq_puts(seq, "**:");
1151 
1152 	if (tm.tm_sec <= 59)
1153 		seq_printf(seq, "%02d\n", tm.tm_sec);
1154 	else
1155 		seq_puts(seq, "**\n");
1156 
1157 	seq_printf(seq,
1158 		   "DST_enable\t: %s\n"
1159 		   "BCD\t\t: %s\n"
1160 		   "24hr\t\t: %s\n"
1161 		   "square_wave\t: %s\n"
1162 		   "alarm_IRQ\t: %s\n"
1163 		   "update_IRQ\t: %s\n"
1164 		   "periodic_IRQ\t: %s\n"
1165 		   "periodic_freq\t: %ld\n"
1166 		   "batt_status\t: %s\n",
1167 		   YN(RTC_DST_EN),
1168 		   NY(RTC_DM_BINARY),
1169 		   YN(RTC_24H),
1170 		   YN(RTC_SQWE),
1171 		   YN(RTC_AIE),
1172 		   YN(RTC_UIE),
1173 		   YN(RTC_PIE),
1174 		   freq,
1175 		   batt ? "okay" : "dead");
1176 
1177 	return  0;
1178 #undef YN
1179 #undef NY
1180 }
1181 #endif
1182 
rtc_get_rtc_time(struct rtc_time * rtc_tm)1183 static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1184 {
1185 	unsigned long uip_watchdog = jiffies, flags;
1186 	unsigned char ctrl;
1187 #ifdef CONFIG_MACH_DECSTATION
1188 	unsigned int real_year;
1189 #endif
1190 
1191 	/*
1192 	 * read RTC once any update in progress is done. The update
1193 	 * can take just over 2ms. We wait 20ms. There is no need to
1194 	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1195 	 * If you need to know *exactly* when a second has started, enable
1196 	 * periodic update complete interrupts, (via ioctl) and then
1197 	 * immediately read /dev/rtc which will block until you get the IRQ.
1198 	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1199 	 */
1200 
1201 	while (rtc_is_updating() != 0 &&
1202 	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1203 		cpu_relax();
1204 
1205 	/*
1206 	 * Only the values that we read from the RTC are set. We leave
1207 	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1208 	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1209 	 * only updated by the RTC when initially set to a non-zero value.
1210 	 */
1211 	spin_lock_irqsave(&rtc_lock, flags);
1212 	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1213 	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1214 	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1215 	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1216 	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1217 	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1218 	/* Only set from 2.6.16 onwards */
1219 	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1220 
1221 #ifdef CONFIG_MACH_DECSTATION
1222 	real_year = CMOS_READ(RTC_DEC_YEAR);
1223 #endif
1224 	ctrl = CMOS_READ(RTC_CONTROL);
1225 	spin_unlock_irqrestore(&rtc_lock, flags);
1226 
1227 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1228 		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1229 		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1230 		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1231 		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1232 		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1233 		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1234 		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1235 	}
1236 
1237 #ifdef CONFIG_MACH_DECSTATION
1238 	rtc_tm->tm_year += real_year - 72;
1239 #endif
1240 
1241 	/*
1242 	 * Account for differences between how the RTC uses the values
1243 	 * and how they are defined in a struct rtc_time;
1244 	 */
1245 	rtc_tm->tm_year += epoch - 1900;
1246 	if (rtc_tm->tm_year <= 69)
1247 		rtc_tm->tm_year += 100;
1248 
1249 	rtc_tm->tm_mon--;
1250 }
1251 
get_rtc_alm_time(struct rtc_time * alm_tm)1252 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1253 {
1254 	unsigned char ctrl;
1255 
1256 	/*
1257 	 * Only the values that we read from the RTC are set. That
1258 	 * means only tm_hour, tm_min, and tm_sec.
1259 	 */
1260 	spin_lock_irq(&rtc_lock);
1261 	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1262 	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1263 	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1264 	ctrl = CMOS_READ(RTC_CONTROL);
1265 	spin_unlock_irq(&rtc_lock);
1266 
1267 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1268 		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1269 		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1270 		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1271 	}
1272 }
1273 
1274 #ifdef RTC_IRQ
1275 /*
1276  * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1277  * Rumour has it that if you frob the interrupt enable/disable
1278  * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1279  * ensure you actually start getting interrupts. Probably for
1280  * compatibility with older/broken chipset RTC implementations.
1281  * We also clear out any old irq data after an ioctl() that
1282  * meddles with the interrupt enable/disable bits.
1283  */
1284 
mask_rtc_irq_bit_locked(unsigned char bit)1285 static void mask_rtc_irq_bit_locked(unsigned char bit)
1286 {
1287 	unsigned char val;
1288 
1289 	if (hpet_mask_rtc_irq_bit(bit))
1290 		return;
1291 	val = CMOS_READ(RTC_CONTROL);
1292 	val &=  ~bit;
1293 	CMOS_WRITE(val, RTC_CONTROL);
1294 	CMOS_READ(RTC_INTR_FLAGS);
1295 
1296 	rtc_irq_data = 0;
1297 }
1298 
set_rtc_irq_bit_locked(unsigned char bit)1299 static void set_rtc_irq_bit_locked(unsigned char bit)
1300 {
1301 	unsigned char val;
1302 
1303 	if (hpet_set_rtc_irq_bit(bit))
1304 		return;
1305 	val = CMOS_READ(RTC_CONTROL);
1306 	val |= bit;
1307 	CMOS_WRITE(val, RTC_CONTROL);
1308 	CMOS_READ(RTC_INTR_FLAGS);
1309 
1310 	rtc_irq_data = 0;
1311 }
1312 #endif
1313 
1314 MODULE_AUTHOR("Paul Gortmaker");
1315 MODULE_LICENSE("GPL");
1316 MODULE_ALIAS_MISCDEV(RTC_MINOR);
1317