1 /*
2 * Copyright 2013 Emilio López
3 *
4 * Emilio López <emilio@elopez.com.ar>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/log2.h>
26
27 #include "clk-factors.h"
28
29 static DEFINE_SPINLOCK(clk_lock);
30
31 /* Maximum number of parents our clocks have */
32 #define SUNXI_MAX_PARENTS 5
33
34 /**
35 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
36 * PLL1 rate is calculated as follows
37 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
38 * parent_rate is always 24Mhz
39 */
40
sun4i_get_pll1_factors(struct factors_request * req)41 static void sun4i_get_pll1_factors(struct factors_request *req)
42 {
43 u8 div;
44
45 /* Normalize value to a 6M multiple */
46 div = req->rate / 6000000;
47 req->rate = 6000000 * div;
48
49 /* m is always zero for pll1 */
50 req->m = 0;
51
52 /* k is 1 only on these cases */
53 if (req->rate >= 768000000 || req->rate == 42000000 ||
54 req->rate == 54000000)
55 req->k = 1;
56 else
57 req->k = 0;
58
59 /* p will be 3 for divs under 10 */
60 if (div < 10)
61 req->p = 3;
62
63 /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64 else if (div < 20 || (div < 32 && (div & 1)))
65 req->p = 2;
66
67 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
68 * of divs between 40-62 */
69 else if (div < 40 || (div < 64 && (div & 2)))
70 req->p = 1;
71
72 /* any other entries have p = 0 */
73 else
74 req->p = 0;
75
76 /* calculate a suitable n based on k and p */
77 div <<= req->p;
78 div /= (req->k + 1);
79 req->n = div / 4;
80 }
81
82 /**
83 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84 * PLL1 rate is calculated as follows
85 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86 * parent_rate should always be 24MHz
87 */
sun6i_a31_get_pll1_factors(struct factors_request * req)88 static void sun6i_a31_get_pll1_factors(struct factors_request *req)
89 {
90 /*
91 * We can operate only on MHz, this will make our life easier
92 * later.
93 */
94 u32 freq_mhz = req->rate / 1000000;
95 u32 parent_freq_mhz = req->parent_rate / 1000000;
96
97 /*
98 * Round down the frequency to the closest multiple of either
99 * 6 or 16
100 */
101 u32 round_freq_6 = rounddown(freq_mhz, 6);
102 u32 round_freq_16 = round_down(freq_mhz, 16);
103
104 if (round_freq_6 > round_freq_16)
105 freq_mhz = round_freq_6;
106 else
107 freq_mhz = round_freq_16;
108
109 req->rate = freq_mhz * 1000000;
110
111 /* If the frequency is a multiple of 32 MHz, k is always 3 */
112 if (!(freq_mhz % 32))
113 req->k = 3;
114 /* If the frequency is a multiple of 9 MHz, k is always 2 */
115 else if (!(freq_mhz % 9))
116 req->k = 2;
117 /* If the frequency is a multiple of 8 MHz, k is always 1 */
118 else if (!(freq_mhz % 8))
119 req->k = 1;
120 /* Otherwise, we don't use the k factor */
121 else
122 req->k = 0;
123
124 /*
125 * If the frequency is a multiple of 2 but not a multiple of
126 * 3, m is 3. This is the first time we use 6 here, yet we
127 * will use it on several other places.
128 * We use this number because it's the lowest frequency we can
129 * generate (with n = 0, k = 0, m = 3), so every other frequency
130 * somehow relates to this frequency.
131 */
132 if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
133 req->m = 2;
134 /*
135 * If the frequency is a multiple of 6MHz, but the factor is
136 * odd, m will be 3
137 */
138 else if ((freq_mhz / 6) & 1)
139 req->m = 3;
140 /* Otherwise, we end up with m = 1 */
141 else
142 req->m = 1;
143
144 /* Calculate n thanks to the above factors we already got */
145 req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
146 - 1;
147
148 /*
149 * If n end up being outbound, and that we can still decrease
150 * m, do it.
151 */
152 if ((req->n + 1) > 31 && (req->m + 1) > 1) {
153 req->n = (req->n + 1) / 2 - 1;
154 req->m = (req->m + 1) / 2 - 1;
155 }
156 }
157
158 /**
159 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
160 * PLL1 rate is calculated as follows
161 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
162 * parent_rate is always 24Mhz
163 */
164
sun8i_a23_get_pll1_factors(struct factors_request * req)165 static void sun8i_a23_get_pll1_factors(struct factors_request *req)
166 {
167 u8 div;
168
169 /* Normalize value to a 6M multiple */
170 div = req->rate / 6000000;
171 req->rate = 6000000 * div;
172
173 /* m is always zero for pll1 */
174 req->m = 0;
175
176 /* k is 1 only on these cases */
177 if (req->rate >= 768000000 || req->rate == 42000000 ||
178 req->rate == 54000000)
179 req->k = 1;
180 else
181 req->k = 0;
182
183 /* p will be 2 for divs under 20 and odd divs under 32 */
184 if (div < 20 || (div < 32 && (div & 1)))
185 req->p = 2;
186
187 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
188 * of divs between 40-62 */
189 else if (div < 40 || (div < 64 && (div & 2)))
190 req->p = 1;
191
192 /* any other entries have p = 0 */
193 else
194 req->p = 0;
195
196 /* calculate a suitable n based on k and p */
197 div <<= req->p;
198 div /= (req->k + 1);
199 req->n = div / 4 - 1;
200 }
201
202 /**
203 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
204 * PLL5 rate is calculated as follows
205 * rate = parent_rate * n * (k + 1)
206 * parent_rate is always 24Mhz
207 */
208
sun4i_get_pll5_factors(struct factors_request * req)209 static void sun4i_get_pll5_factors(struct factors_request *req)
210 {
211 u8 div;
212
213 /* Normalize value to a parent_rate multiple (24M) */
214 div = req->rate / req->parent_rate;
215 req->rate = req->parent_rate * div;
216
217 if (div < 31)
218 req->k = 0;
219 else if (div / 2 < 31)
220 req->k = 1;
221 else if (div / 3 < 31)
222 req->k = 2;
223 else
224 req->k = 3;
225
226 req->n = DIV_ROUND_UP(div, (req->k + 1));
227 }
228
229 /**
230 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
231 * PLL6x2 rate is calculated as follows
232 * rate = parent_rate * (n + 1) * (k + 1)
233 * parent_rate is always 24Mhz
234 */
235
sun6i_a31_get_pll6_factors(struct factors_request * req)236 static void sun6i_a31_get_pll6_factors(struct factors_request *req)
237 {
238 u8 div;
239
240 /* Normalize value to a parent_rate multiple (24M) */
241 div = req->rate / req->parent_rate;
242 req->rate = req->parent_rate * div;
243
244 req->k = div / 32;
245 if (req->k > 3)
246 req->k = 3;
247
248 req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
249 }
250
251 /**
252 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
253 * AHB rate is calculated as follows
254 * rate = parent_rate >> p
255 */
256
sun5i_a13_get_ahb_factors(struct factors_request * req)257 static void sun5i_a13_get_ahb_factors(struct factors_request *req)
258 {
259 u32 div;
260
261 /* divide only */
262 if (req->parent_rate < req->rate)
263 req->rate = req->parent_rate;
264
265 /*
266 * user manual says valid speed is 8k ~ 276M, but tests show it
267 * can work at speeds up to 300M, just after reparenting to pll6
268 */
269 if (req->rate < 8000)
270 req->rate = 8000;
271 if (req->rate > 300000000)
272 req->rate = 300000000;
273
274 div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
275
276 /* p = 0 ~ 3 */
277 if (div > 3)
278 div = 3;
279
280 req->rate = req->parent_rate >> div;
281
282 req->p = div;
283 }
284
285 #define SUN6I_AHB1_PARENT_PLL6 3
286
287 /**
288 * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
289 * AHB rate is calculated as follows
290 * rate = parent_rate >> p
291 *
292 * if parent is pll6, then
293 * parent_rate = pll6 rate / (m + 1)
294 */
295
sun6i_get_ahb1_factors(struct factors_request * req)296 static void sun6i_get_ahb1_factors(struct factors_request *req)
297 {
298 u8 div, calcp, calcm = 1;
299
300 /*
301 * clock can only divide, so we will never be able to achieve
302 * frequencies higher than the parent frequency
303 */
304 if (req->parent_rate && req->rate > req->parent_rate)
305 req->rate = req->parent_rate;
306
307 div = DIV_ROUND_UP(req->parent_rate, req->rate);
308
309 /* calculate pre-divider if parent is pll6 */
310 if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
311 if (div < 4)
312 calcp = 0;
313 else if (div / 2 < 4)
314 calcp = 1;
315 else if (div / 4 < 4)
316 calcp = 2;
317 else
318 calcp = 3;
319
320 calcm = DIV_ROUND_UP(div, 1 << calcp);
321 } else {
322 calcp = __roundup_pow_of_two(div);
323 calcp = calcp > 3 ? 3 : calcp;
324 }
325
326 req->rate = (req->parent_rate / calcm) >> calcp;
327 req->p = calcp;
328 req->m = calcm - 1;
329 }
330
331 /**
332 * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
333 * parent index
334 */
sun6i_ahb1_recalc(struct factors_request * req)335 static void sun6i_ahb1_recalc(struct factors_request *req)
336 {
337 req->rate = req->parent_rate;
338
339 /* apply pre-divider first if parent is pll6 */
340 if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
341 req->rate /= req->m + 1;
342
343 /* clk divider */
344 req->rate >>= req->p;
345 }
346
347 /**
348 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
349 * APB1 rate is calculated as follows
350 * rate = (parent_rate >> p) / (m + 1);
351 */
352
sun4i_get_apb1_factors(struct factors_request * req)353 static void sun4i_get_apb1_factors(struct factors_request *req)
354 {
355 u8 calcm, calcp;
356 int div;
357
358 if (req->parent_rate < req->rate)
359 req->rate = req->parent_rate;
360
361 div = DIV_ROUND_UP(req->parent_rate, req->rate);
362
363 /* Invalid rate! */
364 if (div > 32)
365 return;
366
367 if (div <= 4)
368 calcp = 0;
369 else if (div <= 8)
370 calcp = 1;
371 else if (div <= 16)
372 calcp = 2;
373 else
374 calcp = 3;
375
376 calcm = (div >> calcp) - 1;
377
378 req->rate = (req->parent_rate >> calcp) / (calcm + 1);
379 req->m = calcm;
380 req->p = calcp;
381 }
382
383
384
385
386 /**
387 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
388 * CLK_OUT rate is calculated as follows
389 * rate = (parent_rate >> p) / (m + 1);
390 */
391
sun7i_a20_get_out_factors(struct factors_request * req)392 static void sun7i_a20_get_out_factors(struct factors_request *req)
393 {
394 u8 div, calcm, calcp;
395
396 /* These clocks can only divide, so we will never be able to achieve
397 * frequencies higher than the parent frequency */
398 if (req->rate > req->parent_rate)
399 req->rate = req->parent_rate;
400
401 div = DIV_ROUND_UP(req->parent_rate, req->rate);
402
403 if (div < 32)
404 calcp = 0;
405 else if (div / 2 < 32)
406 calcp = 1;
407 else if (div / 4 < 32)
408 calcp = 2;
409 else
410 calcp = 3;
411
412 calcm = DIV_ROUND_UP(div, 1 << calcp);
413
414 req->rate = (req->parent_rate >> calcp) / calcm;
415 req->m = calcm - 1;
416 req->p = calcp;
417 }
418
419 /**
420 * sunxi_factors_clk_setup() - Setup function for factor clocks
421 */
422
423 static const struct clk_factors_config sun4i_pll1_config = {
424 .nshift = 8,
425 .nwidth = 5,
426 .kshift = 4,
427 .kwidth = 2,
428 .mshift = 0,
429 .mwidth = 2,
430 .pshift = 16,
431 .pwidth = 2,
432 };
433
434 static const struct clk_factors_config sun6i_a31_pll1_config = {
435 .nshift = 8,
436 .nwidth = 5,
437 .kshift = 4,
438 .kwidth = 2,
439 .mshift = 0,
440 .mwidth = 2,
441 .n_start = 1,
442 };
443
444 static const struct clk_factors_config sun8i_a23_pll1_config = {
445 .nshift = 8,
446 .nwidth = 5,
447 .kshift = 4,
448 .kwidth = 2,
449 .mshift = 0,
450 .mwidth = 2,
451 .pshift = 16,
452 .pwidth = 2,
453 .n_start = 1,
454 };
455
456 static const struct clk_factors_config sun4i_pll5_config = {
457 .nshift = 8,
458 .nwidth = 5,
459 .kshift = 4,
460 .kwidth = 2,
461 };
462
463 static const struct clk_factors_config sun6i_a31_pll6_config = {
464 .nshift = 8,
465 .nwidth = 5,
466 .kshift = 4,
467 .kwidth = 2,
468 .n_start = 1,
469 };
470
471 static const struct clk_factors_config sun5i_a13_ahb_config = {
472 .pshift = 4,
473 .pwidth = 2,
474 };
475
476 static const struct clk_factors_config sun6i_ahb1_config = {
477 .mshift = 6,
478 .mwidth = 2,
479 .pshift = 4,
480 .pwidth = 2,
481 };
482
483 static const struct clk_factors_config sun4i_apb1_config = {
484 .mshift = 0,
485 .mwidth = 5,
486 .pshift = 16,
487 .pwidth = 2,
488 };
489
490 /* user manual says "n" but it's really "p" */
491 static const struct clk_factors_config sun7i_a20_out_config = {
492 .mshift = 8,
493 .mwidth = 5,
494 .pshift = 20,
495 .pwidth = 2,
496 };
497
498 static const struct factors_data sun4i_pll1_data __initconst = {
499 .enable = 31,
500 .table = &sun4i_pll1_config,
501 .getter = sun4i_get_pll1_factors,
502 };
503
504 static const struct factors_data sun6i_a31_pll1_data __initconst = {
505 .enable = 31,
506 .table = &sun6i_a31_pll1_config,
507 .getter = sun6i_a31_get_pll1_factors,
508 };
509
510 static const struct factors_data sun8i_a23_pll1_data __initconst = {
511 .enable = 31,
512 .table = &sun8i_a23_pll1_config,
513 .getter = sun8i_a23_get_pll1_factors,
514 };
515
516 static const struct factors_data sun7i_a20_pll4_data __initconst = {
517 .enable = 31,
518 .table = &sun4i_pll5_config,
519 .getter = sun4i_get_pll5_factors,
520 };
521
522 static const struct factors_data sun4i_pll5_data __initconst = {
523 .enable = 31,
524 .table = &sun4i_pll5_config,
525 .getter = sun4i_get_pll5_factors,
526 };
527
528 static const struct factors_data sun6i_a31_pll6_data __initconst = {
529 .enable = 31,
530 .table = &sun6i_a31_pll6_config,
531 .getter = sun6i_a31_get_pll6_factors,
532 };
533
534 static const struct factors_data sun5i_a13_ahb_data __initconst = {
535 .mux = 6,
536 .muxmask = BIT(1) | BIT(0),
537 .table = &sun5i_a13_ahb_config,
538 .getter = sun5i_a13_get_ahb_factors,
539 };
540
541 static const struct factors_data sun6i_ahb1_data __initconst = {
542 .mux = 12,
543 .muxmask = BIT(1) | BIT(0),
544 .table = &sun6i_ahb1_config,
545 .getter = sun6i_get_ahb1_factors,
546 .recalc = sun6i_ahb1_recalc,
547 };
548
549 static const struct factors_data sun4i_apb1_data __initconst = {
550 .mux = 24,
551 .muxmask = BIT(1) | BIT(0),
552 .table = &sun4i_apb1_config,
553 .getter = sun4i_get_apb1_factors,
554 };
555
556 static const struct factors_data sun7i_a20_out_data __initconst = {
557 .enable = 31,
558 .mux = 24,
559 .muxmask = BIT(1) | BIT(0),
560 .table = &sun7i_a20_out_config,
561 .getter = sun7i_a20_get_out_factors,
562 };
563
sunxi_factors_clk_setup(struct device_node * node,const struct factors_data * data)564 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
565 const struct factors_data *data)
566 {
567 void __iomem *reg;
568
569 reg = of_iomap(node, 0);
570 if (!reg) {
571 pr_err("Could not get registers for factors-clk: %s\n",
572 node->name);
573 return NULL;
574 }
575
576 return sunxi_factors_register(node, data, &clk_lock, reg);
577 }
578
sun4i_pll1_clk_setup(struct device_node * node)579 static void __init sun4i_pll1_clk_setup(struct device_node *node)
580 {
581 sunxi_factors_clk_setup(node, &sun4i_pll1_data);
582 }
583 CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
584 sun4i_pll1_clk_setup);
585
sun6i_pll1_clk_setup(struct device_node * node)586 static void __init sun6i_pll1_clk_setup(struct device_node *node)
587 {
588 sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
589 }
590 CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
591 sun6i_pll1_clk_setup);
592
sun8i_pll1_clk_setup(struct device_node * node)593 static void __init sun8i_pll1_clk_setup(struct device_node *node)
594 {
595 sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
596 }
597 CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
598 sun8i_pll1_clk_setup);
599
sun7i_pll4_clk_setup(struct device_node * node)600 static void __init sun7i_pll4_clk_setup(struct device_node *node)
601 {
602 sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
603 }
604 CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
605 sun7i_pll4_clk_setup);
606
sun5i_ahb_clk_setup(struct device_node * node)607 static void __init sun5i_ahb_clk_setup(struct device_node *node)
608 {
609 sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
610 }
611 CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
612 sun5i_ahb_clk_setup);
613
sun6i_ahb1_clk_setup(struct device_node * node)614 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
615 {
616 sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
617 }
618 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
619 sun6i_ahb1_clk_setup);
620
sun4i_apb1_clk_setup(struct device_node * node)621 static void __init sun4i_apb1_clk_setup(struct device_node *node)
622 {
623 sunxi_factors_clk_setup(node, &sun4i_apb1_data);
624 }
625 CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
626 sun4i_apb1_clk_setup);
627
sun7i_out_clk_setup(struct device_node * node)628 static void __init sun7i_out_clk_setup(struct device_node *node)
629 {
630 sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
631 }
632 CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
633 sun7i_out_clk_setup);
634
635
636 /**
637 * sunxi_mux_clk_setup() - Setup function for muxes
638 */
639
640 #define SUNXI_MUX_GATE_WIDTH 2
641
642 struct mux_data {
643 u8 shift;
644 };
645
646 static const struct mux_data sun4i_cpu_mux_data __initconst = {
647 .shift = 16,
648 };
649
650 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
651 .shift = 12,
652 };
653
654 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
655 .shift = 0,
656 };
657
sunxi_mux_clk_setup(struct device_node * node,const struct mux_data * data,unsigned long flags)658 static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
659 const struct mux_data *data,
660 unsigned long flags)
661 {
662 struct clk *clk;
663 const char *clk_name = node->name;
664 const char *parents[SUNXI_MAX_PARENTS];
665 void __iomem *reg;
666 int i;
667
668 reg = of_iomap(node, 0);
669 if (!reg) {
670 pr_err("Could not map registers for mux-clk: %pOF\n", node);
671 return NULL;
672 }
673
674 i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
675 if (of_property_read_string(node, "clock-output-names", &clk_name)) {
676 pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
677 __func__, node);
678 goto out_unmap;
679 }
680
681 clk = clk_register_mux(NULL, clk_name, parents, i,
682 CLK_SET_RATE_PARENT | flags, reg,
683 data->shift, SUNXI_MUX_GATE_WIDTH,
684 0, &clk_lock);
685
686 if (IS_ERR(clk)) {
687 pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
688 clk_name, PTR_ERR(clk));
689 goto out_unmap;
690 }
691
692 if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
693 pr_err("%s: failed to add clock provider for %s\n",
694 __func__, clk_name);
695 clk_unregister_divider(clk);
696 goto out_unmap;
697 }
698
699 return clk;
700 out_unmap:
701 iounmap(reg);
702 return NULL;
703 }
704
sun4i_cpu_clk_setup(struct device_node * node)705 static void __init sun4i_cpu_clk_setup(struct device_node *node)
706 {
707 /* Protect CPU clock */
708 sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data, CLK_IS_CRITICAL);
709 }
710 CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
711 sun4i_cpu_clk_setup);
712
sun6i_ahb1_mux_clk_setup(struct device_node * node)713 static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
714 {
715 sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data, 0);
716 }
717 CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
718 sun6i_ahb1_mux_clk_setup);
719
sun8i_ahb2_clk_setup(struct device_node * node)720 static void __init sun8i_ahb2_clk_setup(struct device_node *node)
721 {
722 sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data, 0);
723 }
724 CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
725 sun8i_ahb2_clk_setup);
726
727
728 /**
729 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
730 */
731
732 struct div_data {
733 u8 shift;
734 u8 pow;
735 u8 width;
736 const struct clk_div_table *table;
737 };
738
739 static const struct div_data sun4i_axi_data __initconst = {
740 .shift = 0,
741 .pow = 0,
742 .width = 2,
743 };
744
745 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
746 { .val = 0, .div = 1 },
747 { .val = 1, .div = 2 },
748 { .val = 2, .div = 3 },
749 { .val = 3, .div = 4 },
750 { .val = 4, .div = 4 },
751 { .val = 5, .div = 4 },
752 { .val = 6, .div = 4 },
753 { .val = 7, .div = 4 },
754 { } /* sentinel */
755 };
756
757 static const struct div_data sun8i_a23_axi_data __initconst = {
758 .width = 3,
759 .table = sun8i_a23_axi_table,
760 };
761
762 static const struct div_data sun4i_ahb_data __initconst = {
763 .shift = 4,
764 .pow = 1,
765 .width = 2,
766 };
767
768 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
769 { .val = 0, .div = 2 },
770 { .val = 1, .div = 2 },
771 { .val = 2, .div = 4 },
772 { .val = 3, .div = 8 },
773 { } /* sentinel */
774 };
775
776 static const struct div_data sun4i_apb0_data __initconst = {
777 .shift = 8,
778 .pow = 1,
779 .width = 2,
780 .table = sun4i_apb0_table,
781 };
782
sunxi_divider_clk_setup(struct device_node * node,const struct div_data * data)783 static void __init sunxi_divider_clk_setup(struct device_node *node,
784 const struct div_data *data)
785 {
786 struct clk *clk;
787 const char *clk_name = node->name;
788 const char *clk_parent;
789 void __iomem *reg;
790
791 reg = of_iomap(node, 0);
792 if (!reg) {
793 pr_err("Could not map registers for mux-clk: %pOF\n", node);
794 return;
795 }
796
797 clk_parent = of_clk_get_parent_name(node, 0);
798
799 if (of_property_read_string(node, "clock-output-names", &clk_name)) {
800 pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
801 __func__, node);
802 goto out_unmap;
803 }
804
805 clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
806 reg, data->shift, data->width,
807 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
808 data->table, &clk_lock);
809 if (IS_ERR(clk)) {
810 pr_err("%s: failed to register divider clock %s: %ld\n",
811 __func__, clk_name, PTR_ERR(clk));
812 goto out_unmap;
813 }
814
815 if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
816 pr_err("%s: failed to add clock provider for %s\n",
817 __func__, clk_name);
818 goto out_unregister;
819 }
820
821 if (clk_register_clkdev(clk, clk_name, NULL)) {
822 of_clk_del_provider(node);
823 goto out_unregister;
824 }
825
826 return;
827 out_unregister:
828 clk_unregister_divider(clk);
829
830 out_unmap:
831 iounmap(reg);
832 }
833
sun4i_ahb_clk_setup(struct device_node * node)834 static void __init sun4i_ahb_clk_setup(struct device_node *node)
835 {
836 sunxi_divider_clk_setup(node, &sun4i_ahb_data);
837 }
838 CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
839 sun4i_ahb_clk_setup);
840
sun4i_apb0_clk_setup(struct device_node * node)841 static void __init sun4i_apb0_clk_setup(struct device_node *node)
842 {
843 sunxi_divider_clk_setup(node, &sun4i_apb0_data);
844 }
845 CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
846 sun4i_apb0_clk_setup);
847
sun4i_axi_clk_setup(struct device_node * node)848 static void __init sun4i_axi_clk_setup(struct device_node *node)
849 {
850 sunxi_divider_clk_setup(node, &sun4i_axi_data);
851 }
852 CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
853 sun4i_axi_clk_setup);
854
sun8i_axi_clk_setup(struct device_node * node)855 static void __init sun8i_axi_clk_setup(struct device_node *node)
856 {
857 sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
858 }
859 CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
860 sun8i_axi_clk_setup);
861
862
863
864 /**
865 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
866 */
867
868 #define SUNXI_GATES_MAX_SIZE 64
869
870 struct gates_data {
871 DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
872 };
873
874 /**
875 * sunxi_divs_clk_setup() helper data
876 */
877
878 #define SUNXI_DIVS_MAX_QTY 4
879 #define SUNXI_DIVISOR_WIDTH 2
880
881 struct divs_data {
882 const struct factors_data *factors; /* data for the factor clock */
883 int ndivs; /* number of outputs */
884 /*
885 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
886 * self or base factor clock refers to the output from the pll
887 * itself. The remaining refer to fixed or configurable divider
888 * outputs.
889 */
890 struct {
891 u8 self; /* is it the base factor clock? (only one) */
892 u8 fixed; /* is it a fixed divisor? if not... */
893 struct clk_div_table *table; /* is it a table based divisor? */
894 u8 shift; /* otherwise it's a normal divisor with this shift */
895 u8 pow; /* is it power-of-two based? */
896 u8 gate; /* is it independently gateable? */
897 bool critical;
898 } div[SUNXI_DIVS_MAX_QTY];
899 };
900
901 static struct clk_div_table pll6_sata_tbl[] = {
902 { .val = 0, .div = 6, },
903 { .val = 1, .div = 12, },
904 { .val = 2, .div = 18, },
905 { .val = 3, .div = 24, },
906 { } /* sentinel */
907 };
908
909 static const struct divs_data pll5_divs_data __initconst = {
910 .factors = &sun4i_pll5_data,
911 .ndivs = 2,
912 .div = {
913 /* Protect PLL5_DDR */
914 { .shift = 0, .pow = 0, .critical = true }, /* M, DDR */
915 { .shift = 16, .pow = 1, }, /* P, other */
916 /* No output for the base factor clock */
917 }
918 };
919
920 static const struct divs_data pll6_divs_data __initconst = {
921 .factors = &sun4i_pll5_data,
922 .ndivs = 4,
923 .div = {
924 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
925 { .fixed = 2 }, /* P, other */
926 { .self = 1 }, /* base factor clock, 2x */
927 { .fixed = 4 }, /* pll6 / 4, used as ahb input */
928 }
929 };
930
931 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
932 .factors = &sun6i_a31_pll6_data,
933 .ndivs = 2,
934 .div = {
935 { .fixed = 2 }, /* normal output */
936 { .self = 1 }, /* base factor clock, 2x */
937 }
938 };
939
940 /**
941 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
942 *
943 * These clocks look something like this
944 * ________________________
945 * | ___divisor 1---|----> to consumer
946 * parent >--| pll___/___divisor 2---|----> to consumer
947 * | \_______________|____> to consumer
948 * |________________________|
949 */
950
sunxi_divs_clk_setup(struct device_node * node,const struct divs_data * data)951 static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
952 const struct divs_data *data)
953 {
954 struct clk_onecell_data *clk_data;
955 const char *parent;
956 const char *clk_name;
957 struct clk **clks, *pclk;
958 struct clk_hw *gate_hw, *rate_hw;
959 const struct clk_ops *rate_ops;
960 struct clk_gate *gate = NULL;
961 struct clk_fixed_factor *fix_factor;
962 struct clk_divider *divider;
963 struct factors_data factors = *data->factors;
964 char *derived_name = NULL;
965 void __iomem *reg;
966 int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
967 int flags, clkflags;
968
969 /* if number of children known, use it */
970 if (data->ndivs)
971 ndivs = data->ndivs;
972
973 /* Try to find a name for base factor clock */
974 for (i = 0; i < ndivs; i++) {
975 if (data->div[i].self) {
976 of_property_read_string_index(node, "clock-output-names",
977 i, &factors.name);
978 break;
979 }
980 }
981 /* If we don't have a .self clk use the first output-name up to '_' */
982 if (factors.name == NULL) {
983 char *endp;
984
985 of_property_read_string_index(node, "clock-output-names",
986 0, &clk_name);
987 endp = strchr(clk_name, '_');
988 if (endp) {
989 derived_name = kstrndup(clk_name, endp - clk_name,
990 GFP_KERNEL);
991 factors.name = derived_name;
992 } else {
993 factors.name = clk_name;
994 }
995 }
996
997 /* Set up factor clock that we will be dividing */
998 pclk = sunxi_factors_clk_setup(node, &factors);
999 if (!pclk)
1000 return NULL;
1001
1002 parent = __clk_get_name(pclk);
1003 kfree(derived_name);
1004
1005 reg = of_iomap(node, 0);
1006 if (!reg) {
1007 pr_err("Could not map registers for divs-clk: %pOF\n", node);
1008 return NULL;
1009 }
1010
1011 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1012 if (!clk_data)
1013 goto out_unmap;
1014
1015 clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1016 if (!clks)
1017 goto free_clkdata;
1018
1019 clk_data->clks = clks;
1020
1021 /* It's not a good idea to have automatic reparenting changing
1022 * our RAM clock! */
1023 clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1024
1025 for (i = 0; i < ndivs; i++) {
1026 if (of_property_read_string_index(node, "clock-output-names",
1027 i, &clk_name) != 0)
1028 break;
1029
1030 /* If this is the base factor clock, only update clks */
1031 if (data->div[i].self) {
1032 clk_data->clks[i] = pclk;
1033 continue;
1034 }
1035
1036 gate_hw = NULL;
1037 rate_hw = NULL;
1038 rate_ops = NULL;
1039
1040 /* If this leaf clock can be gated, create a gate */
1041 if (data->div[i].gate) {
1042 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1043 if (!gate)
1044 goto free_clks;
1045
1046 gate->reg = reg;
1047 gate->bit_idx = data->div[i].gate;
1048 gate->lock = &clk_lock;
1049
1050 gate_hw = &gate->hw;
1051 }
1052
1053 /* Leaves can be fixed or configurable divisors */
1054 if (data->div[i].fixed) {
1055 fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1056 if (!fix_factor)
1057 goto free_gate;
1058
1059 fix_factor->mult = 1;
1060 fix_factor->div = data->div[i].fixed;
1061
1062 rate_hw = &fix_factor->hw;
1063 rate_ops = &clk_fixed_factor_ops;
1064 } else {
1065 divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1066 if (!divider)
1067 goto free_gate;
1068
1069 flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1070
1071 divider->reg = reg;
1072 divider->shift = data->div[i].shift;
1073 divider->width = SUNXI_DIVISOR_WIDTH;
1074 divider->flags = flags;
1075 divider->lock = &clk_lock;
1076 divider->table = data->div[i].table;
1077
1078 rate_hw = ÷r->hw;
1079 rate_ops = &clk_divider_ops;
1080 }
1081
1082 /* Wrap the (potential) gate and the divisor on a composite
1083 * clock to unify them */
1084 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1085 NULL, NULL,
1086 rate_hw, rate_ops,
1087 gate_hw, &clk_gate_ops,
1088 clkflags |
1089 (data->div[i].critical ?
1090 CLK_IS_CRITICAL : 0));
1091
1092 WARN_ON(IS_ERR(clk_data->clks[i]));
1093 }
1094
1095 /* Adjust to the real max */
1096 clk_data->clk_num = i;
1097
1098 if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
1099 pr_err("%s: failed to add clock provider for %s\n",
1100 __func__, clk_name);
1101 goto free_gate;
1102 }
1103
1104 return clks;
1105 free_gate:
1106 kfree(gate);
1107 free_clks:
1108 kfree(clks);
1109 free_clkdata:
1110 kfree(clk_data);
1111 out_unmap:
1112 iounmap(reg);
1113 return NULL;
1114 }
1115
sun4i_pll5_clk_setup(struct device_node * node)1116 static void __init sun4i_pll5_clk_setup(struct device_node *node)
1117 {
1118 sunxi_divs_clk_setup(node, &pll5_divs_data);
1119 }
1120 CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
1121 sun4i_pll5_clk_setup);
1122
sun4i_pll6_clk_setup(struct device_node * node)1123 static void __init sun4i_pll6_clk_setup(struct device_node *node)
1124 {
1125 sunxi_divs_clk_setup(node, &pll6_divs_data);
1126 }
1127 CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
1128 sun4i_pll6_clk_setup);
1129
sun6i_pll6_clk_setup(struct device_node * node)1130 static void __init sun6i_pll6_clk_setup(struct device_node *node)
1131 {
1132 sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
1133 }
1134 CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
1135 sun6i_pll6_clk_setup);
1136
1137 /*
1138 * sun6i display
1139 *
1140 * rate = parent_rate / (m + 1);
1141 */
sun6i_display_factors(struct factors_request * req)1142 static void sun6i_display_factors(struct factors_request *req)
1143 {
1144 u8 m;
1145
1146 if (req->rate > req->parent_rate)
1147 req->rate = req->parent_rate;
1148
1149 m = DIV_ROUND_UP(req->parent_rate, req->rate);
1150
1151 req->rate = req->parent_rate / m;
1152 req->m = m - 1;
1153 }
1154
1155 static const struct clk_factors_config sun6i_display_config = {
1156 .mshift = 0,
1157 .mwidth = 4,
1158 };
1159
1160 static const struct factors_data sun6i_display_data __initconst = {
1161 .enable = 31,
1162 .mux = 24,
1163 .muxmask = BIT(2) | BIT(1) | BIT(0),
1164 .table = &sun6i_display_config,
1165 .getter = sun6i_display_factors,
1166 };
1167
sun6i_display_setup(struct device_node * node)1168 static void __init sun6i_display_setup(struct device_node *node)
1169 {
1170 sunxi_factors_clk_setup(node, &sun6i_display_data);
1171 }
1172 CLK_OF_DECLARE(sun6i_display, "allwinner,sun6i-a31-display-clk",
1173 sun6i_display_setup);
1174