1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/log2.h>
26 
27 #include "clk-factors.h"
28 
29 static DEFINE_SPINLOCK(clk_lock);
30 
31 /* Maximum number of parents our clocks have */
32 #define SUNXI_MAX_PARENTS	5
33 
34 /**
35  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
36  * PLL1 rate is calculated as follows
37  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
38  * parent_rate is always 24Mhz
39  */
40 
sun4i_get_pll1_factors(struct factors_request * req)41 static void sun4i_get_pll1_factors(struct factors_request *req)
42 {
43 	u8 div;
44 
45 	/* Normalize value to a 6M multiple */
46 	div = req->rate / 6000000;
47 	req->rate = 6000000 * div;
48 
49 	/* m is always zero for pll1 */
50 	req->m = 0;
51 
52 	/* k is 1 only on these cases */
53 	if (req->rate >= 768000000 || req->rate == 42000000 ||
54 			req->rate == 54000000)
55 		req->k = 1;
56 	else
57 		req->k = 0;
58 
59 	/* p will be 3 for divs under 10 */
60 	if (div < 10)
61 		req->p = 3;
62 
63 	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64 	else if (div < 20 || (div < 32 && (div & 1)))
65 		req->p = 2;
66 
67 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
68 	 * of divs between 40-62 */
69 	else if (div < 40 || (div < 64 && (div & 2)))
70 		req->p = 1;
71 
72 	/* any other entries have p = 0 */
73 	else
74 		req->p = 0;
75 
76 	/* calculate a suitable n based on k and p */
77 	div <<= req->p;
78 	div /= (req->k + 1);
79 	req->n = div / 4;
80 }
81 
82 /**
83  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84  * PLL1 rate is calculated as follows
85  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86  * parent_rate should always be 24MHz
87  */
sun6i_a31_get_pll1_factors(struct factors_request * req)88 static void sun6i_a31_get_pll1_factors(struct factors_request *req)
89 {
90 	/*
91 	 * We can operate only on MHz, this will make our life easier
92 	 * later.
93 	 */
94 	u32 freq_mhz = req->rate / 1000000;
95 	u32 parent_freq_mhz = req->parent_rate / 1000000;
96 
97 	/*
98 	 * Round down the frequency to the closest multiple of either
99 	 * 6 or 16
100 	 */
101 	u32 round_freq_6 = rounddown(freq_mhz, 6);
102 	u32 round_freq_16 = round_down(freq_mhz, 16);
103 
104 	if (round_freq_6 > round_freq_16)
105 		freq_mhz = round_freq_6;
106 	else
107 		freq_mhz = round_freq_16;
108 
109 	req->rate = freq_mhz * 1000000;
110 
111 	/* If the frequency is a multiple of 32 MHz, k is always 3 */
112 	if (!(freq_mhz % 32))
113 		req->k = 3;
114 	/* If the frequency is a multiple of 9 MHz, k is always 2 */
115 	else if (!(freq_mhz % 9))
116 		req->k = 2;
117 	/* If the frequency is a multiple of 8 MHz, k is always 1 */
118 	else if (!(freq_mhz % 8))
119 		req->k = 1;
120 	/* Otherwise, we don't use the k factor */
121 	else
122 		req->k = 0;
123 
124 	/*
125 	 * If the frequency is a multiple of 2 but not a multiple of
126 	 * 3, m is 3. This is the first time we use 6 here, yet we
127 	 * will use it on several other places.
128 	 * We use this number because it's the lowest frequency we can
129 	 * generate (with n = 0, k = 0, m = 3), so every other frequency
130 	 * somehow relates to this frequency.
131 	 */
132 	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
133 		req->m = 2;
134 	/*
135 	 * If the frequency is a multiple of 6MHz, but the factor is
136 	 * odd, m will be 3
137 	 */
138 	else if ((freq_mhz / 6) & 1)
139 		req->m = 3;
140 	/* Otherwise, we end up with m = 1 */
141 	else
142 		req->m = 1;
143 
144 	/* Calculate n thanks to the above factors we already got */
145 	req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
146 		 - 1;
147 
148 	/*
149 	 * If n end up being outbound, and that we can still decrease
150 	 * m, do it.
151 	 */
152 	if ((req->n + 1) > 31 && (req->m + 1) > 1) {
153 		req->n = (req->n + 1) / 2 - 1;
154 		req->m = (req->m + 1) / 2 - 1;
155 	}
156 }
157 
158 /**
159  * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
160  * PLL1 rate is calculated as follows
161  * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
162  * parent_rate is always 24Mhz
163  */
164 
sun8i_a23_get_pll1_factors(struct factors_request * req)165 static void sun8i_a23_get_pll1_factors(struct factors_request *req)
166 {
167 	u8 div;
168 
169 	/* Normalize value to a 6M multiple */
170 	div = req->rate / 6000000;
171 	req->rate = 6000000 * div;
172 
173 	/* m is always zero for pll1 */
174 	req->m = 0;
175 
176 	/* k is 1 only on these cases */
177 	if (req->rate >= 768000000 || req->rate == 42000000 ||
178 			req->rate == 54000000)
179 		req->k = 1;
180 	else
181 		req->k = 0;
182 
183 	/* p will be 2 for divs under 20 and odd divs under 32 */
184 	if (div < 20 || (div < 32 && (div & 1)))
185 		req->p = 2;
186 
187 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
188 	 * of divs between 40-62 */
189 	else if (div < 40 || (div < 64 && (div & 2)))
190 		req->p = 1;
191 
192 	/* any other entries have p = 0 */
193 	else
194 		req->p = 0;
195 
196 	/* calculate a suitable n based on k and p */
197 	div <<= req->p;
198 	div /= (req->k + 1);
199 	req->n = div / 4 - 1;
200 }
201 
202 /**
203  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
204  * PLL5 rate is calculated as follows
205  * rate = parent_rate * n * (k + 1)
206  * parent_rate is always 24Mhz
207  */
208 
sun4i_get_pll5_factors(struct factors_request * req)209 static void sun4i_get_pll5_factors(struct factors_request *req)
210 {
211 	u8 div;
212 
213 	/* Normalize value to a parent_rate multiple (24M) */
214 	div = req->rate / req->parent_rate;
215 	req->rate = req->parent_rate * div;
216 
217 	if (div < 31)
218 		req->k = 0;
219 	else if (div / 2 < 31)
220 		req->k = 1;
221 	else if (div / 3 < 31)
222 		req->k = 2;
223 	else
224 		req->k = 3;
225 
226 	req->n = DIV_ROUND_UP(div, (req->k + 1));
227 }
228 
229 /**
230  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
231  * PLL6x2 rate is calculated as follows
232  * rate = parent_rate * (n + 1) * (k + 1)
233  * parent_rate is always 24Mhz
234  */
235 
sun6i_a31_get_pll6_factors(struct factors_request * req)236 static void sun6i_a31_get_pll6_factors(struct factors_request *req)
237 {
238 	u8 div;
239 
240 	/* Normalize value to a parent_rate multiple (24M) */
241 	div = req->rate / req->parent_rate;
242 	req->rate = req->parent_rate * div;
243 
244 	req->k = div / 32;
245 	if (req->k > 3)
246 		req->k = 3;
247 
248 	req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
249 }
250 
251 /**
252  * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
253  * AHB rate is calculated as follows
254  * rate = parent_rate >> p
255  */
256 
sun5i_a13_get_ahb_factors(struct factors_request * req)257 static void sun5i_a13_get_ahb_factors(struct factors_request *req)
258 {
259 	u32 div;
260 
261 	/* divide only */
262 	if (req->parent_rate < req->rate)
263 		req->rate = req->parent_rate;
264 
265 	/*
266 	 * user manual says valid speed is 8k ~ 276M, but tests show it
267 	 * can work at speeds up to 300M, just after reparenting to pll6
268 	 */
269 	if (req->rate < 8000)
270 		req->rate = 8000;
271 	if (req->rate > 300000000)
272 		req->rate = 300000000;
273 
274 	div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
275 
276 	/* p = 0 ~ 3 */
277 	if (div > 3)
278 		div = 3;
279 
280 	req->rate = req->parent_rate >> div;
281 
282 	req->p = div;
283 }
284 
285 #define SUN6I_AHB1_PARENT_PLL6	3
286 
287 /**
288  * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
289  * AHB rate is calculated as follows
290  * rate = parent_rate >> p
291  *
292  * if parent is pll6, then
293  * parent_rate = pll6 rate / (m + 1)
294  */
295 
sun6i_get_ahb1_factors(struct factors_request * req)296 static void sun6i_get_ahb1_factors(struct factors_request *req)
297 {
298 	u8 div, calcp, calcm = 1;
299 
300 	/*
301 	 * clock can only divide, so we will never be able to achieve
302 	 * frequencies higher than the parent frequency
303 	 */
304 	if (req->parent_rate && req->rate > req->parent_rate)
305 		req->rate = req->parent_rate;
306 
307 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
308 
309 	/* calculate pre-divider if parent is pll6 */
310 	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
311 		if (div < 4)
312 			calcp = 0;
313 		else if (div / 2 < 4)
314 			calcp = 1;
315 		else if (div / 4 < 4)
316 			calcp = 2;
317 		else
318 			calcp = 3;
319 
320 		calcm = DIV_ROUND_UP(div, 1 << calcp);
321 	} else {
322 		calcp = __roundup_pow_of_two(div);
323 		calcp = calcp > 3 ? 3 : calcp;
324 	}
325 
326 	req->rate = (req->parent_rate / calcm) >> calcp;
327 	req->p = calcp;
328 	req->m = calcm - 1;
329 }
330 
331 /**
332  * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
333  *			 parent index
334  */
sun6i_ahb1_recalc(struct factors_request * req)335 static void sun6i_ahb1_recalc(struct factors_request *req)
336 {
337 	req->rate = req->parent_rate;
338 
339 	/* apply pre-divider first if parent is pll6 */
340 	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
341 		req->rate /= req->m + 1;
342 
343 	/* clk divider */
344 	req->rate >>= req->p;
345 }
346 
347 /**
348  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
349  * APB1 rate is calculated as follows
350  * rate = (parent_rate >> p) / (m + 1);
351  */
352 
sun4i_get_apb1_factors(struct factors_request * req)353 static void sun4i_get_apb1_factors(struct factors_request *req)
354 {
355 	u8 calcm, calcp;
356 	int div;
357 
358 	if (req->parent_rate < req->rate)
359 		req->rate = req->parent_rate;
360 
361 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
362 
363 	/* Invalid rate! */
364 	if (div > 32)
365 		return;
366 
367 	if (div <= 4)
368 		calcp = 0;
369 	else if (div <= 8)
370 		calcp = 1;
371 	else if (div <= 16)
372 		calcp = 2;
373 	else
374 		calcp = 3;
375 
376 	calcm = (div >> calcp) - 1;
377 
378 	req->rate = (req->parent_rate >> calcp) / (calcm + 1);
379 	req->m = calcm;
380 	req->p = calcp;
381 }
382 
383 
384 
385 
386 /**
387  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
388  * CLK_OUT rate is calculated as follows
389  * rate = (parent_rate >> p) / (m + 1);
390  */
391 
sun7i_a20_get_out_factors(struct factors_request * req)392 static void sun7i_a20_get_out_factors(struct factors_request *req)
393 {
394 	u8 div, calcm, calcp;
395 
396 	/* These clocks can only divide, so we will never be able to achieve
397 	 * frequencies higher than the parent frequency */
398 	if (req->rate > req->parent_rate)
399 		req->rate = req->parent_rate;
400 
401 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
402 
403 	if (div < 32)
404 		calcp = 0;
405 	else if (div / 2 < 32)
406 		calcp = 1;
407 	else if (div / 4 < 32)
408 		calcp = 2;
409 	else
410 		calcp = 3;
411 
412 	calcm = DIV_ROUND_UP(div, 1 << calcp);
413 
414 	req->rate = (req->parent_rate >> calcp) / calcm;
415 	req->m = calcm - 1;
416 	req->p = calcp;
417 }
418 
419 /**
420  * sunxi_factors_clk_setup() - Setup function for factor clocks
421  */
422 
423 static const struct clk_factors_config sun4i_pll1_config = {
424 	.nshift = 8,
425 	.nwidth = 5,
426 	.kshift = 4,
427 	.kwidth = 2,
428 	.mshift = 0,
429 	.mwidth = 2,
430 	.pshift = 16,
431 	.pwidth = 2,
432 };
433 
434 static const struct clk_factors_config sun6i_a31_pll1_config = {
435 	.nshift	= 8,
436 	.nwidth = 5,
437 	.kshift = 4,
438 	.kwidth = 2,
439 	.mshift = 0,
440 	.mwidth = 2,
441 	.n_start = 1,
442 };
443 
444 static const struct clk_factors_config sun8i_a23_pll1_config = {
445 	.nshift = 8,
446 	.nwidth = 5,
447 	.kshift = 4,
448 	.kwidth = 2,
449 	.mshift = 0,
450 	.mwidth = 2,
451 	.pshift = 16,
452 	.pwidth = 2,
453 	.n_start = 1,
454 };
455 
456 static const struct clk_factors_config sun4i_pll5_config = {
457 	.nshift = 8,
458 	.nwidth = 5,
459 	.kshift = 4,
460 	.kwidth = 2,
461 };
462 
463 static const struct clk_factors_config sun6i_a31_pll6_config = {
464 	.nshift	= 8,
465 	.nwidth = 5,
466 	.kshift = 4,
467 	.kwidth = 2,
468 	.n_start = 1,
469 };
470 
471 static const struct clk_factors_config sun5i_a13_ahb_config = {
472 	.pshift = 4,
473 	.pwidth = 2,
474 };
475 
476 static const struct clk_factors_config sun6i_ahb1_config = {
477 	.mshift = 6,
478 	.mwidth = 2,
479 	.pshift = 4,
480 	.pwidth = 2,
481 };
482 
483 static const struct clk_factors_config sun4i_apb1_config = {
484 	.mshift = 0,
485 	.mwidth = 5,
486 	.pshift = 16,
487 	.pwidth = 2,
488 };
489 
490 /* user manual says "n" but it's really "p" */
491 static const struct clk_factors_config sun7i_a20_out_config = {
492 	.mshift = 8,
493 	.mwidth = 5,
494 	.pshift = 20,
495 	.pwidth = 2,
496 };
497 
498 static const struct factors_data sun4i_pll1_data __initconst = {
499 	.enable = 31,
500 	.table = &sun4i_pll1_config,
501 	.getter = sun4i_get_pll1_factors,
502 };
503 
504 static const struct factors_data sun6i_a31_pll1_data __initconst = {
505 	.enable = 31,
506 	.table = &sun6i_a31_pll1_config,
507 	.getter = sun6i_a31_get_pll1_factors,
508 };
509 
510 static const struct factors_data sun8i_a23_pll1_data __initconst = {
511 	.enable = 31,
512 	.table = &sun8i_a23_pll1_config,
513 	.getter = sun8i_a23_get_pll1_factors,
514 };
515 
516 static const struct factors_data sun7i_a20_pll4_data __initconst = {
517 	.enable = 31,
518 	.table = &sun4i_pll5_config,
519 	.getter = sun4i_get_pll5_factors,
520 };
521 
522 static const struct factors_data sun4i_pll5_data __initconst = {
523 	.enable = 31,
524 	.table = &sun4i_pll5_config,
525 	.getter = sun4i_get_pll5_factors,
526 };
527 
528 static const struct factors_data sun6i_a31_pll6_data __initconst = {
529 	.enable = 31,
530 	.table = &sun6i_a31_pll6_config,
531 	.getter = sun6i_a31_get_pll6_factors,
532 };
533 
534 static const struct factors_data sun5i_a13_ahb_data __initconst = {
535 	.mux = 6,
536 	.muxmask = BIT(1) | BIT(0),
537 	.table = &sun5i_a13_ahb_config,
538 	.getter = sun5i_a13_get_ahb_factors,
539 };
540 
541 static const struct factors_data sun6i_ahb1_data __initconst = {
542 	.mux = 12,
543 	.muxmask = BIT(1) | BIT(0),
544 	.table = &sun6i_ahb1_config,
545 	.getter = sun6i_get_ahb1_factors,
546 	.recalc = sun6i_ahb1_recalc,
547 };
548 
549 static const struct factors_data sun4i_apb1_data __initconst = {
550 	.mux = 24,
551 	.muxmask = BIT(1) | BIT(0),
552 	.table = &sun4i_apb1_config,
553 	.getter = sun4i_get_apb1_factors,
554 };
555 
556 static const struct factors_data sun7i_a20_out_data __initconst = {
557 	.enable = 31,
558 	.mux = 24,
559 	.muxmask = BIT(1) | BIT(0),
560 	.table = &sun7i_a20_out_config,
561 	.getter = sun7i_a20_get_out_factors,
562 };
563 
sunxi_factors_clk_setup(struct device_node * node,const struct factors_data * data)564 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
565 						   const struct factors_data *data)
566 {
567 	void __iomem *reg;
568 
569 	reg = of_iomap(node, 0);
570 	if (!reg) {
571 		pr_err("Could not get registers for factors-clk: %s\n",
572 		       node->name);
573 		return NULL;
574 	}
575 
576 	return sunxi_factors_register(node, data, &clk_lock, reg);
577 }
578 
sun4i_pll1_clk_setup(struct device_node * node)579 static void __init sun4i_pll1_clk_setup(struct device_node *node)
580 {
581 	sunxi_factors_clk_setup(node, &sun4i_pll1_data);
582 }
583 CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
584 	       sun4i_pll1_clk_setup);
585 
sun6i_pll1_clk_setup(struct device_node * node)586 static void __init sun6i_pll1_clk_setup(struct device_node *node)
587 {
588 	sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
589 }
590 CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
591 	       sun6i_pll1_clk_setup);
592 
sun8i_pll1_clk_setup(struct device_node * node)593 static void __init sun8i_pll1_clk_setup(struct device_node *node)
594 {
595 	sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
596 }
597 CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
598 	       sun8i_pll1_clk_setup);
599 
sun7i_pll4_clk_setup(struct device_node * node)600 static void __init sun7i_pll4_clk_setup(struct device_node *node)
601 {
602 	sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
603 }
604 CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
605 	       sun7i_pll4_clk_setup);
606 
sun5i_ahb_clk_setup(struct device_node * node)607 static void __init sun5i_ahb_clk_setup(struct device_node *node)
608 {
609 	sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
610 }
611 CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
612 	       sun5i_ahb_clk_setup);
613 
sun6i_ahb1_clk_setup(struct device_node * node)614 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
615 {
616 	sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
617 }
618 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
619 	       sun6i_ahb1_clk_setup);
620 
sun4i_apb1_clk_setup(struct device_node * node)621 static void __init sun4i_apb1_clk_setup(struct device_node *node)
622 {
623 	sunxi_factors_clk_setup(node, &sun4i_apb1_data);
624 }
625 CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
626 	       sun4i_apb1_clk_setup);
627 
sun7i_out_clk_setup(struct device_node * node)628 static void __init sun7i_out_clk_setup(struct device_node *node)
629 {
630 	sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
631 }
632 CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
633 	       sun7i_out_clk_setup);
634 
635 
636 /**
637  * sunxi_mux_clk_setup() - Setup function for muxes
638  */
639 
640 #define SUNXI_MUX_GATE_WIDTH	2
641 
642 struct mux_data {
643 	u8 shift;
644 };
645 
646 static const struct mux_data sun4i_cpu_mux_data __initconst = {
647 	.shift = 16,
648 };
649 
650 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
651 	.shift = 12,
652 };
653 
654 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
655 	.shift = 0,
656 };
657 
sunxi_mux_clk_setup(struct device_node * node,const struct mux_data * data,unsigned long flags)658 static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
659 					       const struct mux_data *data,
660 					       unsigned long flags)
661 {
662 	struct clk *clk;
663 	const char *clk_name = node->name;
664 	const char *parents[SUNXI_MAX_PARENTS];
665 	void __iomem *reg;
666 	int i;
667 
668 	reg = of_iomap(node, 0);
669 	if (!reg) {
670 		pr_err("Could not map registers for mux-clk: %pOF\n", node);
671 		return NULL;
672 	}
673 
674 	i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
675 	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
676 		pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
677 		       __func__, node);
678 		goto out_unmap;
679 	}
680 
681 	clk = clk_register_mux(NULL, clk_name, parents, i,
682 			       CLK_SET_RATE_PARENT | flags, reg,
683 			       data->shift, SUNXI_MUX_GATE_WIDTH,
684 			       0, &clk_lock);
685 
686 	if (IS_ERR(clk)) {
687 		pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
688 		       clk_name, PTR_ERR(clk));
689 		goto out_unmap;
690 	}
691 
692 	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
693 		pr_err("%s: failed to add clock provider for %s\n",
694 		       __func__, clk_name);
695 		clk_unregister_divider(clk);
696 		goto out_unmap;
697 	}
698 
699 	return clk;
700 out_unmap:
701 	iounmap(reg);
702 	return NULL;
703 }
704 
sun4i_cpu_clk_setup(struct device_node * node)705 static void __init sun4i_cpu_clk_setup(struct device_node *node)
706 {
707 	/* Protect CPU clock */
708 	sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data, CLK_IS_CRITICAL);
709 }
710 CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
711 	       sun4i_cpu_clk_setup);
712 
sun6i_ahb1_mux_clk_setup(struct device_node * node)713 static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
714 {
715 	sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data, 0);
716 }
717 CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
718 	       sun6i_ahb1_mux_clk_setup);
719 
sun8i_ahb2_clk_setup(struct device_node * node)720 static void __init sun8i_ahb2_clk_setup(struct device_node *node)
721 {
722 	sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data, 0);
723 }
724 CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
725 	       sun8i_ahb2_clk_setup);
726 
727 
728 /**
729  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
730  */
731 
732 struct div_data {
733 	u8	shift;
734 	u8	pow;
735 	u8	width;
736 	const struct clk_div_table *table;
737 };
738 
739 static const struct div_data sun4i_axi_data __initconst = {
740 	.shift	= 0,
741 	.pow	= 0,
742 	.width	= 2,
743 };
744 
745 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
746 	{ .val = 0, .div = 1 },
747 	{ .val = 1, .div = 2 },
748 	{ .val = 2, .div = 3 },
749 	{ .val = 3, .div = 4 },
750 	{ .val = 4, .div = 4 },
751 	{ .val = 5, .div = 4 },
752 	{ .val = 6, .div = 4 },
753 	{ .val = 7, .div = 4 },
754 	{ } /* sentinel */
755 };
756 
757 static const struct div_data sun8i_a23_axi_data __initconst = {
758 	.width	= 3,
759 	.table	= sun8i_a23_axi_table,
760 };
761 
762 static const struct div_data sun4i_ahb_data __initconst = {
763 	.shift	= 4,
764 	.pow	= 1,
765 	.width	= 2,
766 };
767 
768 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
769 	{ .val = 0, .div = 2 },
770 	{ .val = 1, .div = 2 },
771 	{ .val = 2, .div = 4 },
772 	{ .val = 3, .div = 8 },
773 	{ } /* sentinel */
774 };
775 
776 static const struct div_data sun4i_apb0_data __initconst = {
777 	.shift	= 8,
778 	.pow	= 1,
779 	.width	= 2,
780 	.table	= sun4i_apb0_table,
781 };
782 
sunxi_divider_clk_setup(struct device_node * node,const struct div_data * data)783 static void __init sunxi_divider_clk_setup(struct device_node *node,
784 					   const struct div_data *data)
785 {
786 	struct clk *clk;
787 	const char *clk_name = node->name;
788 	const char *clk_parent;
789 	void __iomem *reg;
790 
791 	reg = of_iomap(node, 0);
792 	if (!reg) {
793 		pr_err("Could not map registers for mux-clk: %pOF\n", node);
794 		return;
795 	}
796 
797 	clk_parent = of_clk_get_parent_name(node, 0);
798 
799 	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
800 		pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
801 		       __func__, node);
802 		goto out_unmap;
803 	}
804 
805 	clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
806 					 reg, data->shift, data->width,
807 					 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
808 					 data->table, &clk_lock);
809 	if (IS_ERR(clk)) {
810 		pr_err("%s: failed to register divider clock %s: %ld\n",
811 		       __func__, clk_name, PTR_ERR(clk));
812 		goto out_unmap;
813 	}
814 
815 	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
816 		pr_err("%s: failed to add clock provider for %s\n",
817 		       __func__, clk_name);
818 		goto out_unregister;
819 	}
820 
821 	if (clk_register_clkdev(clk, clk_name, NULL)) {
822 		of_clk_del_provider(node);
823 		goto out_unregister;
824 	}
825 
826 	return;
827 out_unregister:
828 	clk_unregister_divider(clk);
829 
830 out_unmap:
831 	iounmap(reg);
832 }
833 
sun4i_ahb_clk_setup(struct device_node * node)834 static void __init sun4i_ahb_clk_setup(struct device_node *node)
835 {
836 	sunxi_divider_clk_setup(node, &sun4i_ahb_data);
837 }
838 CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
839 	       sun4i_ahb_clk_setup);
840 
sun4i_apb0_clk_setup(struct device_node * node)841 static void __init sun4i_apb0_clk_setup(struct device_node *node)
842 {
843 	sunxi_divider_clk_setup(node, &sun4i_apb0_data);
844 }
845 CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
846 	       sun4i_apb0_clk_setup);
847 
sun4i_axi_clk_setup(struct device_node * node)848 static void __init sun4i_axi_clk_setup(struct device_node *node)
849 {
850 	sunxi_divider_clk_setup(node, &sun4i_axi_data);
851 }
852 CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
853 	       sun4i_axi_clk_setup);
854 
sun8i_axi_clk_setup(struct device_node * node)855 static void __init sun8i_axi_clk_setup(struct device_node *node)
856 {
857 	sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
858 }
859 CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
860 	       sun8i_axi_clk_setup);
861 
862 
863 
864 /**
865  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
866  */
867 
868 #define SUNXI_GATES_MAX_SIZE	64
869 
870 struct gates_data {
871 	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
872 };
873 
874 /**
875  * sunxi_divs_clk_setup() helper data
876  */
877 
878 #define SUNXI_DIVS_MAX_QTY	4
879 #define SUNXI_DIVISOR_WIDTH	2
880 
881 struct divs_data {
882 	const struct factors_data *factors; /* data for the factor clock */
883 	int ndivs; /* number of outputs */
884 	/*
885 	 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
886 	 * self or base factor clock refers to the output from the pll
887 	 * itself. The remaining refer to fixed or configurable divider
888 	 * outputs.
889 	 */
890 	struct {
891 		u8 self; /* is it the base factor clock? (only one) */
892 		u8 fixed; /* is it a fixed divisor? if not... */
893 		struct clk_div_table *table; /* is it a table based divisor? */
894 		u8 shift; /* otherwise it's a normal divisor with this shift */
895 		u8 pow;   /* is it power-of-two based? */
896 		u8 gate;  /* is it independently gateable? */
897 		bool critical;
898 	} div[SUNXI_DIVS_MAX_QTY];
899 };
900 
901 static struct clk_div_table pll6_sata_tbl[] = {
902 	{ .val = 0, .div = 6, },
903 	{ .val = 1, .div = 12, },
904 	{ .val = 2, .div = 18, },
905 	{ .val = 3, .div = 24, },
906 	{ } /* sentinel */
907 };
908 
909 static const struct divs_data pll5_divs_data __initconst = {
910 	.factors = &sun4i_pll5_data,
911 	.ndivs = 2,
912 	.div = {
913 		/* Protect PLL5_DDR */
914 		{ .shift = 0, .pow = 0, .critical = true }, /* M, DDR */
915 		{ .shift = 16, .pow = 1, }, /* P, other */
916 		/* No output for the base factor clock */
917 	}
918 };
919 
920 static const struct divs_data pll6_divs_data __initconst = {
921 	.factors = &sun4i_pll5_data,
922 	.ndivs = 4,
923 	.div = {
924 		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
925 		{ .fixed = 2 }, /* P, other */
926 		{ .self = 1 }, /* base factor clock, 2x */
927 		{ .fixed = 4 }, /* pll6 / 4, used as ahb input */
928 	}
929 };
930 
931 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
932 	.factors = &sun6i_a31_pll6_data,
933 	.ndivs = 2,
934 	.div = {
935 		{ .fixed = 2 }, /* normal output */
936 		{ .self = 1 }, /* base factor clock, 2x */
937 	}
938 };
939 
940 /**
941  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
942  *
943  * These clocks look something like this
944  *            ________________________
945  *           |         ___divisor 1---|----> to consumer
946  * parent >--|  pll___/___divisor 2---|----> to consumer
947  *           |        \_______________|____> to consumer
948  *           |________________________|
949  */
950 
sunxi_divs_clk_setup(struct device_node * node,const struct divs_data * data)951 static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
952 						 const struct divs_data *data)
953 {
954 	struct clk_onecell_data *clk_data;
955 	const char *parent;
956 	const char *clk_name;
957 	struct clk **clks, *pclk;
958 	struct clk_hw *gate_hw, *rate_hw;
959 	const struct clk_ops *rate_ops;
960 	struct clk_gate *gate = NULL;
961 	struct clk_fixed_factor *fix_factor;
962 	struct clk_divider *divider;
963 	struct factors_data factors = *data->factors;
964 	char *derived_name = NULL;
965 	void __iomem *reg;
966 	int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
967 	int flags, clkflags;
968 
969 	/* if number of children known, use it */
970 	if (data->ndivs)
971 		ndivs = data->ndivs;
972 
973 	/* Try to find a name for base factor clock */
974 	for (i = 0; i < ndivs; i++) {
975 		if (data->div[i].self) {
976 			of_property_read_string_index(node, "clock-output-names",
977 						      i, &factors.name);
978 			break;
979 		}
980 	}
981 	/* If we don't have a .self clk use the first output-name up to '_' */
982 	if (factors.name == NULL) {
983 		char *endp;
984 
985 		of_property_read_string_index(node, "clock-output-names",
986 						      0, &clk_name);
987 		endp = strchr(clk_name, '_');
988 		if (endp) {
989 			derived_name = kstrndup(clk_name, endp - clk_name,
990 						GFP_KERNEL);
991 			factors.name = derived_name;
992 		} else {
993 			factors.name = clk_name;
994 		}
995 	}
996 
997 	/* Set up factor clock that we will be dividing */
998 	pclk = sunxi_factors_clk_setup(node, &factors);
999 	if (!pclk)
1000 		return NULL;
1001 
1002 	parent = __clk_get_name(pclk);
1003 	kfree(derived_name);
1004 
1005 	reg = of_iomap(node, 0);
1006 	if (!reg) {
1007 		pr_err("Could not map registers for divs-clk: %pOF\n", node);
1008 		return NULL;
1009 	}
1010 
1011 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1012 	if (!clk_data)
1013 		goto out_unmap;
1014 
1015 	clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1016 	if (!clks)
1017 		goto free_clkdata;
1018 
1019 	clk_data->clks = clks;
1020 
1021 	/* It's not a good idea to have automatic reparenting changing
1022 	 * our RAM clock! */
1023 	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1024 
1025 	for (i = 0; i < ndivs; i++) {
1026 		if (of_property_read_string_index(node, "clock-output-names",
1027 						  i, &clk_name) != 0)
1028 			break;
1029 
1030 		/* If this is the base factor clock, only update clks */
1031 		if (data->div[i].self) {
1032 			clk_data->clks[i] = pclk;
1033 			continue;
1034 		}
1035 
1036 		gate_hw = NULL;
1037 		rate_hw = NULL;
1038 		rate_ops = NULL;
1039 
1040 		/* If this leaf clock can be gated, create a gate */
1041 		if (data->div[i].gate) {
1042 			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1043 			if (!gate)
1044 				goto free_clks;
1045 
1046 			gate->reg = reg;
1047 			gate->bit_idx = data->div[i].gate;
1048 			gate->lock = &clk_lock;
1049 
1050 			gate_hw = &gate->hw;
1051 		}
1052 
1053 		/* Leaves can be fixed or configurable divisors */
1054 		if (data->div[i].fixed) {
1055 			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1056 			if (!fix_factor)
1057 				goto free_gate;
1058 
1059 			fix_factor->mult = 1;
1060 			fix_factor->div = data->div[i].fixed;
1061 
1062 			rate_hw = &fix_factor->hw;
1063 			rate_ops = &clk_fixed_factor_ops;
1064 		} else {
1065 			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1066 			if (!divider)
1067 				goto free_gate;
1068 
1069 			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1070 
1071 			divider->reg = reg;
1072 			divider->shift = data->div[i].shift;
1073 			divider->width = SUNXI_DIVISOR_WIDTH;
1074 			divider->flags = flags;
1075 			divider->lock = &clk_lock;
1076 			divider->table = data->div[i].table;
1077 
1078 			rate_hw = &divider->hw;
1079 			rate_ops = &clk_divider_ops;
1080 		}
1081 
1082 		/* Wrap the (potential) gate and the divisor on a composite
1083 		 * clock to unify them */
1084 		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1085 						 NULL, NULL,
1086 						 rate_hw, rate_ops,
1087 						 gate_hw, &clk_gate_ops,
1088 						 clkflags |
1089 						 (data->div[i].critical ?
1090 							CLK_IS_CRITICAL : 0));
1091 
1092 		WARN_ON(IS_ERR(clk_data->clks[i]));
1093 	}
1094 
1095 	/* Adjust to the real max */
1096 	clk_data->clk_num = i;
1097 
1098 	if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
1099 		pr_err("%s: failed to add clock provider for %s\n",
1100 		       __func__, clk_name);
1101 		goto free_gate;
1102 	}
1103 
1104 	return clks;
1105 free_gate:
1106 	kfree(gate);
1107 free_clks:
1108 	kfree(clks);
1109 free_clkdata:
1110 	kfree(clk_data);
1111 out_unmap:
1112 	iounmap(reg);
1113 	return NULL;
1114 }
1115 
sun4i_pll5_clk_setup(struct device_node * node)1116 static void __init sun4i_pll5_clk_setup(struct device_node *node)
1117 {
1118 	sunxi_divs_clk_setup(node, &pll5_divs_data);
1119 }
1120 CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
1121 	       sun4i_pll5_clk_setup);
1122 
sun4i_pll6_clk_setup(struct device_node * node)1123 static void __init sun4i_pll6_clk_setup(struct device_node *node)
1124 {
1125 	sunxi_divs_clk_setup(node, &pll6_divs_data);
1126 }
1127 CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
1128 	       sun4i_pll6_clk_setup);
1129 
sun6i_pll6_clk_setup(struct device_node * node)1130 static void __init sun6i_pll6_clk_setup(struct device_node *node)
1131 {
1132 	sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
1133 }
1134 CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
1135 	       sun6i_pll6_clk_setup);
1136 
1137 /*
1138  * sun6i display
1139  *
1140  * rate = parent_rate / (m + 1);
1141  */
sun6i_display_factors(struct factors_request * req)1142 static void sun6i_display_factors(struct factors_request *req)
1143 {
1144 	u8 m;
1145 
1146 	if (req->rate > req->parent_rate)
1147 		req->rate = req->parent_rate;
1148 
1149 	m = DIV_ROUND_UP(req->parent_rate, req->rate);
1150 
1151 	req->rate = req->parent_rate / m;
1152 	req->m = m - 1;
1153 }
1154 
1155 static const struct clk_factors_config sun6i_display_config = {
1156 	.mshift = 0,
1157 	.mwidth = 4,
1158 };
1159 
1160 static const struct factors_data sun6i_display_data __initconst = {
1161 	.enable = 31,
1162 	.mux = 24,
1163 	.muxmask = BIT(2) | BIT(1) | BIT(0),
1164 	.table = &sun6i_display_config,
1165 	.getter = sun6i_display_factors,
1166 };
1167 
sun6i_display_setup(struct device_node * node)1168 static void __init sun6i_display_setup(struct device_node *node)
1169 {
1170 	sunxi_factors_clk_setup(node, &sun6i_display_data);
1171 }
1172 CLK_OF_DECLARE(sun6i_display, "allwinner,sun6i-a31-display-clk",
1173 	       sun6i_display_setup);
1174