1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/sched.h>
35 #include <linux/cpufreq.h>
36 #include <linux/compiler.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39
40 #include <linux/acpi.h>
41 #include <linux/io.h>
42 #include <linux/delay.h>
43 #include <linux/uaccess.h>
44
45 #include <acpi/processor.h>
46
47 #include <asm/msr.h>
48 #include <asm/processor.h>
49 #include <asm/cpufeature.h>
50 #include <asm/cpu_device_id.h>
51
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
55
56 enum {
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
59 SYSTEM_AMD_MSR_CAPABLE,
60 SYSTEM_IO_CAPABLE,
61 };
62
63 #define INTEL_MSR_RANGE (0xffff)
64 #define AMD_MSR_RANGE (0x7)
65
66 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
67
68 struct acpi_cpufreq_data {
69 unsigned int resume;
70 unsigned int cpu_feature;
71 unsigned int acpi_perf_cpu;
72 cpumask_var_t freqdomain_cpus;
73 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
74 u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
75 };
76
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79
to_perf_data(struct acpi_cpufreq_data * data)80 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
81 {
82 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
83 }
84
85 static struct cpufreq_driver acpi_cpufreq_driver;
86
87 static unsigned int acpi_pstate_strict;
88
boost_state(unsigned int cpu)89 static bool boost_state(unsigned int cpu)
90 {
91 u32 lo, hi;
92 u64 msr;
93
94 switch (boot_cpu_data.x86_vendor) {
95 case X86_VENDOR_INTEL:
96 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
97 msr = lo | ((u64)hi << 32);
98 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
99 case X86_VENDOR_AMD:
100 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
101 msr = lo | ((u64)hi << 32);
102 return !(msr & MSR_K7_HWCR_CPB_DIS);
103 }
104 return false;
105 }
106
boost_set_msr(bool enable)107 static int boost_set_msr(bool enable)
108 {
109 u32 msr_addr;
110 u64 msr_mask, val;
111
112 switch (boot_cpu_data.x86_vendor) {
113 case X86_VENDOR_INTEL:
114 msr_addr = MSR_IA32_MISC_ENABLE;
115 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
116 break;
117 case X86_VENDOR_AMD:
118 msr_addr = MSR_K7_HWCR;
119 msr_mask = MSR_K7_HWCR_CPB_DIS;
120 break;
121 default:
122 return -EINVAL;
123 }
124
125 rdmsrl(msr_addr, val);
126
127 if (enable)
128 val &= ~msr_mask;
129 else
130 val |= msr_mask;
131
132 wrmsrl(msr_addr, val);
133 return 0;
134 }
135
boost_set_msr_each(void * p_en)136 static void boost_set_msr_each(void *p_en)
137 {
138 bool enable = (bool) p_en;
139
140 boost_set_msr(enable);
141 }
142
set_boost(int val)143 static int set_boost(int val)
144 {
145 get_online_cpus();
146 on_each_cpu(boost_set_msr_each, (void *)(long)val, 1);
147 put_online_cpus();
148 pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
149
150 return 0;
151 }
152
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)153 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
154 {
155 struct acpi_cpufreq_data *data = policy->driver_data;
156
157 if (unlikely(!data))
158 return -ENODEV;
159
160 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
161 }
162
163 cpufreq_freq_attr_ro(freqdomain_cpus);
164
165 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
store_cpb(struct cpufreq_policy * policy,const char * buf,size_t count)166 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
167 size_t count)
168 {
169 int ret;
170 unsigned int val = 0;
171
172 if (!acpi_cpufreq_driver.set_boost)
173 return -EINVAL;
174
175 ret = kstrtouint(buf, 10, &val);
176 if (ret || val > 1)
177 return -EINVAL;
178
179 set_boost(val);
180
181 return count;
182 }
183
show_cpb(struct cpufreq_policy * policy,char * buf)184 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
185 {
186 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
187 }
188
189 cpufreq_freq_attr_rw(cpb);
190 #endif
191
check_est_cpu(unsigned int cpuid)192 static int check_est_cpu(unsigned int cpuid)
193 {
194 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
195
196 return cpu_has(cpu, X86_FEATURE_EST);
197 }
198
check_amd_hwpstate_cpu(unsigned int cpuid)199 static int check_amd_hwpstate_cpu(unsigned int cpuid)
200 {
201 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
202
203 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
204 }
205
extract_io(struct cpufreq_policy * policy,u32 value)206 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
207 {
208 struct acpi_cpufreq_data *data = policy->driver_data;
209 struct acpi_processor_performance *perf;
210 int i;
211
212 perf = to_perf_data(data);
213
214 for (i = 0; i < perf->state_count; i++) {
215 if (value == perf->states[i].status)
216 return policy->freq_table[i].frequency;
217 }
218 return 0;
219 }
220
extract_msr(struct cpufreq_policy * policy,u32 msr)221 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
222 {
223 struct acpi_cpufreq_data *data = policy->driver_data;
224 struct cpufreq_frequency_table *pos;
225 struct acpi_processor_performance *perf;
226
227 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
228 msr &= AMD_MSR_RANGE;
229 else
230 msr &= INTEL_MSR_RANGE;
231
232 perf = to_perf_data(data);
233
234 cpufreq_for_each_entry(pos, policy->freq_table)
235 if (msr == perf->states[pos->driver_data].status)
236 return pos->frequency;
237 return policy->freq_table[0].frequency;
238 }
239
extract_freq(struct cpufreq_policy * policy,u32 val)240 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
241 {
242 struct acpi_cpufreq_data *data = policy->driver_data;
243
244 switch (data->cpu_feature) {
245 case SYSTEM_INTEL_MSR_CAPABLE:
246 case SYSTEM_AMD_MSR_CAPABLE:
247 return extract_msr(policy, val);
248 case SYSTEM_IO_CAPABLE:
249 return extract_io(policy, val);
250 default:
251 return 0;
252 }
253 }
254
cpu_freq_read_intel(struct acpi_pct_register * not_used)255 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
256 {
257 u32 val, dummy;
258
259 rdmsr(MSR_IA32_PERF_CTL, val, dummy);
260 return val;
261 }
262
cpu_freq_write_intel(struct acpi_pct_register * not_used,u32 val)263 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
264 {
265 u32 lo, hi;
266
267 rdmsr(MSR_IA32_PERF_CTL, lo, hi);
268 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
269 wrmsr(MSR_IA32_PERF_CTL, lo, hi);
270 }
271
cpu_freq_read_amd(struct acpi_pct_register * not_used)272 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
273 {
274 u32 val, dummy;
275
276 rdmsr(MSR_AMD_PERF_CTL, val, dummy);
277 return val;
278 }
279
cpu_freq_write_amd(struct acpi_pct_register * not_used,u32 val)280 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
281 {
282 wrmsr(MSR_AMD_PERF_CTL, val, 0);
283 }
284
cpu_freq_read_io(struct acpi_pct_register * reg)285 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
286 {
287 u32 val;
288
289 acpi_os_read_port(reg->address, &val, reg->bit_width);
290 return val;
291 }
292
cpu_freq_write_io(struct acpi_pct_register * reg,u32 val)293 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
294 {
295 acpi_os_write_port(reg->address, val, reg->bit_width);
296 }
297
298 struct drv_cmd {
299 struct acpi_pct_register *reg;
300 u32 val;
301 union {
302 void (*write)(struct acpi_pct_register *reg, u32 val);
303 u32 (*read)(struct acpi_pct_register *reg);
304 } func;
305 };
306
307 /* Called via smp_call_function_single(), on the target CPU */
do_drv_read(void * _cmd)308 static void do_drv_read(void *_cmd)
309 {
310 struct drv_cmd *cmd = _cmd;
311
312 cmd->val = cmd->func.read(cmd->reg);
313 }
314
drv_read(struct acpi_cpufreq_data * data,const struct cpumask * mask)315 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
316 {
317 struct acpi_processor_performance *perf = to_perf_data(data);
318 struct drv_cmd cmd = {
319 .reg = &perf->control_register,
320 .func.read = data->cpu_freq_read,
321 };
322 int err;
323
324 err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
325 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
326 return cmd.val;
327 }
328
329 /* Called via smp_call_function_many(), on the target CPUs */
do_drv_write(void * _cmd)330 static void do_drv_write(void *_cmd)
331 {
332 struct drv_cmd *cmd = _cmd;
333
334 cmd->func.write(cmd->reg, cmd->val);
335 }
336
drv_write(struct acpi_cpufreq_data * data,const struct cpumask * mask,u32 val)337 static void drv_write(struct acpi_cpufreq_data *data,
338 const struct cpumask *mask, u32 val)
339 {
340 struct acpi_processor_performance *perf = to_perf_data(data);
341 struct drv_cmd cmd = {
342 .reg = &perf->control_register,
343 .val = val,
344 .func.write = data->cpu_freq_write,
345 };
346 int this_cpu;
347
348 this_cpu = get_cpu();
349 if (cpumask_test_cpu(this_cpu, mask))
350 do_drv_write(&cmd);
351
352 smp_call_function_many(mask, do_drv_write, &cmd, 1);
353 put_cpu();
354 }
355
get_cur_val(const struct cpumask * mask,struct acpi_cpufreq_data * data)356 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
357 {
358 u32 val;
359
360 if (unlikely(cpumask_empty(mask)))
361 return 0;
362
363 val = drv_read(data, mask);
364
365 pr_debug("get_cur_val = %u\n", val);
366
367 return val;
368 }
369
get_cur_freq_on_cpu(unsigned int cpu)370 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
371 {
372 struct acpi_cpufreq_data *data;
373 struct cpufreq_policy *policy;
374 unsigned int freq;
375 unsigned int cached_freq;
376
377 pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
378
379 policy = cpufreq_cpu_get_raw(cpu);
380 if (unlikely(!policy))
381 return 0;
382
383 data = policy->driver_data;
384 if (unlikely(!data || !policy->freq_table))
385 return 0;
386
387 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
388 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
389 if (freq != cached_freq) {
390 /*
391 * The dreaded BIOS frequency change behind our back.
392 * Force set the frequency on next target call.
393 */
394 data->resume = 1;
395 }
396
397 pr_debug("cur freq = %u\n", freq);
398
399 return freq;
400 }
401
check_freqs(struct cpufreq_policy * policy,const struct cpumask * mask,unsigned int freq)402 static unsigned int check_freqs(struct cpufreq_policy *policy,
403 const struct cpumask *mask, unsigned int freq)
404 {
405 struct acpi_cpufreq_data *data = policy->driver_data;
406 unsigned int cur_freq;
407 unsigned int i;
408
409 for (i = 0; i < 100; i++) {
410 cur_freq = extract_freq(policy, get_cur_val(mask, data));
411 if (cur_freq == freq)
412 return 1;
413 udelay(10);
414 }
415 return 0;
416 }
417
acpi_cpufreq_target(struct cpufreq_policy * policy,unsigned int index)418 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
419 unsigned int index)
420 {
421 struct acpi_cpufreq_data *data = policy->driver_data;
422 struct acpi_processor_performance *perf;
423 const struct cpumask *mask;
424 unsigned int next_perf_state = 0; /* Index into perf table */
425 int result = 0;
426
427 if (unlikely(!data)) {
428 return -ENODEV;
429 }
430
431 perf = to_perf_data(data);
432 next_perf_state = policy->freq_table[index].driver_data;
433 if (perf->state == next_perf_state) {
434 if (unlikely(data->resume)) {
435 pr_debug("Called after resume, resetting to P%d\n",
436 next_perf_state);
437 data->resume = 0;
438 } else {
439 pr_debug("Already at target state (P%d)\n",
440 next_perf_state);
441 return 0;
442 }
443 }
444
445 /*
446 * The core won't allow CPUs to go away until the governor has been
447 * stopped, so we can rely on the stability of policy->cpus.
448 */
449 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
450 cpumask_of(policy->cpu) : policy->cpus;
451
452 drv_write(data, mask, perf->states[next_perf_state].control);
453
454 if (acpi_pstate_strict) {
455 if (!check_freqs(policy, mask,
456 policy->freq_table[index].frequency)) {
457 pr_debug("acpi_cpufreq_target failed (%d)\n",
458 policy->cpu);
459 result = -EAGAIN;
460 }
461 }
462
463 if (!result)
464 perf->state = next_perf_state;
465
466 return result;
467 }
468
acpi_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)469 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
470 unsigned int target_freq)
471 {
472 struct acpi_cpufreq_data *data = policy->driver_data;
473 struct acpi_processor_performance *perf;
474 struct cpufreq_frequency_table *entry;
475 unsigned int next_perf_state, next_freq, index;
476
477 /*
478 * Find the closest frequency above target_freq.
479 */
480 if (policy->cached_target_freq == target_freq)
481 index = policy->cached_resolved_idx;
482 else
483 index = cpufreq_table_find_index_dl(policy, target_freq);
484
485 entry = &policy->freq_table[index];
486 next_freq = entry->frequency;
487 next_perf_state = entry->driver_data;
488
489 perf = to_perf_data(data);
490 if (perf->state == next_perf_state) {
491 if (unlikely(data->resume))
492 data->resume = 0;
493 else
494 return next_freq;
495 }
496
497 data->cpu_freq_write(&perf->control_register,
498 perf->states[next_perf_state].control);
499 perf->state = next_perf_state;
500 return next_freq;
501 }
502
503 static unsigned long
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data * data,unsigned int cpu)504 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
505 {
506 struct acpi_processor_performance *perf;
507
508 perf = to_perf_data(data);
509 if (cpu_khz) {
510 /* search the closest match to cpu_khz */
511 unsigned int i;
512 unsigned long freq;
513 unsigned long freqn = perf->states[0].core_frequency * 1000;
514
515 for (i = 0; i < (perf->state_count-1); i++) {
516 freq = freqn;
517 freqn = perf->states[i+1].core_frequency * 1000;
518 if ((2 * cpu_khz) > (freqn + freq)) {
519 perf->state = i;
520 return freq;
521 }
522 }
523 perf->state = perf->state_count-1;
524 return freqn;
525 } else {
526 /* assume CPU is at P0... */
527 perf->state = 0;
528 return perf->states[0].core_frequency * 1000;
529 }
530 }
531
free_acpi_perf_data(void)532 static void free_acpi_perf_data(void)
533 {
534 unsigned int i;
535
536 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
537 for_each_possible_cpu(i)
538 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
539 ->shared_cpu_map);
540 free_percpu(acpi_perf_data);
541 }
542
cpufreq_boost_online(unsigned int cpu)543 static int cpufreq_boost_online(unsigned int cpu)
544 {
545 /*
546 * On the CPU_UP path we simply keep the boost-disable flag
547 * in sync with the current global state.
548 */
549 return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
550 }
551
cpufreq_boost_down_prep(unsigned int cpu)552 static int cpufreq_boost_down_prep(unsigned int cpu)
553 {
554 /*
555 * Clear the boost-disable bit on the CPU_DOWN path so that
556 * this cpu cannot block the remaining ones from boosting.
557 */
558 return boost_set_msr(1);
559 }
560
561 /*
562 * acpi_cpufreq_early_init - initialize ACPI P-States library
563 *
564 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
565 * in order to determine correct frequency and voltage pairings. We can
566 * do _PDC and _PSD and find out the processor dependency for the
567 * actual init that will happen later...
568 */
acpi_cpufreq_early_init(void)569 static int __init acpi_cpufreq_early_init(void)
570 {
571 unsigned int i;
572 pr_debug("acpi_cpufreq_early_init\n");
573
574 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
575 if (!acpi_perf_data) {
576 pr_debug("Memory allocation error for acpi_perf_data.\n");
577 return -ENOMEM;
578 }
579 for_each_possible_cpu(i) {
580 if (!zalloc_cpumask_var_node(
581 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
582 GFP_KERNEL, cpu_to_node(i))) {
583
584 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
585 free_acpi_perf_data();
586 return -ENOMEM;
587 }
588 }
589
590 /* Do initialization in ACPI core */
591 acpi_processor_preregister_performance(acpi_perf_data);
592 return 0;
593 }
594
595 #ifdef CONFIG_SMP
596 /*
597 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
598 * or do it in BIOS firmware and won't inform about it to OS. If not
599 * detected, this has a side effect of making CPU run at a different speed
600 * than OS intended it to run at. Detect it and handle it cleanly.
601 */
602 static int bios_with_sw_any_bug;
603
sw_any_bug_found(const struct dmi_system_id * d)604 static int sw_any_bug_found(const struct dmi_system_id *d)
605 {
606 bios_with_sw_any_bug = 1;
607 return 0;
608 }
609
610 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
611 {
612 .callback = sw_any_bug_found,
613 .ident = "Supermicro Server X6DLP",
614 .matches = {
615 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
616 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
617 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
618 },
619 },
620 { }
621 };
622
acpi_cpufreq_blacklist(struct cpuinfo_x86 * c)623 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
624 {
625 /* Intel Xeon Processor 7100 Series Specification Update
626 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
627 * AL30: A Machine Check Exception (MCE) Occurring during an
628 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
629 * Both Processor Cores to Lock Up. */
630 if (c->x86_vendor == X86_VENDOR_INTEL) {
631 if ((c->x86 == 15) &&
632 (c->x86_model == 6) &&
633 (c->x86_stepping == 8)) {
634 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
635 return -ENODEV;
636 }
637 }
638 return 0;
639 }
640 #endif
641
acpi_cpufreq_cpu_init(struct cpufreq_policy * policy)642 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
643 {
644 unsigned int i;
645 unsigned int valid_states = 0;
646 unsigned int cpu = policy->cpu;
647 struct acpi_cpufreq_data *data;
648 unsigned int result = 0;
649 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
650 struct acpi_processor_performance *perf;
651 struct cpufreq_frequency_table *freq_table;
652 #ifdef CONFIG_SMP
653 static int blacklisted;
654 #endif
655
656 pr_debug("acpi_cpufreq_cpu_init\n");
657
658 #ifdef CONFIG_SMP
659 if (blacklisted)
660 return blacklisted;
661 blacklisted = acpi_cpufreq_blacklist(c);
662 if (blacklisted)
663 return blacklisted;
664 #endif
665
666 data = kzalloc(sizeof(*data), GFP_KERNEL);
667 if (!data)
668 return -ENOMEM;
669
670 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
671 result = -ENOMEM;
672 goto err_free;
673 }
674
675 perf = per_cpu_ptr(acpi_perf_data, cpu);
676 data->acpi_perf_cpu = cpu;
677 policy->driver_data = data;
678
679 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
680 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
681
682 result = acpi_processor_register_performance(perf, cpu);
683 if (result)
684 goto err_free_mask;
685
686 policy->shared_type = perf->shared_type;
687
688 /*
689 * Will let policy->cpus know about dependency only when software
690 * coordination is required.
691 */
692 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
693 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
694 cpumask_copy(policy->cpus, perf->shared_cpu_map);
695 }
696 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
697
698 #ifdef CONFIG_SMP
699 dmi_check_system(sw_any_bug_dmi_table);
700 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
701 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
702 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
703 }
704
705 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
706 !acpi_pstate_strict) {
707 cpumask_clear(policy->cpus);
708 cpumask_set_cpu(cpu, policy->cpus);
709 cpumask_copy(data->freqdomain_cpus,
710 topology_sibling_cpumask(cpu));
711 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
712 pr_info_once("overriding BIOS provided _PSD data\n");
713 }
714 #endif
715
716 /* capability check */
717 if (perf->state_count <= 1) {
718 pr_debug("No P-States\n");
719 result = -ENODEV;
720 goto err_unreg;
721 }
722
723 if (perf->control_register.space_id != perf->status_register.space_id) {
724 result = -ENODEV;
725 goto err_unreg;
726 }
727
728 switch (perf->control_register.space_id) {
729 case ACPI_ADR_SPACE_SYSTEM_IO:
730 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
731 boot_cpu_data.x86 == 0xf) {
732 pr_debug("AMD K8 systems must use native drivers.\n");
733 result = -ENODEV;
734 goto err_unreg;
735 }
736 pr_debug("SYSTEM IO addr space\n");
737 data->cpu_feature = SYSTEM_IO_CAPABLE;
738 data->cpu_freq_read = cpu_freq_read_io;
739 data->cpu_freq_write = cpu_freq_write_io;
740 break;
741 case ACPI_ADR_SPACE_FIXED_HARDWARE:
742 pr_debug("HARDWARE addr space\n");
743 if (check_est_cpu(cpu)) {
744 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
745 data->cpu_freq_read = cpu_freq_read_intel;
746 data->cpu_freq_write = cpu_freq_write_intel;
747 break;
748 }
749 if (check_amd_hwpstate_cpu(cpu)) {
750 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
751 data->cpu_freq_read = cpu_freq_read_amd;
752 data->cpu_freq_write = cpu_freq_write_amd;
753 break;
754 }
755 result = -ENODEV;
756 goto err_unreg;
757 default:
758 pr_debug("Unknown addr space %d\n",
759 (u32) (perf->control_register.space_id));
760 result = -ENODEV;
761 goto err_unreg;
762 }
763
764 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
765 GFP_KERNEL);
766 if (!freq_table) {
767 result = -ENOMEM;
768 goto err_unreg;
769 }
770
771 /* detect transition latency */
772 policy->cpuinfo.transition_latency = 0;
773 for (i = 0; i < perf->state_count; i++) {
774 if ((perf->states[i].transition_latency * 1000) >
775 policy->cpuinfo.transition_latency)
776 policy->cpuinfo.transition_latency =
777 perf->states[i].transition_latency * 1000;
778 }
779
780 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
781 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
782 policy->cpuinfo.transition_latency > 20 * 1000) {
783 policy->cpuinfo.transition_latency = 20 * 1000;
784 pr_info_once("P-state transition latency capped at 20 uS\n");
785 }
786
787 /* table init */
788 for (i = 0; i < perf->state_count; i++) {
789 if (i > 0 && perf->states[i].core_frequency >=
790 freq_table[valid_states-1].frequency / 1000)
791 continue;
792
793 freq_table[valid_states].driver_data = i;
794 freq_table[valid_states].frequency =
795 perf->states[i].core_frequency * 1000;
796 valid_states++;
797 }
798 freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
799 policy->freq_table = freq_table;
800 perf->state = 0;
801
802 switch (perf->control_register.space_id) {
803 case ACPI_ADR_SPACE_SYSTEM_IO:
804 /*
805 * The core will not set policy->cur, because
806 * cpufreq_driver->get is NULL, so we need to set it here.
807 * However, we have to guess it, because the current speed is
808 * unknown and not detectable via IO ports.
809 */
810 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
811 break;
812 case ACPI_ADR_SPACE_FIXED_HARDWARE:
813 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
814 break;
815 default:
816 break;
817 }
818
819 /* notify BIOS that we exist */
820 acpi_processor_notify_smm(THIS_MODULE);
821
822 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
823 for (i = 0; i < perf->state_count; i++)
824 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
825 (i == perf->state ? '*' : ' '), i,
826 (u32) perf->states[i].core_frequency,
827 (u32) perf->states[i].power,
828 (u32) perf->states[i].transition_latency);
829
830 /*
831 * the first call to ->target() should result in us actually
832 * writing something to the appropriate registers.
833 */
834 data->resume = 1;
835
836 policy->fast_switch_possible = !acpi_pstate_strict &&
837 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
838
839 return result;
840
841 err_unreg:
842 acpi_processor_unregister_performance(cpu);
843 err_free_mask:
844 free_cpumask_var(data->freqdomain_cpus);
845 err_free:
846 kfree(data);
847 policy->driver_data = NULL;
848
849 return result;
850 }
851
acpi_cpufreq_cpu_exit(struct cpufreq_policy * policy)852 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
853 {
854 struct acpi_cpufreq_data *data = policy->driver_data;
855
856 pr_debug("acpi_cpufreq_cpu_exit\n");
857
858 policy->fast_switch_possible = false;
859 policy->driver_data = NULL;
860 acpi_processor_unregister_performance(data->acpi_perf_cpu);
861 free_cpumask_var(data->freqdomain_cpus);
862 kfree(policy->freq_table);
863 kfree(data);
864
865 return 0;
866 }
867
acpi_cpufreq_cpu_ready(struct cpufreq_policy * policy)868 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
869 {
870 struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
871 policy->cpu);
872
873 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
874 pr_warn(FW_WARN "P-state 0 is not max freq\n");
875 }
876
acpi_cpufreq_resume(struct cpufreq_policy * policy)877 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
878 {
879 struct acpi_cpufreq_data *data = policy->driver_data;
880
881 pr_debug("acpi_cpufreq_resume\n");
882
883 data->resume = 1;
884
885 return 0;
886 }
887
888 static struct freq_attr *acpi_cpufreq_attr[] = {
889 &cpufreq_freq_attr_scaling_available_freqs,
890 &freqdomain_cpus,
891 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
892 &cpb,
893 #endif
894 NULL,
895 };
896
897 static struct cpufreq_driver acpi_cpufreq_driver = {
898 .verify = cpufreq_generic_frequency_table_verify,
899 .target_index = acpi_cpufreq_target,
900 .fast_switch = acpi_cpufreq_fast_switch,
901 .bios_limit = acpi_processor_get_bios_limit,
902 .init = acpi_cpufreq_cpu_init,
903 .exit = acpi_cpufreq_cpu_exit,
904 .ready = acpi_cpufreq_cpu_ready,
905 .resume = acpi_cpufreq_resume,
906 .name = "acpi-cpufreq",
907 .attr = acpi_cpufreq_attr,
908 };
909
910 static enum cpuhp_state acpi_cpufreq_online;
911
acpi_cpufreq_boost_init(void)912 static void __init acpi_cpufreq_boost_init(void)
913 {
914 int ret;
915
916 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
917 pr_debug("Boost capabilities not present in the processor\n");
918 return;
919 }
920
921 acpi_cpufreq_driver.set_boost = set_boost;
922 acpi_cpufreq_driver.boost_enabled = boost_state(0);
923
924 /*
925 * This calls the online callback on all online cpu and forces all
926 * MSRs to the same value.
927 */
928 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
929 cpufreq_boost_online, cpufreq_boost_down_prep);
930 if (ret < 0) {
931 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
932 return;
933 }
934 acpi_cpufreq_online = ret;
935 }
936
acpi_cpufreq_boost_exit(void)937 static void acpi_cpufreq_boost_exit(void)
938 {
939 if (acpi_cpufreq_online > 0)
940 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
941 }
942
acpi_cpufreq_init(void)943 static int __init acpi_cpufreq_init(void)
944 {
945 int ret;
946
947 if (acpi_disabled)
948 return -ENODEV;
949
950 /* don't keep reloading if cpufreq_driver exists */
951 if (cpufreq_get_current_driver())
952 return -EEXIST;
953
954 pr_debug("acpi_cpufreq_init\n");
955
956 ret = acpi_cpufreq_early_init();
957 if (ret)
958 return ret;
959
960 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
961 /* this is a sysfs file with a strange name and an even stranger
962 * semantic - per CPU instantiation, but system global effect.
963 * Lets enable it only on AMD CPUs for compatibility reasons and
964 * only if configured. This is considered legacy code, which
965 * will probably be removed at some point in the future.
966 */
967 if (!check_amd_hwpstate_cpu(0)) {
968 struct freq_attr **attr;
969
970 pr_debug("CPB unsupported, do not expose it\n");
971
972 for (attr = acpi_cpufreq_attr; *attr; attr++)
973 if (*attr == &cpb) {
974 *attr = NULL;
975 break;
976 }
977 }
978 #endif
979 acpi_cpufreq_boost_init();
980
981 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
982 if (ret) {
983 free_acpi_perf_data();
984 acpi_cpufreq_boost_exit();
985 }
986 return ret;
987 }
988
acpi_cpufreq_exit(void)989 static void __exit acpi_cpufreq_exit(void)
990 {
991 pr_debug("acpi_cpufreq_exit\n");
992
993 acpi_cpufreq_boost_exit();
994
995 cpufreq_unregister_driver(&acpi_cpufreq_driver);
996
997 free_acpi_perf_data();
998 }
999
1000 module_param(acpi_pstate_strict, uint, 0644);
1001 MODULE_PARM_DESC(acpi_pstate_strict,
1002 "value 0 or non-zero. non-zero -> strict ACPI checks are "
1003 "performed during frequency changes.");
1004
1005 late_initcall(acpi_cpufreq_init);
1006 module_exit(acpi_cpufreq_exit);
1007
1008 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1009 X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1010 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1011 {}
1012 };
1013 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1014
1015 static const struct acpi_device_id processor_device_ids[] = {
1016 {ACPI_PROCESSOR_OBJECT_HID, },
1017 {ACPI_PROCESSOR_DEVICE_HID, },
1018 {},
1019 };
1020 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1021
1022 MODULE_ALIAS("acpi");
1023