1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
policy_is_inactive(struct cpufreq_policy * policy)36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
has_target(void)71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93
94 static int off __read_mostly;
cpufreq_disabled(void)95 static int cpufreq_disabled(void)
96 {
97 return off;
98 }
disable_cpufreq(void)99 void disable_cpufreq(void)
100 {
101 off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104
have_governor_per_policy(void)105 bool have_governor_per_policy(void)
106 {
107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110
get_governor_parent_kobj(struct cpufreq_policy * policy)111 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
112 {
113 if (have_governor_per_policy())
114 return &policy->kobj;
115 else
116 return cpufreq_global_kobject;
117 }
118 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
119
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)120 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
121 {
122 u64 idle_time;
123 u64 cur_wall_time;
124 u64 busy_time;
125
126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
129 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
130 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
134
135 idle_time = cur_wall_time - busy_time;
136 if (wall)
137 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
138
139 return div_u64(idle_time, NSEC_PER_USEC);
140 }
141
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)142 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
143 {
144 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
145
146 if (idle_time == -1ULL)
147 return get_cpu_idle_time_jiffy(cpu, wall);
148 else if (!io_busy)
149 idle_time += get_cpu_iowait_time_us(cpu, wall);
150
151 return idle_time;
152 }
153 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
154
arch_set_freq_scale(struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)155 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
156 unsigned long max_freq)
157 {
158 }
159 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
160
161 /*
162 * This is a generic cpufreq init() routine which can be used by cpufreq
163 * drivers of SMP systems. It will do following:
164 * - validate & show freq table passed
165 * - set policies transition latency
166 * - policy->cpus with all possible CPUs
167 */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)168 int cpufreq_generic_init(struct cpufreq_policy *policy,
169 struct cpufreq_frequency_table *table,
170 unsigned int transition_latency)
171 {
172 policy->freq_table = table;
173 policy->cpuinfo.transition_latency = transition_latency;
174
175 /*
176 * The driver only supports the SMP configuration where all processors
177 * share the clock and voltage and clock.
178 */
179 cpumask_setall(policy->cpus);
180
181 return 0;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
cpufreq_cpu_get_raw(unsigned int cpu)185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
cpufreq_generic_get(unsigned int cpu)193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197 if (!policy || IS_ERR(policy->clk)) {
198 pr_err("%s: No %s associated to cpu: %d\n",
199 __func__, policy ? "clk" : "policy", cpu);
200 return 0;
201 }
202
203 return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
209 *
210 * @cpu: cpu to find policy for.
211 *
212 * This returns policy for 'cpu', returns NULL if it doesn't exist.
213 * It also increments the kobject reference count to mark it busy and so would
214 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
215 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
216 * freed as that depends on the kobj count.
217 *
218 * Return: A valid policy on success, otherwise NULL on failure.
219 */
cpufreq_cpu_get(unsigned int cpu)220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
221 {
222 struct cpufreq_policy *policy = NULL;
223 unsigned long flags;
224
225 if (WARN_ON(cpu >= nr_cpu_ids))
226 return NULL;
227
228 /* get the cpufreq driver */
229 read_lock_irqsave(&cpufreq_driver_lock, flags);
230
231 if (cpufreq_driver) {
232 /* get the CPU */
233 policy = cpufreq_cpu_get_raw(cpu);
234 if (policy)
235 kobject_get(&policy->kobj);
236 }
237
238 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
239
240 return policy;
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
243
244 /**
245 * cpufreq_cpu_put: Decrements the usage count of a policy
246 *
247 * @policy: policy earlier returned by cpufreq_cpu_get().
248 *
249 * This decrements the kobject reference count incremented earlier by calling
250 * cpufreq_cpu_get().
251 */
cpufreq_cpu_put(struct cpufreq_policy * policy)252 void cpufreq_cpu_put(struct cpufreq_policy *policy)
253 {
254 kobject_put(&policy->kobj);
255 }
256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
257
258 /*********************************************************************
259 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
260 *********************************************************************/
261
262 /**
263 * adjust_jiffies - adjust the system "loops_per_jiffy"
264 *
265 * This function alters the system "loops_per_jiffy" for the clock
266 * speed change. Note that loops_per_jiffy cannot be updated on SMP
267 * systems as each CPU might be scaled differently. So, use the arch
268 * per-CPU loops_per_jiffy value wherever possible.
269 */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)270 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
271 {
272 #ifndef CONFIG_SMP
273 static unsigned long l_p_j_ref;
274 static unsigned int l_p_j_ref_freq;
275
276 if (ci->flags & CPUFREQ_CONST_LOOPS)
277 return;
278
279 if (!l_p_j_ref_freq) {
280 l_p_j_ref = loops_per_jiffy;
281 l_p_j_ref_freq = ci->old;
282 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
283 l_p_j_ref, l_p_j_ref_freq);
284 }
285 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
286 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
287 ci->new);
288 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
289 loops_per_jiffy, ci->new);
290 }
291 #endif
292 }
293
294 /**
295 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
296 * @policy: cpufreq policy to enable fast frequency switching for.
297 * @freqs: contain details of the frequency update.
298 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
299 *
300 * This function calls the transition notifiers and the "adjust_jiffies"
301 * function. It is called twice on all CPU frequency changes that have
302 * external effects.
303 */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)304 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
305 struct cpufreq_freqs *freqs,
306 unsigned int state)
307 {
308 BUG_ON(irqs_disabled());
309
310 if (cpufreq_disabled())
311 return;
312
313 freqs->flags = cpufreq_driver->flags;
314 pr_debug("notification %u of frequency transition to %u kHz\n",
315 state, freqs->new);
316
317 switch (state) {
318 case CPUFREQ_PRECHANGE:
319 /*
320 * Detect if the driver reported a value as "old frequency"
321 * which is not equal to what the cpufreq core thinks is
322 * "old frequency".
323 */
324 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
325 if (policy->cur && (policy->cur != freqs->old)) {
326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 freqs->old, policy->cur);
328 freqs->old = policy->cur;
329 }
330 }
331
332 for_each_cpu(freqs->cpu, policy->cpus) {
333 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
334 CPUFREQ_PRECHANGE, freqs);
335 }
336
337 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
338 break;
339
340 case CPUFREQ_POSTCHANGE:
341 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
342 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
343 cpumask_pr_args(policy->cpus));
344
345 for_each_cpu(freqs->cpu, policy->cpus) {
346 trace_cpu_frequency(freqs->new, freqs->cpu);
347 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
348 CPUFREQ_POSTCHANGE, freqs);
349 }
350
351 cpufreq_stats_record_transition(policy, freqs->new);
352 policy->cur = freqs->new;
353 }
354 }
355
356 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)357 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
358 struct cpufreq_freqs *freqs, int transition_failed)
359 {
360 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
361 if (!transition_failed)
362 return;
363
364 swap(freqs->old, freqs->new);
365 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
366 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
367 }
368
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)369 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
370 struct cpufreq_freqs *freqs)
371 {
372
373 /*
374 * Catch double invocations of _begin() which lead to self-deadlock.
375 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
376 * doesn't invoke _begin() on their behalf, and hence the chances of
377 * double invocations are very low. Moreover, there are scenarios
378 * where these checks can emit false-positive warnings in these
379 * drivers; so we avoid that by skipping them altogether.
380 */
381 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
382 && current == policy->transition_task);
383
384 wait:
385 wait_event(policy->transition_wait, !policy->transition_ongoing);
386
387 spin_lock(&policy->transition_lock);
388
389 if (unlikely(policy->transition_ongoing)) {
390 spin_unlock(&policy->transition_lock);
391 goto wait;
392 }
393
394 policy->transition_ongoing = true;
395 policy->transition_task = current;
396
397 spin_unlock(&policy->transition_lock);
398
399 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
402
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)403 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
404 struct cpufreq_freqs *freqs, int transition_failed)
405 {
406 if (unlikely(WARN_ON(!policy->transition_ongoing)))
407 return;
408
409 cpufreq_notify_post_transition(policy, freqs, transition_failed);
410
411 policy->transition_ongoing = false;
412 policy->transition_task = NULL;
413
414 wake_up(&policy->transition_wait);
415 }
416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
417
418 /*
419 * Fast frequency switching status count. Positive means "enabled", negative
420 * means "disabled" and 0 means "not decided yet".
421 */
422 static int cpufreq_fast_switch_count;
423 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
424
cpufreq_list_transition_notifiers(void)425 static void cpufreq_list_transition_notifiers(void)
426 {
427 struct notifier_block *nb;
428
429 pr_info("Registered transition notifiers:\n");
430
431 mutex_lock(&cpufreq_transition_notifier_list.mutex);
432
433 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
434 pr_info("%pF\n", nb->notifier_call);
435
436 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
437 }
438
439 /**
440 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
441 * @policy: cpufreq policy to enable fast frequency switching for.
442 *
443 * Try to enable fast frequency switching for @policy.
444 *
445 * The attempt will fail if there is at least one transition notifier registered
446 * at this point, as fast frequency switching is quite fundamentally at odds
447 * with transition notifiers. Thus if successful, it will make registration of
448 * transition notifiers fail going forward.
449 */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)450 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
451 {
452 lockdep_assert_held(&policy->rwsem);
453
454 if (!policy->fast_switch_possible)
455 return;
456
457 mutex_lock(&cpufreq_fast_switch_lock);
458 if (cpufreq_fast_switch_count >= 0) {
459 cpufreq_fast_switch_count++;
460 policy->fast_switch_enabled = true;
461 } else {
462 pr_warn("CPU%u: Fast frequency switching not enabled\n",
463 policy->cpu);
464 cpufreq_list_transition_notifiers();
465 }
466 mutex_unlock(&cpufreq_fast_switch_lock);
467 }
468 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
469
470 /**
471 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
472 * @policy: cpufreq policy to disable fast frequency switching for.
473 */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)474 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
475 {
476 mutex_lock(&cpufreq_fast_switch_lock);
477 if (policy->fast_switch_enabled) {
478 policy->fast_switch_enabled = false;
479 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
480 cpufreq_fast_switch_count--;
481 }
482 mutex_unlock(&cpufreq_fast_switch_lock);
483 }
484 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
485
486 /**
487 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
488 * one.
489 * @target_freq: target frequency to resolve.
490 *
491 * The target to driver frequency mapping is cached in the policy.
492 *
493 * Return: Lowest driver-supported frequency greater than or equal to the
494 * given target_freq, subject to policy (min/max) and driver limitations.
495 */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)496 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
497 unsigned int target_freq)
498 {
499 target_freq = clamp_val(target_freq, policy->min, policy->max);
500 policy->cached_target_freq = target_freq;
501
502 if (cpufreq_driver->target_index) {
503 int idx;
504
505 idx = cpufreq_frequency_table_target(policy, target_freq,
506 CPUFREQ_RELATION_L);
507 policy->cached_resolved_idx = idx;
508 return policy->freq_table[idx].frequency;
509 }
510
511 if (cpufreq_driver->resolve_freq)
512 return cpufreq_driver->resolve_freq(policy, target_freq);
513
514 return target_freq;
515 }
516 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
517
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)518 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
519 {
520 unsigned int latency;
521
522 if (policy->transition_delay_us)
523 return policy->transition_delay_us;
524
525 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
526 if (latency) {
527 /*
528 * For platforms that can change the frequency very fast (< 10
529 * us), the above formula gives a decent transition delay. But
530 * for platforms where transition_latency is in milliseconds, it
531 * ends up giving unrealistic values.
532 *
533 * Cap the default transition delay to 10 ms, which seems to be
534 * a reasonable amount of time after which we should reevaluate
535 * the frequency.
536 */
537 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
538 }
539
540 return LATENCY_MULTIPLIER;
541 }
542 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
543
544 /*********************************************************************
545 * SYSFS INTERFACE *
546 *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)547 static ssize_t show_boost(struct kobject *kobj,
548 struct kobj_attribute *attr, char *buf)
549 {
550 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
551 }
552
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)553 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
554 const char *buf, size_t count)
555 {
556 int ret, enable;
557
558 ret = sscanf(buf, "%d", &enable);
559 if (ret != 1 || enable < 0 || enable > 1)
560 return -EINVAL;
561
562 if (cpufreq_boost_trigger_state(enable)) {
563 pr_err("%s: Cannot %s BOOST!\n",
564 __func__, enable ? "enable" : "disable");
565 return -EINVAL;
566 }
567
568 pr_debug("%s: cpufreq BOOST %s\n",
569 __func__, enable ? "enabled" : "disabled");
570
571 return count;
572 }
573 define_one_global_rw(boost);
574
find_governor(const char * str_governor)575 static struct cpufreq_governor *find_governor(const char *str_governor)
576 {
577 struct cpufreq_governor *t;
578
579 for_each_governor(t)
580 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
581 return t;
582
583 return NULL;
584 }
585
586 /**
587 * cpufreq_parse_governor - parse a governor string
588 */
cpufreq_parse_governor(char * str_governor,struct cpufreq_policy * policy)589 static int cpufreq_parse_governor(char *str_governor,
590 struct cpufreq_policy *policy)
591 {
592 if (cpufreq_driver->setpolicy) {
593 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
594 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
595 return 0;
596 }
597
598 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
599 policy->policy = CPUFREQ_POLICY_POWERSAVE;
600 return 0;
601 }
602 } else {
603 struct cpufreq_governor *t;
604
605 mutex_lock(&cpufreq_governor_mutex);
606
607 t = find_governor(str_governor);
608 if (!t) {
609 int ret;
610
611 mutex_unlock(&cpufreq_governor_mutex);
612
613 ret = request_module("cpufreq_%s", str_governor);
614 if (ret)
615 return -EINVAL;
616
617 mutex_lock(&cpufreq_governor_mutex);
618
619 t = find_governor(str_governor);
620 }
621 if (t && !try_module_get(t->owner))
622 t = NULL;
623
624 mutex_unlock(&cpufreq_governor_mutex);
625
626 if (t) {
627 policy->governor = t;
628 return 0;
629 }
630 }
631
632 return -EINVAL;
633 }
634
635 /**
636 * cpufreq_per_cpu_attr_read() / show_##file_name() -
637 * print out cpufreq information
638 *
639 * Write out information from cpufreq_driver->policy[cpu]; object must be
640 * "unsigned int".
641 */
642
643 #define show_one(file_name, object) \
644 static ssize_t show_##file_name \
645 (struct cpufreq_policy *policy, char *buf) \
646 { \
647 return sprintf(buf, "%u\n", policy->object); \
648 }
649
650 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
651 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
652 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
653 show_one(scaling_min_freq, min);
654 show_one(scaling_max_freq, max);
655
arch_freq_get_on_cpu(int cpu)656 __weak unsigned int arch_freq_get_on_cpu(int cpu)
657 {
658 return 0;
659 }
660
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)661 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
662 {
663 ssize_t ret;
664 unsigned int freq;
665
666 freq = arch_freq_get_on_cpu(policy->cpu);
667 if (freq)
668 ret = sprintf(buf, "%u\n", freq);
669 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
670 cpufreq_driver->get)
671 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
672 else
673 ret = sprintf(buf, "%u\n", policy->cur);
674 return ret;
675 }
676
677 static int cpufreq_set_policy(struct cpufreq_policy *policy,
678 struct cpufreq_policy *new_policy);
679
680 /**
681 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
682 */
683 #define store_one(file_name, object) \
684 static ssize_t store_##file_name \
685 (struct cpufreq_policy *policy, const char *buf, size_t count) \
686 { \
687 int ret, temp; \
688 struct cpufreq_policy new_policy; \
689 \
690 memcpy(&new_policy, policy, sizeof(*policy)); \
691 new_policy.min = policy->user_policy.min; \
692 new_policy.max = policy->user_policy.max; \
693 \
694 ret = sscanf(buf, "%u", &new_policy.object); \
695 if (ret != 1) \
696 return -EINVAL; \
697 \
698 temp = new_policy.object; \
699 ret = cpufreq_set_policy(policy, &new_policy); \
700 if (!ret) \
701 policy->user_policy.object = temp; \
702 \
703 return ret ? ret : count; \
704 }
705
706 store_one(scaling_min_freq, min);
707 store_one(scaling_max_freq, max);
708
709 /**
710 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
711 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)712 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
713 char *buf)
714 {
715 unsigned int cur_freq = __cpufreq_get(policy);
716
717 if (cur_freq)
718 return sprintf(buf, "%u\n", cur_freq);
719
720 return sprintf(buf, "<unknown>\n");
721 }
722
723 /**
724 * show_scaling_governor - show the current policy for the specified CPU
725 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)726 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
727 {
728 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
729 return sprintf(buf, "powersave\n");
730 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
731 return sprintf(buf, "performance\n");
732 else if (policy->governor)
733 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
734 policy->governor->name);
735 return -EINVAL;
736 }
737
738 /**
739 * store_scaling_governor - store policy for the specified CPU
740 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)741 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
742 const char *buf, size_t count)
743 {
744 int ret;
745 char str_governor[16];
746 struct cpufreq_policy new_policy;
747
748 memcpy(&new_policy, policy, sizeof(*policy));
749
750 ret = sscanf(buf, "%15s", str_governor);
751 if (ret != 1)
752 return -EINVAL;
753
754 if (cpufreq_parse_governor(str_governor, &new_policy))
755 return -EINVAL;
756
757 ret = cpufreq_set_policy(policy, &new_policy);
758
759 if (new_policy.governor)
760 module_put(new_policy.governor->owner);
761
762 return ret ? ret : count;
763 }
764
765 /**
766 * show_scaling_driver - show the cpufreq driver currently loaded
767 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
769 {
770 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
771 }
772
773 /**
774 * show_scaling_available_governors - show the available CPUfreq governors
775 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
777 char *buf)
778 {
779 ssize_t i = 0;
780 struct cpufreq_governor *t;
781
782 if (!has_target()) {
783 i += sprintf(buf, "performance powersave");
784 goto out;
785 }
786
787 for_each_governor(t) {
788 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
789 - (CPUFREQ_NAME_LEN + 2)))
790 goto out;
791 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
792 }
793 out:
794 i += sprintf(&buf[i], "\n");
795 return i;
796 }
797
cpufreq_show_cpus(const struct cpumask * mask,char * buf)798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
799 {
800 ssize_t i = 0;
801 unsigned int cpu;
802
803 for_each_cpu(cpu, mask) {
804 if (i)
805 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
806 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
807 if (i >= (PAGE_SIZE - 5))
808 break;
809 }
810 i += sprintf(&buf[i], "\n");
811 return i;
812 }
813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
814
815 /**
816 * show_related_cpus - show the CPUs affected by each transition even if
817 * hw coordination is in use
818 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
820 {
821 return cpufreq_show_cpus(policy->related_cpus, buf);
822 }
823
824 /**
825 * show_affected_cpus - show the CPUs affected by each transition
826 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
828 {
829 return cpufreq_show_cpus(policy->cpus, buf);
830 }
831
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
833 const char *buf, size_t count)
834 {
835 unsigned int freq = 0;
836 unsigned int ret;
837
838 if (!policy->governor || !policy->governor->store_setspeed)
839 return -EINVAL;
840
841 ret = sscanf(buf, "%u", &freq);
842 if (ret != 1)
843 return -EINVAL;
844
845 policy->governor->store_setspeed(policy, freq);
846
847 return count;
848 }
849
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
851 {
852 if (!policy->governor || !policy->governor->show_setspeed)
853 return sprintf(buf, "<unsupported>\n");
854
855 return policy->governor->show_setspeed(policy, buf);
856 }
857
858 /**
859 * show_bios_limit - show the current cpufreq HW/BIOS limitation
860 */
show_bios_limit(struct cpufreq_policy * policy,char * buf)861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
862 {
863 unsigned int limit;
864 int ret;
865 if (cpufreq_driver->bios_limit) {
866 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
867 if (!ret)
868 return sprintf(buf, "%u\n", limit);
869 }
870 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
871 }
872
873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
874 cpufreq_freq_attr_ro(cpuinfo_min_freq);
875 cpufreq_freq_attr_ro(cpuinfo_max_freq);
876 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
877 cpufreq_freq_attr_ro(scaling_available_governors);
878 cpufreq_freq_attr_ro(scaling_driver);
879 cpufreq_freq_attr_ro(scaling_cur_freq);
880 cpufreq_freq_attr_ro(bios_limit);
881 cpufreq_freq_attr_ro(related_cpus);
882 cpufreq_freq_attr_ro(affected_cpus);
883 cpufreq_freq_attr_rw(scaling_min_freq);
884 cpufreq_freq_attr_rw(scaling_max_freq);
885 cpufreq_freq_attr_rw(scaling_governor);
886 cpufreq_freq_attr_rw(scaling_setspeed);
887
888 static struct attribute *default_attrs[] = {
889 &cpuinfo_min_freq.attr,
890 &cpuinfo_max_freq.attr,
891 &cpuinfo_transition_latency.attr,
892 &scaling_min_freq.attr,
893 &scaling_max_freq.attr,
894 &affected_cpus.attr,
895 &related_cpus.attr,
896 &scaling_governor.attr,
897 &scaling_driver.attr,
898 &scaling_available_governors.attr,
899 &scaling_setspeed.attr,
900 NULL
901 };
902
903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
904 #define to_attr(a) container_of(a, struct freq_attr, attr)
905
show(struct kobject * kobj,struct attribute * attr,char * buf)906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
907 {
908 struct cpufreq_policy *policy = to_policy(kobj);
909 struct freq_attr *fattr = to_attr(attr);
910 ssize_t ret;
911
912 if (!fattr->show)
913 return -EIO;
914
915 down_read(&policy->rwsem);
916 ret = fattr->show(policy, buf);
917 up_read(&policy->rwsem);
918
919 return ret;
920 }
921
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)922 static ssize_t store(struct kobject *kobj, struct attribute *attr,
923 const char *buf, size_t count)
924 {
925 struct cpufreq_policy *policy = to_policy(kobj);
926 struct freq_attr *fattr = to_attr(attr);
927 ssize_t ret = -EINVAL;
928
929 if (!fattr->store)
930 return -EIO;
931
932 /*
933 * cpus_read_trylock() is used here to work around a circular lock
934 * dependency problem with respect to the cpufreq_register_driver().
935 */
936 if (!cpus_read_trylock())
937 return -EBUSY;
938
939 if (cpu_online(policy->cpu)) {
940 down_write(&policy->rwsem);
941 ret = fattr->store(policy, buf, count);
942 up_write(&policy->rwsem);
943 }
944
945 cpus_read_unlock();
946
947 return ret;
948 }
949
cpufreq_sysfs_release(struct kobject * kobj)950 static void cpufreq_sysfs_release(struct kobject *kobj)
951 {
952 struct cpufreq_policy *policy = to_policy(kobj);
953 pr_debug("last reference is dropped\n");
954 complete(&policy->kobj_unregister);
955 }
956
957 static const struct sysfs_ops sysfs_ops = {
958 .show = show,
959 .store = store,
960 };
961
962 static struct kobj_type ktype_cpufreq = {
963 .sysfs_ops = &sysfs_ops,
964 .default_attrs = default_attrs,
965 .release = cpufreq_sysfs_release,
966 };
967
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu)968 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
969 {
970 struct device *dev = get_cpu_device(cpu);
971
972 if (!dev)
973 return;
974
975 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
976 return;
977
978 dev_dbg(dev, "%s: Adding symlink\n", __func__);
979 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
980 dev_err(dev, "cpufreq symlink creation failed\n");
981 }
982
remove_cpu_dev_symlink(struct cpufreq_policy * policy,struct device * dev)983 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
984 struct device *dev)
985 {
986 dev_dbg(dev, "%s: Removing symlink\n", __func__);
987 sysfs_remove_link(&dev->kobj, "cpufreq");
988 }
989
cpufreq_add_dev_interface(struct cpufreq_policy * policy)990 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
991 {
992 struct freq_attr **drv_attr;
993 int ret = 0;
994
995 /* set up files for this cpu device */
996 drv_attr = cpufreq_driver->attr;
997 while (drv_attr && *drv_attr) {
998 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
999 if (ret)
1000 return ret;
1001 drv_attr++;
1002 }
1003 if (cpufreq_driver->get) {
1004 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1005 if (ret)
1006 return ret;
1007 }
1008
1009 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1010 if (ret)
1011 return ret;
1012
1013 if (cpufreq_driver->bios_limit) {
1014 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1015 if (ret)
1016 return ret;
1017 }
1018
1019 return 0;
1020 }
1021
cpufreq_default_governor(void)1022 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1023 {
1024 return NULL;
1025 }
1026
cpufreq_init_policy(struct cpufreq_policy * policy)1027 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1028 {
1029 struct cpufreq_governor *gov = NULL;
1030 struct cpufreq_policy new_policy;
1031
1032 memcpy(&new_policy, policy, sizeof(*policy));
1033
1034 /* Update governor of new_policy to the governor used before hotplug */
1035 gov = find_governor(policy->last_governor);
1036 if (gov) {
1037 pr_debug("Restoring governor %s for cpu %d\n",
1038 policy->governor->name, policy->cpu);
1039 } else {
1040 gov = cpufreq_default_governor();
1041 if (!gov)
1042 return -ENODATA;
1043 }
1044
1045 new_policy.governor = gov;
1046
1047 /* Use the default policy if there is no last_policy. */
1048 if (cpufreq_driver->setpolicy) {
1049 if (policy->last_policy)
1050 new_policy.policy = policy->last_policy;
1051 else
1052 cpufreq_parse_governor(gov->name, &new_policy);
1053 }
1054 /* set default policy */
1055 return cpufreq_set_policy(policy, &new_policy);
1056 }
1057
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1058 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1059 {
1060 int ret = 0;
1061
1062 /* Has this CPU been taken care of already? */
1063 if (cpumask_test_cpu(cpu, policy->cpus))
1064 return 0;
1065
1066 down_write(&policy->rwsem);
1067 if (has_target())
1068 cpufreq_stop_governor(policy);
1069
1070 cpumask_set_cpu(cpu, policy->cpus);
1071
1072 if (has_target()) {
1073 ret = cpufreq_start_governor(policy);
1074 if (ret)
1075 pr_err("%s: Failed to start governor\n", __func__);
1076 }
1077 up_write(&policy->rwsem);
1078 return ret;
1079 }
1080
handle_update(struct work_struct * work)1081 static void handle_update(struct work_struct *work)
1082 {
1083 struct cpufreq_policy *policy =
1084 container_of(work, struct cpufreq_policy, update);
1085 unsigned int cpu = policy->cpu;
1086 pr_debug("handle_update for cpu %u called\n", cpu);
1087 cpufreq_update_policy(cpu);
1088 }
1089
cpufreq_policy_alloc(unsigned int cpu)1090 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1091 {
1092 struct cpufreq_policy *policy;
1093 int ret;
1094
1095 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1096 if (!policy)
1097 return NULL;
1098
1099 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1100 goto err_free_policy;
1101
1102 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1103 goto err_free_cpumask;
1104
1105 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1106 goto err_free_rcpumask;
1107
1108 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1109 cpufreq_global_kobject, "policy%u", cpu);
1110 if (ret) {
1111 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1112 kobject_put(&policy->kobj);
1113 goto err_free_real_cpus;
1114 }
1115
1116 INIT_LIST_HEAD(&policy->policy_list);
1117 init_rwsem(&policy->rwsem);
1118 spin_lock_init(&policy->transition_lock);
1119 init_waitqueue_head(&policy->transition_wait);
1120 init_completion(&policy->kobj_unregister);
1121 INIT_WORK(&policy->update, handle_update);
1122
1123 policy->cpu = cpu;
1124 return policy;
1125
1126 err_free_real_cpus:
1127 free_cpumask_var(policy->real_cpus);
1128 err_free_rcpumask:
1129 free_cpumask_var(policy->related_cpus);
1130 err_free_cpumask:
1131 free_cpumask_var(policy->cpus);
1132 err_free_policy:
1133 kfree(policy);
1134
1135 return NULL;
1136 }
1137
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1138 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1139 {
1140 struct kobject *kobj;
1141 struct completion *cmp;
1142
1143 down_write(&policy->rwsem);
1144 cpufreq_stats_free_table(policy);
1145 kobj = &policy->kobj;
1146 cmp = &policy->kobj_unregister;
1147 up_write(&policy->rwsem);
1148 kobject_put(kobj);
1149
1150 /*
1151 * We need to make sure that the underlying kobj is
1152 * actually not referenced anymore by anybody before we
1153 * proceed with unloading.
1154 */
1155 pr_debug("waiting for dropping of refcount\n");
1156 wait_for_completion(cmp);
1157 pr_debug("wait complete\n");
1158 }
1159
cpufreq_policy_free(struct cpufreq_policy * policy)1160 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1161 {
1162 unsigned long flags;
1163 int cpu;
1164
1165 /* Remove policy from list */
1166 write_lock_irqsave(&cpufreq_driver_lock, flags);
1167 list_del(&policy->policy_list);
1168
1169 for_each_cpu(cpu, policy->related_cpus)
1170 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1171 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1172
1173 cpufreq_policy_put_kobj(policy);
1174 free_cpumask_var(policy->real_cpus);
1175 free_cpumask_var(policy->related_cpus);
1176 free_cpumask_var(policy->cpus);
1177 kfree(policy);
1178 }
1179
cpufreq_online(unsigned int cpu)1180 static int cpufreq_online(unsigned int cpu)
1181 {
1182 struct cpufreq_policy *policy;
1183 bool new_policy;
1184 unsigned long flags;
1185 unsigned int j;
1186 int ret;
1187
1188 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1189
1190 /* Check if this CPU already has a policy to manage it */
1191 policy = per_cpu(cpufreq_cpu_data, cpu);
1192 if (policy) {
1193 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1194 if (!policy_is_inactive(policy))
1195 return cpufreq_add_policy_cpu(policy, cpu);
1196
1197 /* This is the only online CPU for the policy. Start over. */
1198 new_policy = false;
1199 down_write(&policy->rwsem);
1200 policy->cpu = cpu;
1201 policy->governor = NULL;
1202 up_write(&policy->rwsem);
1203 } else {
1204 new_policy = true;
1205 policy = cpufreq_policy_alloc(cpu);
1206 if (!policy)
1207 return -ENOMEM;
1208 }
1209
1210 cpumask_copy(policy->cpus, cpumask_of(cpu));
1211
1212 /* call driver. From then on the cpufreq must be able
1213 * to accept all calls to ->verify and ->setpolicy for this CPU
1214 */
1215 ret = cpufreq_driver->init(policy);
1216 if (ret) {
1217 pr_debug("initialization failed\n");
1218 goto out_free_policy;
1219 }
1220
1221 ret = cpufreq_table_validate_and_sort(policy);
1222 if (ret)
1223 goto out_exit_policy;
1224
1225 down_write(&policy->rwsem);
1226
1227 if (new_policy) {
1228 /* related_cpus should at least include policy->cpus. */
1229 cpumask_copy(policy->related_cpus, policy->cpus);
1230 }
1231
1232 /*
1233 * affected cpus must always be the one, which are online. We aren't
1234 * managing offline cpus here.
1235 */
1236 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1237
1238 if (new_policy) {
1239 policy->user_policy.min = policy->min;
1240 policy->user_policy.max = policy->max;
1241
1242 for_each_cpu(j, policy->related_cpus) {
1243 per_cpu(cpufreq_cpu_data, j) = policy;
1244 add_cpu_dev_symlink(policy, j);
1245 }
1246 } else {
1247 policy->min = policy->user_policy.min;
1248 policy->max = policy->user_policy.max;
1249 }
1250
1251 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1252 policy->cur = cpufreq_driver->get(policy->cpu);
1253 if (!policy->cur) {
1254 pr_err("%s: ->get() failed\n", __func__);
1255 goto out_destroy_policy;
1256 }
1257 }
1258
1259 /*
1260 * Sometimes boot loaders set CPU frequency to a value outside of
1261 * frequency table present with cpufreq core. In such cases CPU might be
1262 * unstable if it has to run on that frequency for long duration of time
1263 * and so its better to set it to a frequency which is specified in
1264 * freq-table. This also makes cpufreq stats inconsistent as
1265 * cpufreq-stats would fail to register because current frequency of CPU
1266 * isn't found in freq-table.
1267 *
1268 * Because we don't want this change to effect boot process badly, we go
1269 * for the next freq which is >= policy->cur ('cur' must be set by now,
1270 * otherwise we will end up setting freq to lowest of the table as 'cur'
1271 * is initialized to zero).
1272 *
1273 * We are passing target-freq as "policy->cur - 1" otherwise
1274 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1275 * equal to target-freq.
1276 */
1277 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1278 && has_target()) {
1279 /* Are we running at unknown frequency ? */
1280 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1281 if (ret == -EINVAL) {
1282 /* Warn user and fix it */
1283 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1284 __func__, policy->cpu, policy->cur);
1285 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1286 CPUFREQ_RELATION_L);
1287
1288 /*
1289 * Reaching here after boot in a few seconds may not
1290 * mean that system will remain stable at "unknown"
1291 * frequency for longer duration. Hence, a BUG_ON().
1292 */
1293 BUG_ON(ret);
1294 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1295 __func__, policy->cpu, policy->cur);
1296 }
1297 }
1298
1299 if (new_policy) {
1300 ret = cpufreq_add_dev_interface(policy);
1301 if (ret)
1302 goto out_destroy_policy;
1303
1304 cpufreq_stats_create_table(policy);
1305
1306 write_lock_irqsave(&cpufreq_driver_lock, flags);
1307 list_add(&policy->policy_list, &cpufreq_policy_list);
1308 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1309 }
1310
1311 ret = cpufreq_init_policy(policy);
1312 if (ret) {
1313 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1314 __func__, cpu, ret);
1315 /* cpufreq_policy_free() will notify based on this */
1316 new_policy = false;
1317 goto out_destroy_policy;
1318 }
1319
1320 up_write(&policy->rwsem);
1321
1322 kobject_uevent(&policy->kobj, KOBJ_ADD);
1323
1324 /* Callback for handling stuff after policy is ready */
1325 if (cpufreq_driver->ready)
1326 cpufreq_driver->ready(policy);
1327
1328 pr_debug("initialization complete\n");
1329
1330 return 0;
1331
1332 out_destroy_policy:
1333 for_each_cpu(j, policy->real_cpus)
1334 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1335
1336 up_write(&policy->rwsem);
1337
1338 out_exit_policy:
1339 if (cpufreq_driver->exit)
1340 cpufreq_driver->exit(policy);
1341
1342 out_free_policy:
1343 cpufreq_policy_free(policy);
1344 return ret;
1345 }
1346
1347 /**
1348 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1349 * @dev: CPU device.
1350 * @sif: Subsystem interface structure pointer (not used)
1351 */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1352 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1353 {
1354 struct cpufreq_policy *policy;
1355 unsigned cpu = dev->id;
1356 int ret;
1357
1358 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1359
1360 if (cpu_online(cpu)) {
1361 ret = cpufreq_online(cpu);
1362 if (ret)
1363 return ret;
1364 }
1365
1366 /* Create sysfs link on CPU registration */
1367 policy = per_cpu(cpufreq_cpu_data, cpu);
1368 if (policy)
1369 add_cpu_dev_symlink(policy, cpu);
1370
1371 return 0;
1372 }
1373
cpufreq_offline(unsigned int cpu)1374 static int cpufreq_offline(unsigned int cpu)
1375 {
1376 struct cpufreq_policy *policy;
1377 int ret;
1378
1379 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1380
1381 policy = cpufreq_cpu_get_raw(cpu);
1382 if (!policy) {
1383 pr_debug("%s: No cpu_data found\n", __func__);
1384 return 0;
1385 }
1386
1387 down_write(&policy->rwsem);
1388 if (has_target())
1389 cpufreq_stop_governor(policy);
1390
1391 cpumask_clear_cpu(cpu, policy->cpus);
1392
1393 if (policy_is_inactive(policy)) {
1394 if (has_target())
1395 strncpy(policy->last_governor, policy->governor->name,
1396 CPUFREQ_NAME_LEN);
1397 else
1398 policy->last_policy = policy->policy;
1399 } else if (cpu == policy->cpu) {
1400 /* Nominate new CPU */
1401 policy->cpu = cpumask_any(policy->cpus);
1402 }
1403
1404 /* Start governor again for active policy */
1405 if (!policy_is_inactive(policy)) {
1406 if (has_target()) {
1407 ret = cpufreq_start_governor(policy);
1408 if (ret)
1409 pr_err("%s: Failed to start governor\n", __func__);
1410 }
1411
1412 goto unlock;
1413 }
1414
1415 if (cpufreq_driver->stop_cpu)
1416 cpufreq_driver->stop_cpu(policy);
1417
1418 if (has_target())
1419 cpufreq_exit_governor(policy);
1420
1421 /*
1422 * Perform the ->exit() even during light-weight tear-down,
1423 * since this is a core component, and is essential for the
1424 * subsequent light-weight ->init() to succeed.
1425 */
1426 if (cpufreq_driver->exit) {
1427 cpufreq_driver->exit(policy);
1428 policy->freq_table = NULL;
1429 }
1430
1431 unlock:
1432 up_write(&policy->rwsem);
1433 return 0;
1434 }
1435
1436 /**
1437 * cpufreq_remove_dev - remove a CPU device
1438 *
1439 * Removes the cpufreq interface for a CPU device.
1440 */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1441 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1442 {
1443 unsigned int cpu = dev->id;
1444 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1445
1446 if (!policy)
1447 return;
1448
1449 if (cpu_online(cpu))
1450 cpufreq_offline(cpu);
1451
1452 cpumask_clear_cpu(cpu, policy->real_cpus);
1453 remove_cpu_dev_symlink(policy, dev);
1454
1455 if (cpumask_empty(policy->real_cpus))
1456 cpufreq_policy_free(policy);
1457 }
1458
1459 /**
1460 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1461 * in deep trouble.
1462 * @policy: policy managing CPUs
1463 * @new_freq: CPU frequency the CPU actually runs at
1464 *
1465 * We adjust to current frequency first, and need to clean up later.
1466 * So either call to cpufreq_update_policy() or schedule handle_update()).
1467 */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1468 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1469 unsigned int new_freq)
1470 {
1471 struct cpufreq_freqs freqs;
1472
1473 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1474 policy->cur, new_freq);
1475
1476 freqs.old = policy->cur;
1477 freqs.new = new_freq;
1478
1479 cpufreq_freq_transition_begin(policy, &freqs);
1480 cpufreq_freq_transition_end(policy, &freqs, 0);
1481 }
1482
1483 /**
1484 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1485 * @cpu: CPU number
1486 *
1487 * This is the last known freq, without actually getting it from the driver.
1488 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1489 */
cpufreq_quick_get(unsigned int cpu)1490 unsigned int cpufreq_quick_get(unsigned int cpu)
1491 {
1492 struct cpufreq_policy *policy;
1493 unsigned int ret_freq = 0;
1494 unsigned long flags;
1495
1496 read_lock_irqsave(&cpufreq_driver_lock, flags);
1497
1498 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1499 ret_freq = cpufreq_driver->get(cpu);
1500 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1501 return ret_freq;
1502 }
1503
1504 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1505
1506 policy = cpufreq_cpu_get(cpu);
1507 if (policy) {
1508 ret_freq = policy->cur;
1509 cpufreq_cpu_put(policy);
1510 }
1511
1512 return ret_freq;
1513 }
1514 EXPORT_SYMBOL(cpufreq_quick_get);
1515
1516 /**
1517 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1518 * @cpu: CPU number
1519 *
1520 * Just return the max possible frequency for a given CPU.
1521 */
cpufreq_quick_get_max(unsigned int cpu)1522 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1523 {
1524 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1525 unsigned int ret_freq = 0;
1526
1527 if (policy) {
1528 ret_freq = policy->max;
1529 cpufreq_cpu_put(policy);
1530 }
1531
1532 return ret_freq;
1533 }
1534 EXPORT_SYMBOL(cpufreq_quick_get_max);
1535
__cpufreq_get(struct cpufreq_policy * policy)1536 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1537 {
1538 unsigned int ret_freq = 0;
1539
1540 if (unlikely(policy_is_inactive(policy)) || !cpufreq_driver->get)
1541 return ret_freq;
1542
1543 ret_freq = cpufreq_driver->get(policy->cpu);
1544
1545 /*
1546 * If fast frequency switching is used with the given policy, the check
1547 * against policy->cur is pointless, so skip it in that case too.
1548 */
1549 if (policy->fast_switch_enabled)
1550 return ret_freq;
1551
1552 if (ret_freq && policy->cur &&
1553 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1554 /* verify no discrepancy between actual and
1555 saved value exists */
1556 if (unlikely(ret_freq != policy->cur)) {
1557 cpufreq_out_of_sync(policy, ret_freq);
1558 schedule_work(&policy->update);
1559 }
1560 }
1561
1562 return ret_freq;
1563 }
1564
1565 /**
1566 * cpufreq_get - get the current CPU frequency (in kHz)
1567 * @cpu: CPU number
1568 *
1569 * Get the CPU current (static) CPU frequency
1570 */
cpufreq_get(unsigned int cpu)1571 unsigned int cpufreq_get(unsigned int cpu)
1572 {
1573 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1574 unsigned int ret_freq = 0;
1575
1576 if (policy) {
1577 down_read(&policy->rwsem);
1578 ret_freq = __cpufreq_get(policy);
1579 up_read(&policy->rwsem);
1580
1581 cpufreq_cpu_put(policy);
1582 }
1583
1584 return ret_freq;
1585 }
1586 EXPORT_SYMBOL(cpufreq_get);
1587
cpufreq_update_current_freq(struct cpufreq_policy * policy)1588 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1589 {
1590 unsigned int new_freq;
1591
1592 new_freq = cpufreq_driver->get(policy->cpu);
1593 if (!new_freq)
1594 return 0;
1595
1596 if (!policy->cur) {
1597 pr_debug("cpufreq: Driver did not initialize current freq\n");
1598 policy->cur = new_freq;
1599 } else if (policy->cur != new_freq && has_target()) {
1600 cpufreq_out_of_sync(policy, new_freq);
1601 }
1602
1603 return new_freq;
1604 }
1605
1606 static struct subsys_interface cpufreq_interface = {
1607 .name = "cpufreq",
1608 .subsys = &cpu_subsys,
1609 .add_dev = cpufreq_add_dev,
1610 .remove_dev = cpufreq_remove_dev,
1611 };
1612
1613 /*
1614 * In case platform wants some specific frequency to be configured
1615 * during suspend..
1616 */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1617 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1618 {
1619 int ret;
1620
1621 if (!policy->suspend_freq) {
1622 pr_debug("%s: suspend_freq not defined\n", __func__);
1623 return 0;
1624 }
1625
1626 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1627 policy->suspend_freq);
1628
1629 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1630 CPUFREQ_RELATION_H);
1631 if (ret)
1632 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1633 __func__, policy->suspend_freq, ret);
1634
1635 return ret;
1636 }
1637 EXPORT_SYMBOL(cpufreq_generic_suspend);
1638
1639 /**
1640 * cpufreq_suspend() - Suspend CPUFreq governors
1641 *
1642 * Called during system wide Suspend/Hibernate cycles for suspending governors
1643 * as some platforms can't change frequency after this point in suspend cycle.
1644 * Because some of the devices (like: i2c, regulators, etc) they use for
1645 * changing frequency are suspended quickly after this point.
1646 */
cpufreq_suspend(void)1647 void cpufreq_suspend(void)
1648 {
1649 struct cpufreq_policy *policy;
1650
1651 if (!cpufreq_driver)
1652 return;
1653
1654 if (!has_target() && !cpufreq_driver->suspend)
1655 goto suspend;
1656
1657 pr_debug("%s: Suspending Governors\n", __func__);
1658
1659 for_each_active_policy(policy) {
1660 if (has_target()) {
1661 down_write(&policy->rwsem);
1662 cpufreq_stop_governor(policy);
1663 up_write(&policy->rwsem);
1664 }
1665
1666 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1667 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1668 policy);
1669 }
1670
1671 suspend:
1672 cpufreq_suspended = true;
1673 }
1674
1675 /**
1676 * cpufreq_resume() - Resume CPUFreq governors
1677 *
1678 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1679 * are suspended with cpufreq_suspend().
1680 */
cpufreq_resume(void)1681 void cpufreq_resume(void)
1682 {
1683 struct cpufreq_policy *policy;
1684 int ret;
1685
1686 if (!cpufreq_driver)
1687 return;
1688
1689 if (unlikely(!cpufreq_suspended))
1690 return;
1691
1692 cpufreq_suspended = false;
1693
1694 if (!has_target() && !cpufreq_driver->resume)
1695 return;
1696
1697 pr_debug("%s: Resuming Governors\n", __func__);
1698
1699 for_each_active_policy(policy) {
1700 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1701 pr_err("%s: Failed to resume driver: %p\n", __func__,
1702 policy);
1703 } else if (has_target()) {
1704 down_write(&policy->rwsem);
1705 ret = cpufreq_start_governor(policy);
1706 up_write(&policy->rwsem);
1707
1708 if (ret)
1709 pr_err("%s: Failed to start governor for policy: %p\n",
1710 __func__, policy);
1711 }
1712 }
1713 }
1714
1715 /**
1716 * cpufreq_get_current_driver - return current driver's name
1717 *
1718 * Return the name string of the currently loaded cpufreq driver
1719 * or NULL, if none.
1720 */
cpufreq_get_current_driver(void)1721 const char *cpufreq_get_current_driver(void)
1722 {
1723 if (cpufreq_driver)
1724 return cpufreq_driver->name;
1725
1726 return NULL;
1727 }
1728 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1729
1730 /**
1731 * cpufreq_get_driver_data - return current driver data
1732 *
1733 * Return the private data of the currently loaded cpufreq
1734 * driver, or NULL if no cpufreq driver is loaded.
1735 */
cpufreq_get_driver_data(void)1736 void *cpufreq_get_driver_data(void)
1737 {
1738 if (cpufreq_driver)
1739 return cpufreq_driver->driver_data;
1740
1741 return NULL;
1742 }
1743 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1744
1745 /*********************************************************************
1746 * NOTIFIER LISTS INTERFACE *
1747 *********************************************************************/
1748
1749 /**
1750 * cpufreq_register_notifier - register a driver with cpufreq
1751 * @nb: notifier function to register
1752 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1753 *
1754 * Add a driver to one of two lists: either a list of drivers that
1755 * are notified about clock rate changes (once before and once after
1756 * the transition), or a list of drivers that are notified about
1757 * changes in cpufreq policy.
1758 *
1759 * This function may sleep, and has the same return conditions as
1760 * blocking_notifier_chain_register.
1761 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)1762 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1763 {
1764 int ret;
1765
1766 if (cpufreq_disabled())
1767 return -EINVAL;
1768
1769 switch (list) {
1770 case CPUFREQ_TRANSITION_NOTIFIER:
1771 mutex_lock(&cpufreq_fast_switch_lock);
1772
1773 if (cpufreq_fast_switch_count > 0) {
1774 mutex_unlock(&cpufreq_fast_switch_lock);
1775 return -EBUSY;
1776 }
1777 ret = srcu_notifier_chain_register(
1778 &cpufreq_transition_notifier_list, nb);
1779 if (!ret)
1780 cpufreq_fast_switch_count--;
1781
1782 mutex_unlock(&cpufreq_fast_switch_lock);
1783 break;
1784 case CPUFREQ_POLICY_NOTIFIER:
1785 ret = blocking_notifier_chain_register(
1786 &cpufreq_policy_notifier_list, nb);
1787 break;
1788 default:
1789 ret = -EINVAL;
1790 }
1791
1792 return ret;
1793 }
1794 EXPORT_SYMBOL(cpufreq_register_notifier);
1795
1796 /**
1797 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1798 * @nb: notifier block to be unregistered
1799 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1800 *
1801 * Remove a driver from the CPU frequency notifier list.
1802 *
1803 * This function may sleep, and has the same return conditions as
1804 * blocking_notifier_chain_unregister.
1805 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)1806 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1807 {
1808 int ret;
1809
1810 if (cpufreq_disabled())
1811 return -EINVAL;
1812
1813 switch (list) {
1814 case CPUFREQ_TRANSITION_NOTIFIER:
1815 mutex_lock(&cpufreq_fast_switch_lock);
1816
1817 ret = srcu_notifier_chain_unregister(
1818 &cpufreq_transition_notifier_list, nb);
1819 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1820 cpufreq_fast_switch_count++;
1821
1822 mutex_unlock(&cpufreq_fast_switch_lock);
1823 break;
1824 case CPUFREQ_POLICY_NOTIFIER:
1825 ret = blocking_notifier_chain_unregister(
1826 &cpufreq_policy_notifier_list, nb);
1827 break;
1828 default:
1829 ret = -EINVAL;
1830 }
1831
1832 return ret;
1833 }
1834 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1835
1836
1837 /*********************************************************************
1838 * GOVERNORS *
1839 *********************************************************************/
1840
1841 /**
1842 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1843 * @policy: cpufreq policy to switch the frequency for.
1844 * @target_freq: New frequency to set (may be approximate).
1845 *
1846 * Carry out a fast frequency switch without sleeping.
1847 *
1848 * The driver's ->fast_switch() callback invoked by this function must be
1849 * suitable for being called from within RCU-sched read-side critical sections
1850 * and it is expected to select the minimum available frequency greater than or
1851 * equal to @target_freq (CPUFREQ_RELATION_L).
1852 *
1853 * This function must not be called if policy->fast_switch_enabled is unset.
1854 *
1855 * Governors calling this function must guarantee that it will never be invoked
1856 * twice in parallel for the same policy and that it will never be called in
1857 * parallel with either ->target() or ->target_index() for the same policy.
1858 *
1859 * Returns the actual frequency set for the CPU.
1860 *
1861 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1862 * error condition, the hardware configuration must be preserved.
1863 */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)1864 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1865 unsigned int target_freq)
1866 {
1867 target_freq = clamp_val(target_freq, policy->min, policy->max);
1868
1869 return cpufreq_driver->fast_switch(policy, target_freq);
1870 }
1871 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1872
1873 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)1874 static int __target_intermediate(struct cpufreq_policy *policy,
1875 struct cpufreq_freqs *freqs, int index)
1876 {
1877 int ret;
1878
1879 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1880
1881 /* We don't need to switch to intermediate freq */
1882 if (!freqs->new)
1883 return 0;
1884
1885 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1886 __func__, policy->cpu, freqs->old, freqs->new);
1887
1888 cpufreq_freq_transition_begin(policy, freqs);
1889 ret = cpufreq_driver->target_intermediate(policy, index);
1890 cpufreq_freq_transition_end(policy, freqs, ret);
1891
1892 if (ret)
1893 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1894 __func__, ret);
1895
1896 return ret;
1897 }
1898
__target_index(struct cpufreq_policy * policy,int index)1899 static int __target_index(struct cpufreq_policy *policy, int index)
1900 {
1901 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1902 unsigned int intermediate_freq = 0;
1903 unsigned int newfreq = policy->freq_table[index].frequency;
1904 int retval = -EINVAL;
1905 bool notify;
1906
1907 if (newfreq == policy->cur)
1908 return 0;
1909
1910 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1911 if (notify) {
1912 /* Handle switching to intermediate frequency */
1913 if (cpufreq_driver->get_intermediate) {
1914 retval = __target_intermediate(policy, &freqs, index);
1915 if (retval)
1916 return retval;
1917
1918 intermediate_freq = freqs.new;
1919 /* Set old freq to intermediate */
1920 if (intermediate_freq)
1921 freqs.old = freqs.new;
1922 }
1923
1924 freqs.new = newfreq;
1925 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1926 __func__, policy->cpu, freqs.old, freqs.new);
1927
1928 cpufreq_freq_transition_begin(policy, &freqs);
1929 }
1930
1931 retval = cpufreq_driver->target_index(policy, index);
1932 if (retval)
1933 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1934 retval);
1935
1936 if (notify) {
1937 cpufreq_freq_transition_end(policy, &freqs, retval);
1938
1939 /*
1940 * Failed after setting to intermediate freq? Driver should have
1941 * reverted back to initial frequency and so should we. Check
1942 * here for intermediate_freq instead of get_intermediate, in
1943 * case we haven't switched to intermediate freq at all.
1944 */
1945 if (unlikely(retval && intermediate_freq)) {
1946 freqs.old = intermediate_freq;
1947 freqs.new = policy->restore_freq;
1948 cpufreq_freq_transition_begin(policy, &freqs);
1949 cpufreq_freq_transition_end(policy, &freqs, 0);
1950 }
1951 }
1952
1953 return retval;
1954 }
1955
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1956 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1957 unsigned int target_freq,
1958 unsigned int relation)
1959 {
1960 unsigned int old_target_freq = target_freq;
1961 int index;
1962
1963 if (cpufreq_disabled())
1964 return -ENODEV;
1965
1966 /* Make sure that target_freq is within supported range */
1967 target_freq = clamp_val(target_freq, policy->min, policy->max);
1968
1969 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1970 policy->cpu, target_freq, relation, old_target_freq);
1971
1972 /*
1973 * This might look like a redundant call as we are checking it again
1974 * after finding index. But it is left intentionally for cases where
1975 * exactly same freq is called again and so we can save on few function
1976 * calls.
1977 */
1978 if (target_freq == policy->cur)
1979 return 0;
1980
1981 /* Save last value to restore later on errors */
1982 policy->restore_freq = policy->cur;
1983
1984 if (cpufreq_driver->target)
1985 return cpufreq_driver->target(policy, target_freq, relation);
1986
1987 if (!cpufreq_driver->target_index)
1988 return -EINVAL;
1989
1990 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1991
1992 return __target_index(policy, index);
1993 }
1994 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1995
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1996 int cpufreq_driver_target(struct cpufreq_policy *policy,
1997 unsigned int target_freq,
1998 unsigned int relation)
1999 {
2000 int ret = -EINVAL;
2001
2002 down_write(&policy->rwsem);
2003
2004 ret = __cpufreq_driver_target(policy, target_freq, relation);
2005
2006 up_write(&policy->rwsem);
2007
2008 return ret;
2009 }
2010 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2011
cpufreq_fallback_governor(void)2012 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2013 {
2014 return NULL;
2015 }
2016
cpufreq_init_governor(struct cpufreq_policy * policy)2017 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2018 {
2019 int ret;
2020
2021 /* Don't start any governor operations if we are entering suspend */
2022 if (cpufreq_suspended)
2023 return 0;
2024 /*
2025 * Governor might not be initiated here if ACPI _PPC changed
2026 * notification happened, so check it.
2027 */
2028 if (!policy->governor)
2029 return -EINVAL;
2030
2031 /* Platform doesn't want dynamic frequency switching ? */
2032 if (policy->governor->dynamic_switching &&
2033 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2034 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2035
2036 if (gov) {
2037 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2038 policy->governor->name, gov->name);
2039 policy->governor = gov;
2040 } else {
2041 return -EINVAL;
2042 }
2043 }
2044
2045 if (!try_module_get(policy->governor->owner))
2046 return -EINVAL;
2047
2048 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2049
2050 if (policy->governor->init) {
2051 ret = policy->governor->init(policy);
2052 if (ret) {
2053 module_put(policy->governor->owner);
2054 return ret;
2055 }
2056 }
2057
2058 return 0;
2059 }
2060
cpufreq_exit_governor(struct cpufreq_policy * policy)2061 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2062 {
2063 if (cpufreq_suspended || !policy->governor)
2064 return;
2065
2066 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2067
2068 if (policy->governor->exit)
2069 policy->governor->exit(policy);
2070
2071 module_put(policy->governor->owner);
2072 }
2073
cpufreq_start_governor(struct cpufreq_policy * policy)2074 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2075 {
2076 int ret;
2077
2078 if (cpufreq_suspended)
2079 return 0;
2080
2081 if (!policy->governor)
2082 return -EINVAL;
2083
2084 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2085
2086 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2087 cpufreq_update_current_freq(policy);
2088
2089 if (policy->governor->start) {
2090 ret = policy->governor->start(policy);
2091 if (ret)
2092 return ret;
2093 }
2094
2095 if (policy->governor->limits)
2096 policy->governor->limits(policy);
2097
2098 return 0;
2099 }
2100
cpufreq_stop_governor(struct cpufreq_policy * policy)2101 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2102 {
2103 if (cpufreq_suspended || !policy->governor)
2104 return;
2105
2106 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2107
2108 if (policy->governor->stop)
2109 policy->governor->stop(policy);
2110 }
2111
cpufreq_governor_limits(struct cpufreq_policy * policy)2112 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2113 {
2114 if (cpufreq_suspended || !policy->governor)
2115 return;
2116
2117 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2118
2119 if (policy->governor->limits)
2120 policy->governor->limits(policy);
2121 }
2122
cpufreq_register_governor(struct cpufreq_governor * governor)2123 int cpufreq_register_governor(struct cpufreq_governor *governor)
2124 {
2125 int err;
2126
2127 if (!governor)
2128 return -EINVAL;
2129
2130 if (cpufreq_disabled())
2131 return -ENODEV;
2132
2133 mutex_lock(&cpufreq_governor_mutex);
2134
2135 err = -EBUSY;
2136 if (!find_governor(governor->name)) {
2137 err = 0;
2138 list_add(&governor->governor_list, &cpufreq_governor_list);
2139 }
2140
2141 mutex_unlock(&cpufreq_governor_mutex);
2142 return err;
2143 }
2144 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2145
cpufreq_unregister_governor(struct cpufreq_governor * governor)2146 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2147 {
2148 struct cpufreq_policy *policy;
2149 unsigned long flags;
2150
2151 if (!governor)
2152 return;
2153
2154 if (cpufreq_disabled())
2155 return;
2156
2157 /* clear last_governor for all inactive policies */
2158 read_lock_irqsave(&cpufreq_driver_lock, flags);
2159 for_each_inactive_policy(policy) {
2160 if (!strcmp(policy->last_governor, governor->name)) {
2161 policy->governor = NULL;
2162 strcpy(policy->last_governor, "\0");
2163 }
2164 }
2165 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2166
2167 mutex_lock(&cpufreq_governor_mutex);
2168 list_del(&governor->governor_list);
2169 mutex_unlock(&cpufreq_governor_mutex);
2170 }
2171 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2172
2173
2174 /*********************************************************************
2175 * POLICY INTERFACE *
2176 *********************************************************************/
2177
2178 /**
2179 * cpufreq_get_policy - get the current cpufreq_policy
2180 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2181 * is written
2182 *
2183 * Reads the current cpufreq policy.
2184 */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2185 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2186 {
2187 struct cpufreq_policy *cpu_policy;
2188 if (!policy)
2189 return -EINVAL;
2190
2191 cpu_policy = cpufreq_cpu_get(cpu);
2192 if (!cpu_policy)
2193 return -EINVAL;
2194
2195 memcpy(policy, cpu_policy, sizeof(*policy));
2196
2197 cpufreq_cpu_put(cpu_policy);
2198 return 0;
2199 }
2200 EXPORT_SYMBOL(cpufreq_get_policy);
2201
2202 /*
2203 * policy : current policy.
2204 * new_policy: policy to be set.
2205 */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_policy * new_policy)2206 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2207 struct cpufreq_policy *new_policy)
2208 {
2209 struct cpufreq_governor *old_gov;
2210 int ret;
2211
2212 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2213 new_policy->cpu, new_policy->min, new_policy->max);
2214
2215 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2216
2217 /*
2218 * This check works well when we store new min/max freq attributes,
2219 * because new_policy is a copy of policy with one field updated.
2220 */
2221 if (new_policy->min > new_policy->max)
2222 return -EINVAL;
2223
2224 /* verify the cpu speed can be set within this limit */
2225 ret = cpufreq_driver->verify(new_policy);
2226 if (ret)
2227 return ret;
2228
2229 /* adjust if necessary - all reasons */
2230 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2231 CPUFREQ_ADJUST, new_policy);
2232
2233 /*
2234 * verify the cpu speed can be set within this limit, which might be
2235 * different to the first one
2236 */
2237 ret = cpufreq_driver->verify(new_policy);
2238 if (ret)
2239 return ret;
2240
2241 /* notification of the new policy */
2242 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2243 CPUFREQ_NOTIFY, new_policy);
2244
2245 policy->min = new_policy->min;
2246 policy->max = new_policy->max;
2247 trace_cpu_frequency_limits(policy);
2248
2249 policy->cached_target_freq = UINT_MAX;
2250
2251 pr_debug("new min and max freqs are %u - %u kHz\n",
2252 policy->min, policy->max);
2253
2254 if (cpufreq_driver->setpolicy) {
2255 policy->policy = new_policy->policy;
2256 pr_debug("setting range\n");
2257 return cpufreq_driver->setpolicy(new_policy);
2258 }
2259
2260 if (new_policy->governor == policy->governor) {
2261 pr_debug("cpufreq: governor limits update\n");
2262 cpufreq_governor_limits(policy);
2263 return 0;
2264 }
2265
2266 pr_debug("governor switch\n");
2267
2268 /* save old, working values */
2269 old_gov = policy->governor;
2270 /* end old governor */
2271 if (old_gov) {
2272 cpufreq_stop_governor(policy);
2273 cpufreq_exit_governor(policy);
2274 }
2275
2276 /* start new governor */
2277 policy->governor = new_policy->governor;
2278 ret = cpufreq_init_governor(policy);
2279 if (!ret) {
2280 ret = cpufreq_start_governor(policy);
2281 if (!ret) {
2282 pr_debug("cpufreq: governor change\n");
2283 return 0;
2284 }
2285 cpufreq_exit_governor(policy);
2286 }
2287
2288 /* new governor failed, so re-start old one */
2289 pr_debug("starting governor %s failed\n", policy->governor->name);
2290 if (old_gov) {
2291 policy->governor = old_gov;
2292 if (cpufreq_init_governor(policy))
2293 policy->governor = NULL;
2294 else
2295 cpufreq_start_governor(policy);
2296 }
2297
2298 return ret;
2299 }
2300
2301 /**
2302 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2303 * @cpu: CPU which shall be re-evaluated
2304 *
2305 * Useful for policy notifiers which have different necessities
2306 * at different times.
2307 */
cpufreq_update_policy(unsigned int cpu)2308 void cpufreq_update_policy(unsigned int cpu)
2309 {
2310 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2311 struct cpufreq_policy new_policy;
2312
2313 if (!policy)
2314 return;
2315
2316 down_write(&policy->rwsem);
2317
2318 if (policy_is_inactive(policy))
2319 goto unlock;
2320
2321 pr_debug("updating policy for CPU %u\n", cpu);
2322 memcpy(&new_policy, policy, sizeof(*policy));
2323 new_policy.min = policy->user_policy.min;
2324 new_policy.max = policy->user_policy.max;
2325
2326 /*
2327 * BIOS might change freq behind our back
2328 * -> ask driver for current freq and notify governors about a change
2329 */
2330 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2331 if (cpufreq_suspended)
2332 goto unlock;
2333
2334 new_policy.cur = cpufreq_update_current_freq(policy);
2335 if (WARN_ON(!new_policy.cur))
2336 goto unlock;
2337 }
2338
2339 cpufreq_set_policy(policy, &new_policy);
2340
2341 unlock:
2342 up_write(&policy->rwsem);
2343
2344 cpufreq_cpu_put(policy);
2345 }
2346 EXPORT_SYMBOL(cpufreq_update_policy);
2347
2348 /*********************************************************************
2349 * BOOST *
2350 *********************************************************************/
cpufreq_boost_set_sw(int state)2351 static int cpufreq_boost_set_sw(int state)
2352 {
2353 struct cpufreq_policy *policy;
2354 int ret = -EINVAL;
2355
2356 for_each_active_policy(policy) {
2357 if (!policy->freq_table)
2358 continue;
2359
2360 ret = cpufreq_frequency_table_cpuinfo(policy,
2361 policy->freq_table);
2362 if (ret) {
2363 pr_err("%s: Policy frequency update failed\n",
2364 __func__);
2365 break;
2366 }
2367
2368 down_write(&policy->rwsem);
2369 policy->user_policy.max = policy->max;
2370 cpufreq_governor_limits(policy);
2371 up_write(&policy->rwsem);
2372 }
2373
2374 return ret;
2375 }
2376
cpufreq_boost_trigger_state(int state)2377 int cpufreq_boost_trigger_state(int state)
2378 {
2379 unsigned long flags;
2380 int ret = 0;
2381
2382 if (cpufreq_driver->boost_enabled == state)
2383 return 0;
2384
2385 write_lock_irqsave(&cpufreq_driver_lock, flags);
2386 cpufreq_driver->boost_enabled = state;
2387 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2388
2389 ret = cpufreq_driver->set_boost(state);
2390 if (ret) {
2391 write_lock_irqsave(&cpufreq_driver_lock, flags);
2392 cpufreq_driver->boost_enabled = !state;
2393 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2394
2395 pr_err("%s: Cannot %s BOOST\n",
2396 __func__, state ? "enable" : "disable");
2397 }
2398
2399 return ret;
2400 }
2401
cpufreq_boost_supported(void)2402 static bool cpufreq_boost_supported(void)
2403 {
2404 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2405 }
2406
create_boost_sysfs_file(void)2407 static int create_boost_sysfs_file(void)
2408 {
2409 int ret;
2410
2411 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2412 if (ret)
2413 pr_err("%s: cannot register global BOOST sysfs file\n",
2414 __func__);
2415
2416 return ret;
2417 }
2418
remove_boost_sysfs_file(void)2419 static void remove_boost_sysfs_file(void)
2420 {
2421 if (cpufreq_boost_supported())
2422 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2423 }
2424
cpufreq_enable_boost_support(void)2425 int cpufreq_enable_boost_support(void)
2426 {
2427 if (!cpufreq_driver)
2428 return -EINVAL;
2429
2430 if (cpufreq_boost_supported())
2431 return 0;
2432
2433 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2434
2435 /* This will get removed on driver unregister */
2436 return create_boost_sysfs_file();
2437 }
2438 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2439
cpufreq_boost_enabled(void)2440 int cpufreq_boost_enabled(void)
2441 {
2442 return cpufreq_driver->boost_enabled;
2443 }
2444 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2445
2446 /*********************************************************************
2447 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2448 *********************************************************************/
2449 static enum cpuhp_state hp_online;
2450
cpuhp_cpufreq_online(unsigned int cpu)2451 static int cpuhp_cpufreq_online(unsigned int cpu)
2452 {
2453 cpufreq_online(cpu);
2454
2455 return 0;
2456 }
2457
cpuhp_cpufreq_offline(unsigned int cpu)2458 static int cpuhp_cpufreq_offline(unsigned int cpu)
2459 {
2460 cpufreq_offline(cpu);
2461
2462 return 0;
2463 }
2464
2465 /**
2466 * cpufreq_register_driver - register a CPU Frequency driver
2467 * @driver_data: A struct cpufreq_driver containing the values#
2468 * submitted by the CPU Frequency driver.
2469 *
2470 * Registers a CPU Frequency driver to this core code. This code
2471 * returns zero on success, -EEXIST when another driver got here first
2472 * (and isn't unregistered in the meantime).
2473 *
2474 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2475 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2476 {
2477 unsigned long flags;
2478 int ret;
2479
2480 if (cpufreq_disabled())
2481 return -ENODEV;
2482
2483 /*
2484 * The cpufreq core depends heavily on the availability of device
2485 * structure, make sure they are available before proceeding further.
2486 */
2487 if (!get_cpu_device(0))
2488 return -EPROBE_DEFER;
2489
2490 if (!driver_data || !driver_data->verify || !driver_data->init ||
2491 !(driver_data->setpolicy || driver_data->target_index ||
2492 driver_data->target) ||
2493 (driver_data->setpolicy && (driver_data->target_index ||
2494 driver_data->target)) ||
2495 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2496 return -EINVAL;
2497
2498 pr_debug("trying to register driver %s\n", driver_data->name);
2499
2500 /* Protect against concurrent CPU online/offline. */
2501 cpus_read_lock();
2502
2503 write_lock_irqsave(&cpufreq_driver_lock, flags);
2504 if (cpufreq_driver) {
2505 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2506 ret = -EEXIST;
2507 goto out;
2508 }
2509 cpufreq_driver = driver_data;
2510 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2511
2512 if (driver_data->setpolicy)
2513 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2514
2515 if (cpufreq_boost_supported()) {
2516 ret = create_boost_sysfs_file();
2517 if (ret)
2518 goto err_null_driver;
2519 }
2520
2521 ret = subsys_interface_register(&cpufreq_interface);
2522 if (ret)
2523 goto err_boost_unreg;
2524
2525 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2526 list_empty(&cpufreq_policy_list)) {
2527 /* if all ->init() calls failed, unregister */
2528 ret = -ENODEV;
2529 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2530 driver_data->name);
2531 goto err_if_unreg;
2532 }
2533
2534 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2535 "cpufreq:online",
2536 cpuhp_cpufreq_online,
2537 cpuhp_cpufreq_offline);
2538 if (ret < 0)
2539 goto err_if_unreg;
2540 hp_online = ret;
2541 ret = 0;
2542
2543 pr_debug("driver %s up and running\n", driver_data->name);
2544 goto out;
2545
2546 err_if_unreg:
2547 subsys_interface_unregister(&cpufreq_interface);
2548 err_boost_unreg:
2549 remove_boost_sysfs_file();
2550 err_null_driver:
2551 write_lock_irqsave(&cpufreq_driver_lock, flags);
2552 cpufreq_driver = NULL;
2553 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2554 out:
2555 cpus_read_unlock();
2556 return ret;
2557 }
2558 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2559
2560 /**
2561 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2562 *
2563 * Unregister the current CPUFreq driver. Only call this if you have
2564 * the right to do so, i.e. if you have succeeded in initialising before!
2565 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2566 * currently not initialised.
2567 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2568 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2569 {
2570 unsigned long flags;
2571
2572 if (!cpufreq_driver || (driver != cpufreq_driver))
2573 return -EINVAL;
2574
2575 pr_debug("unregistering driver %s\n", driver->name);
2576
2577 /* Protect against concurrent cpu hotplug */
2578 cpus_read_lock();
2579 subsys_interface_unregister(&cpufreq_interface);
2580 remove_boost_sysfs_file();
2581 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2582
2583 write_lock_irqsave(&cpufreq_driver_lock, flags);
2584
2585 cpufreq_driver = NULL;
2586
2587 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2588 cpus_read_unlock();
2589
2590 return 0;
2591 }
2592 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2593
2594 struct kobject *cpufreq_global_kobject;
2595 EXPORT_SYMBOL(cpufreq_global_kobject);
2596
cpufreq_core_init(void)2597 static int __init cpufreq_core_init(void)
2598 {
2599 if (cpufreq_disabled())
2600 return -ENODEV;
2601
2602 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2603 BUG_ON(!cpufreq_global_kobject);
2604
2605 return 0;
2606 }
2607 module_param(off, int, 0444);
2608 core_initcall(cpufreq_core_init);
2609