1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/cpu_cooling.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/pm_opp.h>
19 #include <linux/platform_device.h>
20 #include <linux/regulator/consumer.h>
21
22 #define PU_SOC_VOLTAGE_NORMAL 1250000
23 #define PU_SOC_VOLTAGE_HIGH 1275000
24 #define FREQ_1P2_GHZ 1200000000
25
26 static struct regulator *arm_reg;
27 static struct regulator *pu_reg;
28 static struct regulator *soc_reg;
29
30 enum IMX6_CPUFREQ_CLKS {
31 ARM,
32 PLL1_SYS,
33 STEP,
34 PLL1_SW,
35 PLL2_PFD2_396M,
36 /* MX6UL requires two more clks */
37 PLL2_BUS,
38 SECONDARY_SEL,
39 };
40 #define IMX6Q_CPUFREQ_CLK_NUM 5
41 #define IMX6UL_CPUFREQ_CLK_NUM 7
42
43 static int num_clks;
44 static struct clk_bulk_data clks[] = {
45 { .id = "arm" },
46 { .id = "pll1_sys" },
47 { .id = "step" },
48 { .id = "pll1_sw" },
49 { .id = "pll2_pfd2_396m" },
50 { .id = "pll2_bus" },
51 { .id = "secondary_sel" },
52 };
53
54 static struct device *cpu_dev;
55 static struct thermal_cooling_device *cdev;
56 static bool free_opp;
57 static struct cpufreq_frequency_table *freq_table;
58 static unsigned int max_freq;
59 static unsigned int transition_latency;
60
61 static u32 *imx6_soc_volt;
62 static u32 soc_opp_count;
63
imx6q_set_target(struct cpufreq_policy * policy,unsigned int index)64 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
65 {
66 struct dev_pm_opp *opp;
67 unsigned long freq_hz, volt, volt_old;
68 unsigned int old_freq, new_freq;
69 bool pll1_sys_temp_enabled = false;
70 int ret;
71
72 new_freq = freq_table[index].frequency;
73 freq_hz = new_freq * 1000;
74 old_freq = clk_get_rate(clks[ARM].clk) / 1000;
75
76 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
77 if (IS_ERR(opp)) {
78 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
79 return PTR_ERR(opp);
80 }
81
82 volt = dev_pm_opp_get_voltage(opp);
83 dev_pm_opp_put(opp);
84
85 volt_old = regulator_get_voltage(arm_reg);
86
87 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
88 old_freq / 1000, volt_old / 1000,
89 new_freq / 1000, volt / 1000);
90
91 /* scaling up? scale voltage before frequency */
92 if (new_freq > old_freq) {
93 if (!IS_ERR(pu_reg)) {
94 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
95 if (ret) {
96 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
97 return ret;
98 }
99 }
100 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
101 if (ret) {
102 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
103 return ret;
104 }
105 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
106 if (ret) {
107 dev_err(cpu_dev,
108 "failed to scale vddarm up: %d\n", ret);
109 return ret;
110 }
111 }
112
113 /*
114 * The setpoints are selected per PLL/PDF frequencies, so we need to
115 * reprogram PLL for frequency scaling. The procedure of reprogramming
116 * PLL1 is as below.
117 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
118 * flow is slightly different from other i.MX6 OSC.
119 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
120 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
121 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
122 * - Disable pll2_pfd2_396m_clk
123 */
124 if (of_machine_is_compatible("fsl,imx6ul") ||
125 of_machine_is_compatible("fsl,imx6ull")) {
126 /*
127 * When changing pll1_sw_clk's parent to pll1_sys_clk,
128 * CPU may run at higher than 528MHz, this will lead to
129 * the system unstable if the voltage is lower than the
130 * voltage of 528MHz, so lower the CPU frequency to one
131 * half before changing CPU frequency.
132 */
133 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
134 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
135 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
136 clk_set_parent(clks[SECONDARY_SEL].clk,
137 clks[PLL2_BUS].clk);
138 else
139 clk_set_parent(clks[SECONDARY_SEL].clk,
140 clks[PLL2_PFD2_396M].clk);
141 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
142 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
143 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
144 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
145 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
146 }
147 } else {
148 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
149 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
150 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
151 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
152 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
153 } else {
154 /* pll1_sys needs to be enabled for divider rate change to work. */
155 pll1_sys_temp_enabled = true;
156 clk_prepare_enable(clks[PLL1_SYS].clk);
157 }
158 }
159
160 /* Ensure the arm clock divider is what we expect */
161 ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
162 if (ret) {
163 int ret1;
164
165 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
166 ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
167 if (ret1)
168 dev_warn(cpu_dev,
169 "failed to restore vddarm voltage: %d\n", ret1);
170 return ret;
171 }
172
173 /* PLL1 is only needed until after ARM-PODF is set. */
174 if (pll1_sys_temp_enabled)
175 clk_disable_unprepare(clks[PLL1_SYS].clk);
176
177 /* scaling down? scale voltage after frequency */
178 if (new_freq < old_freq) {
179 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
180 if (ret) {
181 dev_warn(cpu_dev,
182 "failed to scale vddarm down: %d\n", ret);
183 ret = 0;
184 }
185 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
186 if (ret) {
187 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
188 ret = 0;
189 }
190 if (!IS_ERR(pu_reg)) {
191 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
192 if (ret) {
193 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
194 ret = 0;
195 }
196 }
197 }
198
199 return 0;
200 }
201
imx6q_cpufreq_ready(struct cpufreq_policy * policy)202 static void imx6q_cpufreq_ready(struct cpufreq_policy *policy)
203 {
204 cdev = of_cpufreq_cooling_register(policy);
205
206 if (!cdev)
207 dev_err(cpu_dev,
208 "running cpufreq without cooling device: %ld\n",
209 PTR_ERR(cdev));
210 }
211
imx6q_cpufreq_init(struct cpufreq_policy * policy)212 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
213 {
214 int ret;
215
216 policy->clk = clks[ARM].clk;
217 ret = cpufreq_generic_init(policy, freq_table, transition_latency);
218 policy->suspend_freq = max_freq;
219
220 return ret;
221 }
222
imx6q_cpufreq_exit(struct cpufreq_policy * policy)223 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
224 {
225 cpufreq_cooling_unregister(cdev);
226
227 return 0;
228 }
229
230 static struct cpufreq_driver imx6q_cpufreq_driver = {
231 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
232 .verify = cpufreq_generic_frequency_table_verify,
233 .target_index = imx6q_set_target,
234 .get = cpufreq_generic_get,
235 .init = imx6q_cpufreq_init,
236 .exit = imx6q_cpufreq_exit,
237 .name = "imx6q-cpufreq",
238 .ready = imx6q_cpufreq_ready,
239 .attr = cpufreq_generic_attr,
240 .suspend = cpufreq_generic_suspend,
241 };
242
243 #define OCOTP_CFG3 0x440
244 #define OCOTP_CFG3_SPEED_SHIFT 16
245 #define OCOTP_CFG3_SPEED_1P2GHZ 0x3
246 #define OCOTP_CFG3_SPEED_996MHZ 0x2
247 #define OCOTP_CFG3_SPEED_852MHZ 0x1
248
imx6q_opp_check_speed_grading(struct device * dev)249 static void imx6q_opp_check_speed_grading(struct device *dev)
250 {
251 struct device_node *np;
252 void __iomem *base;
253 u32 val;
254
255 np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
256 if (!np)
257 return;
258
259 base = of_iomap(np, 0);
260 if (!base) {
261 dev_err(dev, "failed to map ocotp\n");
262 goto put_node;
263 }
264
265 /*
266 * SPEED_GRADING[1:0] defines the max speed of ARM:
267 * 2b'11: 1200000000Hz;
268 * 2b'10: 996000000Hz;
269 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
270 * 2b'00: 792000000Hz;
271 * We need to set the max speed of ARM according to fuse map.
272 */
273 val = readl_relaxed(base + OCOTP_CFG3);
274 val >>= OCOTP_CFG3_SPEED_SHIFT;
275 val &= 0x3;
276
277 if (val < OCOTP_CFG3_SPEED_996MHZ)
278 if (dev_pm_opp_disable(dev, 996000000))
279 dev_warn(dev, "failed to disable 996MHz OPP\n");
280
281 if (of_machine_is_compatible("fsl,imx6q") ||
282 of_machine_is_compatible("fsl,imx6qp")) {
283 if (val != OCOTP_CFG3_SPEED_852MHZ)
284 if (dev_pm_opp_disable(dev, 852000000))
285 dev_warn(dev, "failed to disable 852MHz OPP\n");
286 if (val != OCOTP_CFG3_SPEED_1P2GHZ)
287 if (dev_pm_opp_disable(dev, 1200000000))
288 dev_warn(dev, "failed to disable 1.2GHz OPP\n");
289 }
290 iounmap(base);
291 put_node:
292 of_node_put(np);
293 }
294
295 #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2
296 #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2
297 #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3
298
imx6ul_opp_check_speed_grading(struct device * dev)299 static int imx6ul_opp_check_speed_grading(struct device *dev)
300 {
301 u32 val;
302 int ret = 0;
303
304 if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
305 ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
306 if (ret)
307 return ret;
308 } else {
309 struct device_node *np;
310 void __iomem *base;
311
312 np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
313 if (!np)
314 np = of_find_compatible_node(NULL, NULL,
315 "fsl,imx6ull-ocotp");
316 if (!np)
317 return -ENOENT;
318
319 base = of_iomap(np, 0);
320 of_node_put(np);
321 if (!base) {
322 dev_err(dev, "failed to map ocotp\n");
323 return -EFAULT;
324 }
325
326 val = readl_relaxed(base + OCOTP_CFG3);
327 iounmap(base);
328 }
329
330 /*
331 * Speed GRADING[1:0] defines the max speed of ARM:
332 * 2b'00: Reserved;
333 * 2b'01: 528000000Hz;
334 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
335 * 2b'11: 900000000Hz on i.MX6ULL only;
336 * We need to set the max speed of ARM according to fuse map.
337 */
338 val >>= OCOTP_CFG3_SPEED_SHIFT;
339 val &= 0x3;
340
341 if (of_machine_is_compatible("fsl,imx6ul")) {
342 if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
343 if (dev_pm_opp_disable(dev, 696000000))
344 dev_warn(dev, "failed to disable 696MHz OPP\n");
345 }
346
347 if (of_machine_is_compatible("fsl,imx6ull")) {
348 if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
349 if (dev_pm_opp_disable(dev, 792000000))
350 dev_warn(dev, "failed to disable 792MHz OPP\n");
351
352 if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
353 if (dev_pm_opp_disable(dev, 900000000))
354 dev_warn(dev, "failed to disable 900MHz OPP\n");
355 }
356
357 return ret;
358 }
359
imx6q_cpufreq_probe(struct platform_device * pdev)360 static int imx6q_cpufreq_probe(struct platform_device *pdev)
361 {
362 struct device_node *np;
363 struct dev_pm_opp *opp;
364 unsigned long min_volt, max_volt;
365 int num, ret;
366 const struct property *prop;
367 const __be32 *val;
368 u32 nr, i, j;
369
370 cpu_dev = get_cpu_device(0);
371 if (!cpu_dev) {
372 pr_err("failed to get cpu0 device\n");
373 return -ENODEV;
374 }
375
376 np = of_node_get(cpu_dev->of_node);
377 if (!np) {
378 dev_err(cpu_dev, "failed to find cpu0 node\n");
379 return -ENOENT;
380 }
381
382 if (of_machine_is_compatible("fsl,imx6ul") ||
383 of_machine_is_compatible("fsl,imx6ull"))
384 num_clks = IMX6UL_CPUFREQ_CLK_NUM;
385 else
386 num_clks = IMX6Q_CPUFREQ_CLK_NUM;
387
388 ret = clk_bulk_get(cpu_dev, num_clks, clks);
389 if (ret)
390 goto put_node;
391
392 arm_reg = regulator_get(cpu_dev, "arm");
393 pu_reg = regulator_get_optional(cpu_dev, "pu");
394 soc_reg = regulator_get(cpu_dev, "soc");
395 if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
396 PTR_ERR(soc_reg) == -EPROBE_DEFER ||
397 PTR_ERR(pu_reg) == -EPROBE_DEFER) {
398 ret = -EPROBE_DEFER;
399 dev_dbg(cpu_dev, "regulators not ready, defer\n");
400 goto put_reg;
401 }
402 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
403 dev_err(cpu_dev, "failed to get regulators\n");
404 ret = -ENOENT;
405 goto put_reg;
406 }
407
408 ret = dev_pm_opp_of_add_table(cpu_dev);
409 if (ret < 0) {
410 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
411 goto put_reg;
412 }
413
414 if (of_machine_is_compatible("fsl,imx6ul") ||
415 of_machine_is_compatible("fsl,imx6ull")) {
416 ret = imx6ul_opp_check_speed_grading(cpu_dev);
417 if (ret == -EPROBE_DEFER)
418 return ret;
419 if (ret) {
420 dev_err(cpu_dev, "failed to read ocotp: %d\n",
421 ret);
422 return ret;
423 }
424 } else {
425 imx6q_opp_check_speed_grading(cpu_dev);
426 }
427
428 /* Because we have added the OPPs here, we must free them */
429 free_opp = true;
430 num = dev_pm_opp_get_opp_count(cpu_dev);
431 if (num < 0) {
432 ret = num;
433 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
434 goto out_free_opp;
435 }
436
437 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
438 if (ret) {
439 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
440 goto out_free_opp;
441 }
442
443 /* Make imx6_soc_volt array's size same as arm opp number */
444 imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
445 GFP_KERNEL);
446 if (imx6_soc_volt == NULL) {
447 ret = -ENOMEM;
448 goto free_freq_table;
449 }
450
451 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
452 if (!prop || !prop->value)
453 goto soc_opp_out;
454
455 /*
456 * Each OPP is a set of tuples consisting of frequency and
457 * voltage like <freq-kHz vol-uV>.
458 */
459 nr = prop->length / sizeof(u32);
460 if (nr % 2 || (nr / 2) < num)
461 goto soc_opp_out;
462
463 for (j = 0; j < num; j++) {
464 val = prop->value;
465 for (i = 0; i < nr / 2; i++) {
466 unsigned long freq = be32_to_cpup(val++);
467 unsigned long volt = be32_to_cpup(val++);
468 if (freq_table[j].frequency == freq) {
469 imx6_soc_volt[soc_opp_count++] = volt;
470 break;
471 }
472 }
473 }
474
475 soc_opp_out:
476 /* use fixed soc opp volt if no valid soc opp info found in dtb */
477 if (soc_opp_count != num) {
478 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
479 for (j = 0; j < num; j++)
480 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
481 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
482 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
483 }
484
485 if (of_property_read_u32(np, "clock-latency", &transition_latency))
486 transition_latency = CPUFREQ_ETERNAL;
487
488 /*
489 * Calculate the ramp time for max voltage change in the
490 * VDDSOC and VDDPU regulators.
491 */
492 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
493 if (ret > 0)
494 transition_latency += ret * 1000;
495 if (!IS_ERR(pu_reg)) {
496 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
497 if (ret > 0)
498 transition_latency += ret * 1000;
499 }
500
501 /*
502 * OPP is maintained in order of increasing frequency, and
503 * freq_table initialised from OPP is therefore sorted in the
504 * same order.
505 */
506 max_freq = freq_table[--num].frequency;
507 opp = dev_pm_opp_find_freq_exact(cpu_dev,
508 freq_table[0].frequency * 1000, true);
509 min_volt = dev_pm_opp_get_voltage(opp);
510 dev_pm_opp_put(opp);
511 opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
512 max_volt = dev_pm_opp_get_voltage(opp);
513 dev_pm_opp_put(opp);
514
515 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
516 if (ret > 0)
517 transition_latency += ret * 1000;
518
519 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
520 if (ret) {
521 dev_err(cpu_dev, "failed register driver: %d\n", ret);
522 goto free_freq_table;
523 }
524
525 of_node_put(np);
526 return 0;
527
528 free_freq_table:
529 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
530 out_free_opp:
531 if (free_opp)
532 dev_pm_opp_of_remove_table(cpu_dev);
533 put_reg:
534 if (!IS_ERR(arm_reg))
535 regulator_put(arm_reg);
536 if (!IS_ERR(pu_reg))
537 regulator_put(pu_reg);
538 if (!IS_ERR(soc_reg))
539 regulator_put(soc_reg);
540
541 clk_bulk_put(num_clks, clks);
542 put_node:
543 of_node_put(np);
544
545 return ret;
546 }
547
imx6q_cpufreq_remove(struct platform_device * pdev)548 static int imx6q_cpufreq_remove(struct platform_device *pdev)
549 {
550 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
551 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
552 if (free_opp)
553 dev_pm_opp_of_remove_table(cpu_dev);
554 regulator_put(arm_reg);
555 if (!IS_ERR(pu_reg))
556 regulator_put(pu_reg);
557 regulator_put(soc_reg);
558
559 clk_bulk_put(num_clks, clks);
560
561 return 0;
562 }
563
564 static struct platform_driver imx6q_cpufreq_platdrv = {
565 .driver = {
566 .name = "imx6q-cpufreq",
567 },
568 .probe = imx6q_cpufreq_probe,
569 .remove = imx6q_cpufreq_remove,
570 };
571 module_platform_driver(imx6q_cpufreq_platdrv);
572
573 MODULE_ALIAS("platform:imx6q-cpufreq");
574 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
575 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
576 MODULE_LICENSE("GPL");
577