1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/cpu_cooling.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/pm_opp.h>
19 #include <linux/platform_device.h>
20 #include <linux/regulator/consumer.h>
21 
22 #define PU_SOC_VOLTAGE_NORMAL	1250000
23 #define PU_SOC_VOLTAGE_HIGH	1275000
24 #define FREQ_1P2_GHZ		1200000000
25 
26 static struct regulator *arm_reg;
27 static struct regulator *pu_reg;
28 static struct regulator *soc_reg;
29 
30 enum IMX6_CPUFREQ_CLKS {
31 	ARM,
32 	PLL1_SYS,
33 	STEP,
34 	PLL1_SW,
35 	PLL2_PFD2_396M,
36 	/* MX6UL requires two more clks */
37 	PLL2_BUS,
38 	SECONDARY_SEL,
39 };
40 #define IMX6Q_CPUFREQ_CLK_NUM		5
41 #define IMX6UL_CPUFREQ_CLK_NUM		7
42 
43 static int num_clks;
44 static struct clk_bulk_data clks[] = {
45 	{ .id = "arm" },
46 	{ .id = "pll1_sys" },
47 	{ .id = "step" },
48 	{ .id = "pll1_sw" },
49 	{ .id = "pll2_pfd2_396m" },
50 	{ .id = "pll2_bus" },
51 	{ .id = "secondary_sel" },
52 };
53 
54 static struct device *cpu_dev;
55 static struct thermal_cooling_device *cdev;
56 static bool free_opp;
57 static struct cpufreq_frequency_table *freq_table;
58 static unsigned int max_freq;
59 static unsigned int transition_latency;
60 
61 static u32 *imx6_soc_volt;
62 static u32 soc_opp_count;
63 
imx6q_set_target(struct cpufreq_policy * policy,unsigned int index)64 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
65 {
66 	struct dev_pm_opp *opp;
67 	unsigned long freq_hz, volt, volt_old;
68 	unsigned int old_freq, new_freq;
69 	bool pll1_sys_temp_enabled = false;
70 	int ret;
71 
72 	new_freq = freq_table[index].frequency;
73 	freq_hz = new_freq * 1000;
74 	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
75 
76 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
77 	if (IS_ERR(opp)) {
78 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
79 		return PTR_ERR(opp);
80 	}
81 
82 	volt = dev_pm_opp_get_voltage(opp);
83 	dev_pm_opp_put(opp);
84 
85 	volt_old = regulator_get_voltage(arm_reg);
86 
87 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
88 		old_freq / 1000, volt_old / 1000,
89 		new_freq / 1000, volt / 1000);
90 
91 	/* scaling up?  scale voltage before frequency */
92 	if (new_freq > old_freq) {
93 		if (!IS_ERR(pu_reg)) {
94 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
95 			if (ret) {
96 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
97 				return ret;
98 			}
99 		}
100 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
101 		if (ret) {
102 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
103 			return ret;
104 		}
105 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
106 		if (ret) {
107 			dev_err(cpu_dev,
108 				"failed to scale vddarm up: %d\n", ret);
109 			return ret;
110 		}
111 	}
112 
113 	/*
114 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
115 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
116 	 * PLL1 is as below.
117 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
118 	 * flow is slightly different from other i.MX6 OSC.
119 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
120 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
121 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
122 	 *  - Disable pll2_pfd2_396m_clk
123 	 */
124 	if (of_machine_is_compatible("fsl,imx6ul") ||
125 	    of_machine_is_compatible("fsl,imx6ull")) {
126 		/*
127 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
128 		 * CPU may run at higher than 528MHz, this will lead to
129 		 * the system unstable if the voltage is lower than the
130 		 * voltage of 528MHz, so lower the CPU frequency to one
131 		 * half before changing CPU frequency.
132 		 */
133 		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
134 		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
135 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
136 			clk_set_parent(clks[SECONDARY_SEL].clk,
137 				       clks[PLL2_BUS].clk);
138 		else
139 			clk_set_parent(clks[SECONDARY_SEL].clk,
140 				       clks[PLL2_PFD2_396M].clk);
141 		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
142 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
143 		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
144 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
145 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
146 		}
147 	} else {
148 		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
149 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
150 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
151 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
152 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
153 		} else {
154 			/* pll1_sys needs to be enabled for divider rate change to work. */
155 			pll1_sys_temp_enabled = true;
156 			clk_prepare_enable(clks[PLL1_SYS].clk);
157 		}
158 	}
159 
160 	/* Ensure the arm clock divider is what we expect */
161 	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
162 	if (ret) {
163 		int ret1;
164 
165 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
166 		ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
167 		if (ret1)
168 			dev_warn(cpu_dev,
169 				 "failed to restore vddarm voltage: %d\n", ret1);
170 		return ret;
171 	}
172 
173 	/* PLL1 is only needed until after ARM-PODF is set. */
174 	if (pll1_sys_temp_enabled)
175 		clk_disable_unprepare(clks[PLL1_SYS].clk);
176 
177 	/* scaling down?  scale voltage after frequency */
178 	if (new_freq < old_freq) {
179 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
180 		if (ret) {
181 			dev_warn(cpu_dev,
182 				 "failed to scale vddarm down: %d\n", ret);
183 			ret = 0;
184 		}
185 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
186 		if (ret) {
187 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
188 			ret = 0;
189 		}
190 		if (!IS_ERR(pu_reg)) {
191 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
192 			if (ret) {
193 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
194 				ret = 0;
195 			}
196 		}
197 	}
198 
199 	return 0;
200 }
201 
imx6q_cpufreq_ready(struct cpufreq_policy * policy)202 static void imx6q_cpufreq_ready(struct cpufreq_policy *policy)
203 {
204 	cdev = of_cpufreq_cooling_register(policy);
205 
206 	if (!cdev)
207 		dev_err(cpu_dev,
208 			"running cpufreq without cooling device: %ld\n",
209 			PTR_ERR(cdev));
210 }
211 
imx6q_cpufreq_init(struct cpufreq_policy * policy)212 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
213 {
214 	int ret;
215 
216 	policy->clk = clks[ARM].clk;
217 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
218 	policy->suspend_freq = max_freq;
219 
220 	return ret;
221 }
222 
imx6q_cpufreq_exit(struct cpufreq_policy * policy)223 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
224 {
225 	cpufreq_cooling_unregister(cdev);
226 
227 	return 0;
228 }
229 
230 static struct cpufreq_driver imx6q_cpufreq_driver = {
231 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
232 	.verify = cpufreq_generic_frequency_table_verify,
233 	.target_index = imx6q_set_target,
234 	.get = cpufreq_generic_get,
235 	.init = imx6q_cpufreq_init,
236 	.exit = imx6q_cpufreq_exit,
237 	.name = "imx6q-cpufreq",
238 	.ready = imx6q_cpufreq_ready,
239 	.attr = cpufreq_generic_attr,
240 	.suspend = cpufreq_generic_suspend,
241 };
242 
243 #define OCOTP_CFG3			0x440
244 #define OCOTP_CFG3_SPEED_SHIFT		16
245 #define OCOTP_CFG3_SPEED_1P2GHZ		0x3
246 #define OCOTP_CFG3_SPEED_996MHZ		0x2
247 #define OCOTP_CFG3_SPEED_852MHZ		0x1
248 
imx6q_opp_check_speed_grading(struct device * dev)249 static void imx6q_opp_check_speed_grading(struct device *dev)
250 {
251 	struct device_node *np;
252 	void __iomem *base;
253 	u32 val;
254 
255 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
256 	if (!np)
257 		return;
258 
259 	base = of_iomap(np, 0);
260 	if (!base) {
261 		dev_err(dev, "failed to map ocotp\n");
262 		goto put_node;
263 	}
264 
265 	/*
266 	 * SPEED_GRADING[1:0] defines the max speed of ARM:
267 	 * 2b'11: 1200000000Hz;
268 	 * 2b'10: 996000000Hz;
269 	 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
270 	 * 2b'00: 792000000Hz;
271 	 * We need to set the max speed of ARM according to fuse map.
272 	 */
273 	val = readl_relaxed(base + OCOTP_CFG3);
274 	val >>= OCOTP_CFG3_SPEED_SHIFT;
275 	val &= 0x3;
276 
277 	if (val < OCOTP_CFG3_SPEED_996MHZ)
278 		if (dev_pm_opp_disable(dev, 996000000))
279 			dev_warn(dev, "failed to disable 996MHz OPP\n");
280 
281 	if (of_machine_is_compatible("fsl,imx6q") ||
282 	    of_machine_is_compatible("fsl,imx6qp")) {
283 		if (val != OCOTP_CFG3_SPEED_852MHZ)
284 			if (dev_pm_opp_disable(dev, 852000000))
285 				dev_warn(dev, "failed to disable 852MHz OPP\n");
286 		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
287 			if (dev_pm_opp_disable(dev, 1200000000))
288 				dev_warn(dev, "failed to disable 1.2GHz OPP\n");
289 	}
290 	iounmap(base);
291 put_node:
292 	of_node_put(np);
293 }
294 
295 #define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
296 #define OCOTP_CFG3_6ULL_SPEED_792MHZ	0x2
297 #define OCOTP_CFG3_6ULL_SPEED_900MHZ	0x3
298 
imx6ul_opp_check_speed_grading(struct device * dev)299 static int imx6ul_opp_check_speed_grading(struct device *dev)
300 {
301 	u32 val;
302 	int ret = 0;
303 
304 	if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
305 		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
306 		if (ret)
307 			return ret;
308 	} else {
309 		struct device_node *np;
310 		void __iomem *base;
311 
312 		np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
313 		if (!np)
314 			np = of_find_compatible_node(NULL, NULL,
315 						     "fsl,imx6ull-ocotp");
316 		if (!np)
317 			return -ENOENT;
318 
319 		base = of_iomap(np, 0);
320 		of_node_put(np);
321 		if (!base) {
322 			dev_err(dev, "failed to map ocotp\n");
323 			return -EFAULT;
324 		}
325 
326 		val = readl_relaxed(base + OCOTP_CFG3);
327 		iounmap(base);
328 	}
329 
330 	/*
331 	 * Speed GRADING[1:0] defines the max speed of ARM:
332 	 * 2b'00: Reserved;
333 	 * 2b'01: 528000000Hz;
334 	 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
335 	 * 2b'11: 900000000Hz on i.MX6ULL only;
336 	 * We need to set the max speed of ARM according to fuse map.
337 	 */
338 	val >>= OCOTP_CFG3_SPEED_SHIFT;
339 	val &= 0x3;
340 
341 	if (of_machine_is_compatible("fsl,imx6ul")) {
342 		if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
343 			if (dev_pm_opp_disable(dev, 696000000))
344 				dev_warn(dev, "failed to disable 696MHz OPP\n");
345 	}
346 
347 	if (of_machine_is_compatible("fsl,imx6ull")) {
348 		if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
349 			if (dev_pm_opp_disable(dev, 792000000))
350 				dev_warn(dev, "failed to disable 792MHz OPP\n");
351 
352 		if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
353 			if (dev_pm_opp_disable(dev, 900000000))
354 				dev_warn(dev, "failed to disable 900MHz OPP\n");
355 	}
356 
357 	return ret;
358 }
359 
imx6q_cpufreq_probe(struct platform_device * pdev)360 static int imx6q_cpufreq_probe(struct platform_device *pdev)
361 {
362 	struct device_node *np;
363 	struct dev_pm_opp *opp;
364 	unsigned long min_volt, max_volt;
365 	int num, ret;
366 	const struct property *prop;
367 	const __be32 *val;
368 	u32 nr, i, j;
369 
370 	cpu_dev = get_cpu_device(0);
371 	if (!cpu_dev) {
372 		pr_err("failed to get cpu0 device\n");
373 		return -ENODEV;
374 	}
375 
376 	np = of_node_get(cpu_dev->of_node);
377 	if (!np) {
378 		dev_err(cpu_dev, "failed to find cpu0 node\n");
379 		return -ENOENT;
380 	}
381 
382 	if (of_machine_is_compatible("fsl,imx6ul") ||
383 	    of_machine_is_compatible("fsl,imx6ull"))
384 		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
385 	else
386 		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
387 
388 	ret = clk_bulk_get(cpu_dev, num_clks, clks);
389 	if (ret)
390 		goto put_node;
391 
392 	arm_reg = regulator_get(cpu_dev, "arm");
393 	pu_reg = regulator_get_optional(cpu_dev, "pu");
394 	soc_reg = regulator_get(cpu_dev, "soc");
395 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
396 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
397 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
398 		ret = -EPROBE_DEFER;
399 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
400 		goto put_reg;
401 	}
402 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
403 		dev_err(cpu_dev, "failed to get regulators\n");
404 		ret = -ENOENT;
405 		goto put_reg;
406 	}
407 
408 	ret = dev_pm_opp_of_add_table(cpu_dev);
409 	if (ret < 0) {
410 		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
411 		goto put_reg;
412 	}
413 
414 	if (of_machine_is_compatible("fsl,imx6ul") ||
415 	    of_machine_is_compatible("fsl,imx6ull")) {
416 		ret = imx6ul_opp_check_speed_grading(cpu_dev);
417 		if (ret == -EPROBE_DEFER)
418 			return ret;
419 		if (ret) {
420 			dev_err(cpu_dev, "failed to read ocotp: %d\n",
421 				ret);
422 			return ret;
423 		}
424 	} else {
425 		imx6q_opp_check_speed_grading(cpu_dev);
426 	}
427 
428 	/* Because we have added the OPPs here, we must free them */
429 	free_opp = true;
430 	num = dev_pm_opp_get_opp_count(cpu_dev);
431 	if (num < 0) {
432 		ret = num;
433 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
434 		goto out_free_opp;
435 	}
436 
437 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
438 	if (ret) {
439 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
440 		goto out_free_opp;
441 	}
442 
443 	/* Make imx6_soc_volt array's size same as arm opp number */
444 	imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
445 				     GFP_KERNEL);
446 	if (imx6_soc_volt == NULL) {
447 		ret = -ENOMEM;
448 		goto free_freq_table;
449 	}
450 
451 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
452 	if (!prop || !prop->value)
453 		goto soc_opp_out;
454 
455 	/*
456 	 * Each OPP is a set of tuples consisting of frequency and
457 	 * voltage like <freq-kHz vol-uV>.
458 	 */
459 	nr = prop->length / sizeof(u32);
460 	if (nr % 2 || (nr / 2) < num)
461 		goto soc_opp_out;
462 
463 	for (j = 0; j < num; j++) {
464 		val = prop->value;
465 		for (i = 0; i < nr / 2; i++) {
466 			unsigned long freq = be32_to_cpup(val++);
467 			unsigned long volt = be32_to_cpup(val++);
468 			if (freq_table[j].frequency == freq) {
469 				imx6_soc_volt[soc_opp_count++] = volt;
470 				break;
471 			}
472 		}
473 	}
474 
475 soc_opp_out:
476 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
477 	if (soc_opp_count != num) {
478 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
479 		for (j = 0; j < num; j++)
480 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
481 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
482 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
483 	}
484 
485 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
486 		transition_latency = CPUFREQ_ETERNAL;
487 
488 	/*
489 	 * Calculate the ramp time for max voltage change in the
490 	 * VDDSOC and VDDPU regulators.
491 	 */
492 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
493 	if (ret > 0)
494 		transition_latency += ret * 1000;
495 	if (!IS_ERR(pu_reg)) {
496 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
497 		if (ret > 0)
498 			transition_latency += ret * 1000;
499 	}
500 
501 	/*
502 	 * OPP is maintained in order of increasing frequency, and
503 	 * freq_table initialised from OPP is therefore sorted in the
504 	 * same order.
505 	 */
506 	max_freq = freq_table[--num].frequency;
507 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
508 				  freq_table[0].frequency * 1000, true);
509 	min_volt = dev_pm_opp_get_voltage(opp);
510 	dev_pm_opp_put(opp);
511 	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
512 	max_volt = dev_pm_opp_get_voltage(opp);
513 	dev_pm_opp_put(opp);
514 
515 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
516 	if (ret > 0)
517 		transition_latency += ret * 1000;
518 
519 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
520 	if (ret) {
521 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
522 		goto free_freq_table;
523 	}
524 
525 	of_node_put(np);
526 	return 0;
527 
528 free_freq_table:
529 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
530 out_free_opp:
531 	if (free_opp)
532 		dev_pm_opp_of_remove_table(cpu_dev);
533 put_reg:
534 	if (!IS_ERR(arm_reg))
535 		regulator_put(arm_reg);
536 	if (!IS_ERR(pu_reg))
537 		regulator_put(pu_reg);
538 	if (!IS_ERR(soc_reg))
539 		regulator_put(soc_reg);
540 
541 	clk_bulk_put(num_clks, clks);
542 put_node:
543 	of_node_put(np);
544 
545 	return ret;
546 }
547 
imx6q_cpufreq_remove(struct platform_device * pdev)548 static int imx6q_cpufreq_remove(struct platform_device *pdev)
549 {
550 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
551 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
552 	if (free_opp)
553 		dev_pm_opp_of_remove_table(cpu_dev);
554 	regulator_put(arm_reg);
555 	if (!IS_ERR(pu_reg))
556 		regulator_put(pu_reg);
557 	regulator_put(soc_reg);
558 
559 	clk_bulk_put(num_clks, clks);
560 
561 	return 0;
562 }
563 
564 static struct platform_driver imx6q_cpufreq_platdrv = {
565 	.driver = {
566 		.name	= "imx6q-cpufreq",
567 	},
568 	.probe		= imx6q_cpufreq_probe,
569 	.remove		= imx6q_cpufreq_remove,
570 };
571 module_platform_driver(imx6q_cpufreq_platdrv);
572 
573 MODULE_ALIAS("platform:imx6q-cpufreq");
574 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
575 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
576 MODULE_LICENSE("GPL");
577