1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19 
20 #define pr_fmt(fmt)	"powernv-cpufreq: " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/hashtable.h>
33 #include <trace/events/power.h>
34 
35 #include <asm/cputhreads.h>
36 #include <asm/firmware.h>
37 #include <asm/reg.h>
38 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
39 #include <asm/opal.h>
40 #include <linux/timer.h>
41 
42 #define POWERNV_MAX_PSTATES_ORDER  8
43 #define POWERNV_MAX_PSTATES	(1UL << (POWERNV_MAX_PSTATES_ORDER))
44 #define PMSR_PSAFE_ENABLE	(1UL << 30)
45 #define PMSR_SPR_EM_DISABLE	(1UL << 31)
46 #define MAX_PSTATE_SHIFT	32
47 #define LPSTATE_SHIFT		48
48 #define GPSTATE_SHIFT		56
49 #define MAX_NR_CHIPS		32
50 
51 #define MAX_RAMP_DOWN_TIME				5120
52 /*
53  * On an idle system we want the global pstate to ramp-down from max value to
54  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
55  * then ramp-down rapidly later on.
56  *
57  * This gives a percentage rampdown for time elapsed in milliseconds.
58  * ramp_down_percentage = ((ms * ms) >> 18)
59  *			~= 3.8 * (sec * sec)
60  *
61  * At 0 ms	ramp_down_percent = 0
62  * At 5120 ms	ramp_down_percent = 100
63  */
64 #define ramp_down_percent(time)		((time * time) >> 18)
65 
66 /* Interval after which the timer is queued to bring down global pstate */
67 #define GPSTATE_TIMER_INTERVAL				2000
68 
69 /**
70  * struct global_pstate_info -	Per policy data structure to maintain history of
71  *				global pstates
72  * @highest_lpstate_idx:	The local pstate index from which we are
73  *				ramping down
74  * @elapsed_time:		Time in ms spent in ramping down from
75  *				highest_lpstate_idx
76  * @last_sampled_time:		Time from boot in ms when global pstates were
77  *				last set
78  * @last_lpstate_idx,		Last set value of local pstate and global
79  * last_gpstate_idx		pstate in terms of cpufreq table index
80  * @timer:			Is used for ramping down if cpu goes idle for
81  *				a long time with global pstate held high
82  * @gpstate_lock:		A spinlock to maintain synchronization between
83  *				routines called by the timer handler and
84  *				governer's target_index calls
85  */
86 struct global_pstate_info {
87 	int highest_lpstate_idx;
88 	unsigned int elapsed_time;
89 	unsigned int last_sampled_time;
90 	int last_lpstate_idx;
91 	int last_gpstate_idx;
92 	spinlock_t gpstate_lock;
93 	struct timer_list timer;
94 	struct cpufreq_policy *policy;
95 };
96 
97 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
98 
99 DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
100 /**
101  * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
102  *				  indexed by a function of pstate id.
103  *
104  * @pstate_id: pstate id for this entry.
105  *
106  * @cpufreq_table_idx: Index into the powernv_freqs
107  *		       cpufreq_frequency_table for frequency
108  *		       corresponding to pstate_id.
109  *
110  * @hentry: hlist_node that hooks this entry into the pstate_revmap
111  *	    hashtable
112  */
113 struct pstate_idx_revmap_data {
114 	u8 pstate_id;
115 	unsigned int cpufreq_table_idx;
116 	struct hlist_node hentry;
117 };
118 
119 static bool rebooting, throttled, occ_reset;
120 
121 static const char * const throttle_reason[] = {
122 	"No throttling",
123 	"Power Cap",
124 	"Processor Over Temperature",
125 	"Power Supply Failure",
126 	"Over Current",
127 	"OCC Reset"
128 };
129 
130 enum throttle_reason_type {
131 	NO_THROTTLE = 0,
132 	POWERCAP,
133 	CPU_OVERTEMP,
134 	POWER_SUPPLY_FAILURE,
135 	OVERCURRENT,
136 	OCC_RESET_THROTTLE,
137 	OCC_MAX_REASON
138 };
139 
140 static struct chip {
141 	unsigned int id;
142 	bool throttled;
143 	bool restore;
144 	u8 throttle_reason;
145 	cpumask_t mask;
146 	struct work_struct throttle;
147 	int throttle_turbo;
148 	int throttle_sub_turbo;
149 	int reason[OCC_MAX_REASON];
150 } *chips;
151 
152 static int nr_chips;
153 static DEFINE_PER_CPU(struct chip *, chip_info);
154 
155 /*
156  * Note:
157  * The set of pstates consists of contiguous integers.
158  * powernv_pstate_info stores the index of the frequency table for
159  * max, min and nominal frequencies. It also stores number of
160  * available frequencies.
161  *
162  * powernv_pstate_info.nominal indicates the index to the highest
163  * non-turbo frequency.
164  */
165 static struct powernv_pstate_info {
166 	unsigned int min;
167 	unsigned int max;
168 	unsigned int nominal;
169 	unsigned int nr_pstates;
170 	bool wof_enabled;
171 } powernv_pstate_info;
172 
extract_pstate(u64 pmsr_val,unsigned int shift)173 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
174 {
175 	return ((pmsr_val >> shift) & 0xFF);
176 }
177 
178 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
179 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
180 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
181 
182 /* Use following functions for conversions between pstate_id and index */
183 
184 /**
185  * idx_to_pstate : Returns the pstate id corresponding to the
186  *		   frequency in the cpufreq frequency table
187  *		   powernv_freqs indexed by @i.
188  *
189  *		   If @i is out of bound, this will return the pstate
190  *		   corresponding to the nominal frequency.
191  */
idx_to_pstate(unsigned int i)192 static inline u8 idx_to_pstate(unsigned int i)
193 {
194 	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
195 		pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
196 		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
197 	}
198 
199 	return powernv_freqs[i].driver_data;
200 }
201 
202 /**
203  * pstate_to_idx : Returns the index in the cpufreq frequencytable
204  *		   powernv_freqs for the frequency whose corresponding
205  *		   pstate id is @pstate.
206  *
207  *		   If no frequency corresponding to @pstate is found,
208  *		   this will return the index of the nominal
209  *		   frequency.
210  */
pstate_to_idx(u8 pstate)211 static unsigned int pstate_to_idx(u8 pstate)
212 {
213 	unsigned int key = pstate % POWERNV_MAX_PSTATES;
214 	struct pstate_idx_revmap_data *revmap_data;
215 
216 	hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
217 		if (revmap_data->pstate_id == pstate)
218 			return revmap_data->cpufreq_table_idx;
219 	}
220 
221 	pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
222 	return powernv_pstate_info.nominal;
223 }
224 
reset_gpstates(struct cpufreq_policy * policy)225 static inline void reset_gpstates(struct cpufreq_policy *policy)
226 {
227 	struct global_pstate_info *gpstates = policy->driver_data;
228 
229 	gpstates->highest_lpstate_idx = 0;
230 	gpstates->elapsed_time = 0;
231 	gpstates->last_sampled_time = 0;
232 	gpstates->last_lpstate_idx = 0;
233 	gpstates->last_gpstate_idx = 0;
234 }
235 
236 /*
237  * Initialize the freq table based on data obtained
238  * from the firmware passed via device-tree
239  */
init_powernv_pstates(void)240 static int init_powernv_pstates(void)
241 {
242 	struct device_node *power_mgt;
243 	int i, nr_pstates = 0;
244 	const __be32 *pstate_ids, *pstate_freqs;
245 	u32 len_ids, len_freqs;
246 	u32 pstate_min, pstate_max, pstate_nominal;
247 	u32 pstate_turbo, pstate_ultra_turbo;
248 
249 	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
250 	if (!power_mgt) {
251 		pr_warn("power-mgt node not found\n");
252 		return -ENODEV;
253 	}
254 
255 	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
256 		pr_warn("ibm,pstate-min node not found\n");
257 		return -ENODEV;
258 	}
259 
260 	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
261 		pr_warn("ibm,pstate-max node not found\n");
262 		return -ENODEV;
263 	}
264 
265 	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
266 				 &pstate_nominal)) {
267 		pr_warn("ibm,pstate-nominal not found\n");
268 		return -ENODEV;
269 	}
270 
271 	if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
272 				 &pstate_ultra_turbo)) {
273 		powernv_pstate_info.wof_enabled = false;
274 		goto next;
275 	}
276 
277 	if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
278 				 &pstate_turbo)) {
279 		powernv_pstate_info.wof_enabled = false;
280 		goto next;
281 	}
282 
283 	if (pstate_turbo == pstate_ultra_turbo)
284 		powernv_pstate_info.wof_enabled = false;
285 	else
286 		powernv_pstate_info.wof_enabled = true;
287 
288 next:
289 	pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
290 		pstate_nominal, pstate_max);
291 	pr_info("Workload Optimized Frequency is %s in the platform\n",
292 		(powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
293 
294 	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
295 	if (!pstate_ids) {
296 		pr_warn("ibm,pstate-ids not found\n");
297 		return -ENODEV;
298 	}
299 
300 	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
301 				      &len_freqs);
302 	if (!pstate_freqs) {
303 		pr_warn("ibm,pstate-frequencies-mhz not found\n");
304 		return -ENODEV;
305 	}
306 
307 	if (len_ids != len_freqs) {
308 		pr_warn("Entries in ibm,pstate-ids and "
309 			"ibm,pstate-frequencies-mhz does not match\n");
310 	}
311 
312 	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
313 	if (!nr_pstates) {
314 		pr_warn("No PStates found\n");
315 		return -ENODEV;
316 	}
317 
318 	powernv_pstate_info.nr_pstates = nr_pstates;
319 	pr_debug("NR PStates %d\n", nr_pstates);
320 
321 	for (i = 0; i < nr_pstates; i++) {
322 		u32 id = be32_to_cpu(pstate_ids[i]);
323 		u32 freq = be32_to_cpu(pstate_freqs[i]);
324 		struct pstate_idx_revmap_data *revmap_data;
325 		unsigned int key;
326 
327 		pr_debug("PState id %d freq %d MHz\n", id, freq);
328 		powernv_freqs[i].frequency = freq * 1000; /* kHz */
329 		powernv_freqs[i].driver_data = id & 0xFF;
330 
331 		revmap_data = (struct pstate_idx_revmap_data *)
332 			      kmalloc(sizeof(*revmap_data), GFP_KERNEL);
333 
334 		revmap_data->pstate_id = id & 0xFF;
335 		revmap_data->cpufreq_table_idx = i;
336 		key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
337 		hash_add(pstate_revmap, &revmap_data->hentry, key);
338 
339 		if (id == pstate_max)
340 			powernv_pstate_info.max = i;
341 		if (id == pstate_nominal)
342 			powernv_pstate_info.nominal = i;
343 		if (id == pstate_min)
344 			powernv_pstate_info.min = i;
345 
346 		if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
347 			int j;
348 
349 			for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
350 				powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
351 		}
352 	}
353 
354 	/* End of list marker entry */
355 	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
356 	return 0;
357 }
358 
359 /* Returns the CPU frequency corresponding to the pstate_id. */
pstate_id_to_freq(u8 pstate_id)360 static unsigned int pstate_id_to_freq(u8 pstate_id)
361 {
362 	int i;
363 
364 	i = pstate_to_idx(pstate_id);
365 	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
366 		pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
367 			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
368 		i = powernv_pstate_info.nominal;
369 	}
370 
371 	return powernv_freqs[i].frequency;
372 }
373 
374 /*
375  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
376  * the firmware
377  */
cpuinfo_nominal_freq_show(struct cpufreq_policy * policy,char * buf)378 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
379 					char *buf)
380 {
381 	return sprintf(buf, "%u\n",
382 		powernv_freqs[powernv_pstate_info.nominal].frequency);
383 }
384 
385 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
386 	__ATTR_RO(cpuinfo_nominal_freq);
387 
388 #define SCALING_BOOST_FREQS_ATTR_INDEX		2
389 
390 static struct freq_attr *powernv_cpu_freq_attr[] = {
391 	&cpufreq_freq_attr_scaling_available_freqs,
392 	&cpufreq_freq_attr_cpuinfo_nominal_freq,
393 	&cpufreq_freq_attr_scaling_boost_freqs,
394 	NULL,
395 };
396 
397 #define throttle_attr(name, member)					\
398 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
399 {									\
400 	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
401 									\
402 	return sprintf(buf, "%u\n", chip->member);			\
403 }									\
404 									\
405 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
406 
407 throttle_attr(unthrottle, reason[NO_THROTTLE]);
408 throttle_attr(powercap, reason[POWERCAP]);
409 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
410 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
411 throttle_attr(overcurrent, reason[OVERCURRENT]);
412 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
413 throttle_attr(turbo_stat, throttle_turbo);
414 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
415 
416 static struct attribute *throttle_attrs[] = {
417 	&throttle_attr_unthrottle.attr,
418 	&throttle_attr_powercap.attr,
419 	&throttle_attr_overtemp.attr,
420 	&throttle_attr_supply_fault.attr,
421 	&throttle_attr_overcurrent.attr,
422 	&throttle_attr_occ_reset.attr,
423 	&throttle_attr_turbo_stat.attr,
424 	&throttle_attr_sub_turbo_stat.attr,
425 	NULL,
426 };
427 
428 static const struct attribute_group throttle_attr_grp = {
429 	.name	= "throttle_stats",
430 	.attrs	= throttle_attrs,
431 };
432 
433 /* Helper routines */
434 
435 /* Access helpers to power mgt SPR */
436 
get_pmspr(unsigned long sprn)437 static inline unsigned long get_pmspr(unsigned long sprn)
438 {
439 	switch (sprn) {
440 	case SPRN_PMCR:
441 		return mfspr(SPRN_PMCR);
442 
443 	case SPRN_PMICR:
444 		return mfspr(SPRN_PMICR);
445 
446 	case SPRN_PMSR:
447 		return mfspr(SPRN_PMSR);
448 	}
449 	BUG();
450 }
451 
set_pmspr(unsigned long sprn,unsigned long val)452 static inline void set_pmspr(unsigned long sprn, unsigned long val)
453 {
454 	switch (sprn) {
455 	case SPRN_PMCR:
456 		mtspr(SPRN_PMCR, val);
457 		return;
458 
459 	case SPRN_PMICR:
460 		mtspr(SPRN_PMICR, val);
461 		return;
462 	}
463 	BUG();
464 }
465 
466 /*
467  * Use objects of this type to query/update
468  * pstates on a remote CPU via smp_call_function.
469  */
470 struct powernv_smp_call_data {
471 	unsigned int freq;
472 	u8 pstate_id;
473 	u8 gpstate_id;
474 };
475 
476 /*
477  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
478  *
479  * Called via smp_call_function.
480  *
481  * Note: The caller of the smp_call_function should pass an argument of
482  * the type 'struct powernv_smp_call_data *' along with this function.
483  *
484  * The current frequency on this CPU will be returned via
485  * ((struct powernv_smp_call_data *)arg)->freq;
486  */
powernv_read_cpu_freq(void * arg)487 static void powernv_read_cpu_freq(void *arg)
488 {
489 	unsigned long pmspr_val;
490 	struct powernv_smp_call_data *freq_data = arg;
491 
492 	pmspr_val = get_pmspr(SPRN_PMSR);
493 	freq_data->pstate_id = extract_local_pstate(pmspr_val);
494 	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
495 
496 	pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
497 		 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
498 		 freq_data->freq);
499 }
500 
501 /*
502  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
503  * firmware for CPU 'cpu'. This value is reported through the sysfs
504  * file cpuinfo_cur_freq.
505  */
powernv_cpufreq_get(unsigned int cpu)506 static unsigned int powernv_cpufreq_get(unsigned int cpu)
507 {
508 	struct powernv_smp_call_data freq_data;
509 
510 	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
511 			&freq_data, 1);
512 
513 	return freq_data.freq;
514 }
515 
516 /*
517  * set_pstate: Sets the pstate on this CPU.
518  *
519  * This is called via an smp_call_function.
520  *
521  * The caller must ensure that freq_data is of the type
522  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
523  * on this CPU should be present in freq_data->pstate_id.
524  */
set_pstate(void * data)525 static void set_pstate(void *data)
526 {
527 	unsigned long val;
528 	struct powernv_smp_call_data *freq_data = data;
529 	unsigned long pstate_ul = freq_data->pstate_id;
530 	unsigned long gpstate_ul = freq_data->gpstate_id;
531 
532 	val = get_pmspr(SPRN_PMCR);
533 	val = val & 0x0000FFFFFFFFFFFFULL;
534 
535 	pstate_ul = pstate_ul & 0xFF;
536 	gpstate_ul = gpstate_ul & 0xFF;
537 
538 	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
539 	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
540 
541 	pr_debug("Setting cpu %d pmcr to %016lX\n",
542 			raw_smp_processor_id(), val);
543 	set_pmspr(SPRN_PMCR, val);
544 }
545 
546 /*
547  * get_nominal_index: Returns the index corresponding to the nominal
548  * pstate in the cpufreq table
549  */
get_nominal_index(void)550 static inline unsigned int get_nominal_index(void)
551 {
552 	return powernv_pstate_info.nominal;
553 }
554 
powernv_cpufreq_throttle_check(void * data)555 static void powernv_cpufreq_throttle_check(void *data)
556 {
557 	struct chip *chip;
558 	unsigned int cpu = smp_processor_id();
559 	unsigned long pmsr;
560 	u8 pmsr_pmax;
561 	unsigned int pmsr_pmax_idx;
562 
563 	pmsr = get_pmspr(SPRN_PMSR);
564 	chip = this_cpu_read(chip_info);
565 
566 	/* Check for Pmax Capping */
567 	pmsr_pmax = extract_max_pstate(pmsr);
568 	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
569 	if (pmsr_pmax_idx != powernv_pstate_info.max) {
570 		if (chip->throttled)
571 			goto next;
572 		chip->throttled = true;
573 		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
574 			pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
575 				     cpu, chip->id, pmsr_pmax,
576 				     idx_to_pstate(powernv_pstate_info.nominal));
577 			chip->throttle_sub_turbo++;
578 		} else {
579 			chip->throttle_turbo++;
580 		}
581 		trace_powernv_throttle(chip->id,
582 				      throttle_reason[chip->throttle_reason],
583 				      pmsr_pmax);
584 	} else if (chip->throttled) {
585 		chip->throttled = false;
586 		trace_powernv_throttle(chip->id,
587 				      throttle_reason[chip->throttle_reason],
588 				      pmsr_pmax);
589 	}
590 
591 	/* Check if Psafe_mode_active is set in PMSR. */
592 next:
593 	if (pmsr & PMSR_PSAFE_ENABLE) {
594 		throttled = true;
595 		pr_info("Pstate set to safe frequency\n");
596 	}
597 
598 	/* Check if SPR_EM_DISABLE is set in PMSR */
599 	if (pmsr & PMSR_SPR_EM_DISABLE) {
600 		throttled = true;
601 		pr_info("Frequency Control disabled from OS\n");
602 	}
603 
604 	if (throttled) {
605 		pr_info("PMSR = %16lx\n", pmsr);
606 		pr_warn("CPU Frequency could be throttled\n");
607 	}
608 }
609 
610 /**
611  * calc_global_pstate - Calculate global pstate
612  * @elapsed_time:		Elapsed time in milliseconds
613  * @local_pstate_idx:		New local pstate
614  * @highest_lpstate_idx:	pstate from which its ramping down
615  *
616  * Finds the appropriate global pstate based on the pstate from which its
617  * ramping down and the time elapsed in ramping down. It follows a quadratic
618  * equation which ensures that it reaches ramping down to pmin in 5sec.
619  */
calc_global_pstate(unsigned int elapsed_time,int highest_lpstate_idx,int local_pstate_idx)620 static inline int calc_global_pstate(unsigned int elapsed_time,
621 				     int highest_lpstate_idx,
622 				     int local_pstate_idx)
623 {
624 	int index_diff;
625 
626 	/*
627 	 * Using ramp_down_percent we get the percentage of rampdown
628 	 * that we are expecting to be dropping. Difference between
629 	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
630 	 * number of how many pstates we will drop eventually by the end of
631 	 * 5 seconds, then just scale it get the number pstates to be dropped.
632 	 */
633 	index_diff =  ((int)ramp_down_percent(elapsed_time) *
634 			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
635 
636 	/* Ensure that global pstate is >= to local pstate */
637 	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
638 		return local_pstate_idx;
639 	else
640 		return highest_lpstate_idx + index_diff;
641 }
642 
queue_gpstate_timer(struct global_pstate_info * gpstates)643 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
644 {
645 	unsigned int timer_interval;
646 
647 	/*
648 	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
649 	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
650 	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
651 	 * seconds of ramp down time.
652 	 */
653 	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
654 	     > MAX_RAMP_DOWN_TIME)
655 		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
656 	else
657 		timer_interval = GPSTATE_TIMER_INTERVAL;
658 
659 	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
660 }
661 
662 /**
663  * gpstate_timer_handler
664  *
665  * @data: pointer to cpufreq_policy on which timer was queued
666  *
667  * This handler brings down the global pstate closer to the local pstate
668  * according quadratic equation. Queues a new timer if it is still not equal
669  * to local pstate
670  */
gpstate_timer_handler(struct timer_list * t)671 void gpstate_timer_handler(struct timer_list *t)
672 {
673 	struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
674 	struct cpufreq_policy *policy = gpstates->policy;
675 	int gpstate_idx, lpstate_idx;
676 	unsigned long val;
677 	unsigned int time_diff = jiffies_to_msecs(jiffies)
678 					- gpstates->last_sampled_time;
679 	struct powernv_smp_call_data freq_data;
680 
681 	if (!spin_trylock(&gpstates->gpstate_lock))
682 		return;
683 	/*
684 	 * If the timer has migrated to the different cpu then bring
685 	 * it back to one of the policy->cpus
686 	 */
687 	if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
688 		gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
689 		add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
690 		spin_unlock(&gpstates->gpstate_lock);
691 		return;
692 	}
693 
694 	/*
695 	 * If PMCR was last updated was using fast_swtich then
696 	 * We may have wrong in gpstate->last_lpstate_idx
697 	 * value. Hence, read from PMCR to get correct data.
698 	 */
699 	val = get_pmspr(SPRN_PMCR);
700 	freq_data.gpstate_id = extract_global_pstate(val);
701 	freq_data.pstate_id = extract_local_pstate(val);
702 	if (freq_data.gpstate_id  == freq_data.pstate_id) {
703 		reset_gpstates(policy);
704 		spin_unlock(&gpstates->gpstate_lock);
705 		return;
706 	}
707 
708 	gpstates->last_sampled_time += time_diff;
709 	gpstates->elapsed_time += time_diff;
710 
711 	if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
712 		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
713 		lpstate_idx = gpstate_idx;
714 		reset_gpstates(policy);
715 		gpstates->highest_lpstate_idx = gpstate_idx;
716 	} else {
717 		lpstate_idx = pstate_to_idx(freq_data.pstate_id);
718 		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
719 						 gpstates->highest_lpstate_idx,
720 						 lpstate_idx);
721 	}
722 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
723 	gpstates->last_gpstate_idx = gpstate_idx;
724 	gpstates->last_lpstate_idx = lpstate_idx;
725 	/*
726 	 * If local pstate is equal to global pstate, rampdown is over
727 	 * So timer is not required to be queued.
728 	 */
729 	if (gpstate_idx != gpstates->last_lpstate_idx)
730 		queue_gpstate_timer(gpstates);
731 
732 	set_pstate(&freq_data);
733 	spin_unlock(&gpstates->gpstate_lock);
734 }
735 
736 /*
737  * powernv_cpufreq_target_index: Sets the frequency corresponding to
738  * the cpufreq table entry indexed by new_index on the cpus in the
739  * mask policy->cpus
740  */
powernv_cpufreq_target_index(struct cpufreq_policy * policy,unsigned int new_index)741 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
742 					unsigned int new_index)
743 {
744 	struct powernv_smp_call_data freq_data;
745 	unsigned int cur_msec, gpstate_idx;
746 	struct global_pstate_info *gpstates = policy->driver_data;
747 
748 	if (unlikely(rebooting) && new_index != get_nominal_index())
749 		return 0;
750 
751 	if (!throttled) {
752 		/* we don't want to be preempted while
753 		 * checking if the CPU frequency has been throttled
754 		 */
755 		preempt_disable();
756 		powernv_cpufreq_throttle_check(NULL);
757 		preempt_enable();
758 	}
759 
760 	cur_msec = jiffies_to_msecs(get_jiffies_64());
761 
762 	freq_data.pstate_id = idx_to_pstate(new_index);
763 	if (!gpstates) {
764 		freq_data.gpstate_id = freq_data.pstate_id;
765 		goto no_gpstate;
766 	}
767 
768 	spin_lock(&gpstates->gpstate_lock);
769 
770 	if (!gpstates->last_sampled_time) {
771 		gpstate_idx = new_index;
772 		gpstates->highest_lpstate_idx = new_index;
773 		goto gpstates_done;
774 	}
775 
776 	if (gpstates->last_gpstate_idx < new_index) {
777 		gpstates->elapsed_time += cur_msec -
778 						 gpstates->last_sampled_time;
779 
780 		/*
781 		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
782 		 * we should be resetting all global pstate related data. Set it
783 		 * equal to local pstate to start fresh.
784 		 */
785 		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
786 			reset_gpstates(policy);
787 			gpstates->highest_lpstate_idx = new_index;
788 			gpstate_idx = new_index;
789 		} else {
790 		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
791 			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
792 							 gpstates->highest_lpstate_idx,
793 							 new_index);
794 		}
795 	} else {
796 		reset_gpstates(policy);
797 		gpstates->highest_lpstate_idx = new_index;
798 		gpstate_idx = new_index;
799 	}
800 
801 	/*
802 	 * If local pstate is equal to global pstate, rampdown is over
803 	 * So timer is not required to be queued.
804 	 */
805 	if (gpstate_idx != new_index)
806 		queue_gpstate_timer(gpstates);
807 	else
808 		del_timer_sync(&gpstates->timer);
809 
810 gpstates_done:
811 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
812 	gpstates->last_sampled_time = cur_msec;
813 	gpstates->last_gpstate_idx = gpstate_idx;
814 	gpstates->last_lpstate_idx = new_index;
815 
816 	spin_unlock(&gpstates->gpstate_lock);
817 
818 no_gpstate:
819 	/*
820 	 * Use smp_call_function to send IPI and execute the
821 	 * mtspr on target CPU.  We could do that without IPI
822 	 * if current CPU is within policy->cpus (core)
823 	 */
824 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
825 	return 0;
826 }
827 
powernv_cpufreq_cpu_init(struct cpufreq_policy * policy)828 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
829 {
830 	int base, i;
831 	struct kernfs_node *kn;
832 	struct global_pstate_info *gpstates;
833 
834 	base = cpu_first_thread_sibling(policy->cpu);
835 
836 	for (i = 0; i < threads_per_core; i++)
837 		cpumask_set_cpu(base + i, policy->cpus);
838 
839 	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
840 	if (!kn) {
841 		int ret;
842 
843 		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
844 		if (ret) {
845 			pr_info("Failed to create throttle stats directory for cpu %d\n",
846 				policy->cpu);
847 			return ret;
848 		}
849 	} else {
850 		kernfs_put(kn);
851 	}
852 
853 	policy->freq_table = powernv_freqs;
854 	policy->fast_switch_possible = true;
855 
856 	if (pvr_version_is(PVR_POWER9))
857 		return 0;
858 
859 	/* Initialise Gpstate ramp-down timer only on POWER8 */
860 	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
861 	if (!gpstates)
862 		return -ENOMEM;
863 
864 	policy->driver_data = gpstates;
865 
866 	/* initialize timer */
867 	gpstates->policy = policy;
868 	timer_setup(&gpstates->timer, gpstate_timer_handler,
869 		    TIMER_PINNED | TIMER_DEFERRABLE);
870 	gpstates->timer.expires = jiffies +
871 				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
872 	spin_lock_init(&gpstates->gpstate_lock);
873 
874 	return 0;
875 }
876 
powernv_cpufreq_cpu_exit(struct cpufreq_policy * policy)877 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
878 {
879 	/* timer is deleted in cpufreq_cpu_stop() */
880 	kfree(policy->driver_data);
881 
882 	return 0;
883 }
884 
powernv_cpufreq_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)885 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
886 				unsigned long action, void *unused)
887 {
888 	int cpu;
889 	struct cpufreq_policy *cpu_policy;
890 
891 	rebooting = true;
892 	for_each_online_cpu(cpu) {
893 		cpu_policy = cpufreq_cpu_get(cpu);
894 		if (!cpu_policy)
895 			continue;
896 		powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
897 		cpufreq_cpu_put(cpu_policy);
898 	}
899 
900 	return NOTIFY_DONE;
901 }
902 
903 static struct notifier_block powernv_cpufreq_reboot_nb = {
904 	.notifier_call = powernv_cpufreq_reboot_notifier,
905 };
906 
powernv_cpufreq_work_fn(struct work_struct * work)907 void powernv_cpufreq_work_fn(struct work_struct *work)
908 {
909 	struct chip *chip = container_of(work, struct chip, throttle);
910 	struct cpufreq_policy *policy;
911 	unsigned int cpu;
912 	cpumask_t mask;
913 
914 	get_online_cpus();
915 	cpumask_and(&mask, &chip->mask, cpu_online_mask);
916 	smp_call_function_any(&mask,
917 			      powernv_cpufreq_throttle_check, NULL, 0);
918 
919 	if (!chip->restore)
920 		goto out;
921 
922 	chip->restore = false;
923 	for_each_cpu(cpu, &mask) {
924 		int index;
925 
926 		policy = cpufreq_cpu_get(cpu);
927 		if (!policy)
928 			continue;
929 		index = cpufreq_table_find_index_c(policy, policy->cur);
930 		powernv_cpufreq_target_index(policy, index);
931 		cpumask_andnot(&mask, &mask, policy->cpus);
932 		cpufreq_cpu_put(policy);
933 	}
934 out:
935 	put_online_cpus();
936 }
937 
powernv_cpufreq_occ_msg(struct notifier_block * nb,unsigned long msg_type,void * _msg)938 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
939 				   unsigned long msg_type, void *_msg)
940 {
941 	struct opal_msg *msg = _msg;
942 	struct opal_occ_msg omsg;
943 	int i;
944 
945 	if (msg_type != OPAL_MSG_OCC)
946 		return 0;
947 
948 	omsg.type = be64_to_cpu(msg->params[0]);
949 
950 	switch (omsg.type) {
951 	case OCC_RESET:
952 		occ_reset = true;
953 		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
954 		/*
955 		 * powernv_cpufreq_throttle_check() is called in
956 		 * target() callback which can detect the throttle state
957 		 * for governors like ondemand.
958 		 * But static governors will not call target() often thus
959 		 * report throttling here.
960 		 */
961 		if (!throttled) {
962 			throttled = true;
963 			pr_warn("CPU frequency is throttled for duration\n");
964 		}
965 
966 		break;
967 	case OCC_LOAD:
968 		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
969 		break;
970 	case OCC_THROTTLE:
971 		omsg.chip = be64_to_cpu(msg->params[1]);
972 		omsg.throttle_status = be64_to_cpu(msg->params[2]);
973 
974 		if (occ_reset) {
975 			occ_reset = false;
976 			throttled = false;
977 			pr_info("OCC Active, CPU frequency is no longer throttled\n");
978 
979 			for (i = 0; i < nr_chips; i++) {
980 				chips[i].restore = true;
981 				schedule_work(&chips[i].throttle);
982 			}
983 
984 			return 0;
985 		}
986 
987 		for (i = 0; i < nr_chips; i++)
988 			if (chips[i].id == omsg.chip)
989 				break;
990 
991 		if (omsg.throttle_status >= 0 &&
992 		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
993 			chips[i].throttle_reason = omsg.throttle_status;
994 			chips[i].reason[omsg.throttle_status]++;
995 		}
996 
997 		if (!omsg.throttle_status)
998 			chips[i].restore = true;
999 
1000 		schedule_work(&chips[i].throttle);
1001 	}
1002 	return 0;
1003 }
1004 
1005 static struct notifier_block powernv_cpufreq_opal_nb = {
1006 	.notifier_call	= powernv_cpufreq_occ_msg,
1007 	.next		= NULL,
1008 	.priority	= 0,
1009 };
1010 
powernv_cpufreq_stop_cpu(struct cpufreq_policy * policy)1011 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1012 {
1013 	struct powernv_smp_call_data freq_data;
1014 	struct global_pstate_info *gpstates = policy->driver_data;
1015 
1016 	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
1017 	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1018 	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1019 	if (gpstates)
1020 		del_timer_sync(&gpstates->timer);
1021 }
1022 
powernv_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)1023 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1024 					unsigned int target_freq)
1025 {
1026 	int index;
1027 	struct powernv_smp_call_data freq_data;
1028 
1029 	index = cpufreq_table_find_index_dl(policy, target_freq);
1030 	freq_data.pstate_id = powernv_freqs[index].driver_data;
1031 	freq_data.gpstate_id = powernv_freqs[index].driver_data;
1032 	set_pstate(&freq_data);
1033 
1034 	return powernv_freqs[index].frequency;
1035 }
1036 
1037 static struct cpufreq_driver powernv_cpufreq_driver = {
1038 	.name		= "powernv-cpufreq",
1039 	.flags		= CPUFREQ_CONST_LOOPS,
1040 	.init		= powernv_cpufreq_cpu_init,
1041 	.exit		= powernv_cpufreq_cpu_exit,
1042 	.verify		= cpufreq_generic_frequency_table_verify,
1043 	.target_index	= powernv_cpufreq_target_index,
1044 	.fast_switch	= powernv_fast_switch,
1045 	.get		= powernv_cpufreq_get,
1046 	.stop_cpu	= powernv_cpufreq_stop_cpu,
1047 	.attr		= powernv_cpu_freq_attr,
1048 };
1049 
init_chip_info(void)1050 static int init_chip_info(void)
1051 {
1052 	unsigned int *chip;
1053 	unsigned int cpu, i;
1054 	unsigned int prev_chip_id = UINT_MAX;
1055 	cpumask_t *chip_cpu_mask;
1056 	int ret = 0;
1057 
1058 	chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1059 	if (!chip)
1060 		return -ENOMEM;
1061 
1062 	/* Allocate a chip cpu mask large enough to fit mask for all chips */
1063 	chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL);
1064 	if (!chip_cpu_mask) {
1065 		ret = -ENOMEM;
1066 		goto free_and_return;
1067 	}
1068 
1069 	for_each_possible_cpu(cpu) {
1070 		unsigned int id = cpu_to_chip_id(cpu);
1071 
1072 		if (prev_chip_id != id) {
1073 			prev_chip_id = id;
1074 			chip[nr_chips++] = id;
1075 		}
1076 		cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]);
1077 	}
1078 
1079 	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1080 	if (!chips) {
1081 		ret = -ENOMEM;
1082 		goto out_free_chip_cpu_mask;
1083 	}
1084 
1085 	for (i = 0; i < nr_chips; i++) {
1086 		chips[i].id = chip[i];
1087 		cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]);
1088 		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1089 		for_each_cpu(cpu, &chips[i].mask)
1090 			per_cpu(chip_info, cpu) =  &chips[i];
1091 	}
1092 
1093 out_free_chip_cpu_mask:
1094 	kfree(chip_cpu_mask);
1095 free_and_return:
1096 	kfree(chip);
1097 	return ret;
1098 }
1099 
clean_chip_info(void)1100 static inline void clean_chip_info(void)
1101 {
1102 	int i;
1103 
1104 	/* flush any pending work items */
1105 	if (chips)
1106 		for (i = 0; i < nr_chips; i++)
1107 			cancel_work_sync(&chips[i].throttle);
1108 	kfree(chips);
1109 }
1110 
unregister_all_notifiers(void)1111 static inline void unregister_all_notifiers(void)
1112 {
1113 	opal_message_notifier_unregister(OPAL_MSG_OCC,
1114 					 &powernv_cpufreq_opal_nb);
1115 	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1116 }
1117 
powernv_cpufreq_init(void)1118 static int __init powernv_cpufreq_init(void)
1119 {
1120 	int rc = 0;
1121 
1122 	/* Don't probe on pseries (guest) platforms */
1123 	if (!firmware_has_feature(FW_FEATURE_OPAL))
1124 		return -ENODEV;
1125 
1126 	/* Discover pstates from device tree and init */
1127 	rc = init_powernv_pstates();
1128 	if (rc)
1129 		goto out;
1130 
1131 	/* Populate chip info */
1132 	rc = init_chip_info();
1133 	if (rc)
1134 		goto out;
1135 
1136 	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1137 	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1138 
1139 	if (powernv_pstate_info.wof_enabled)
1140 		powernv_cpufreq_driver.boost_enabled = true;
1141 	else
1142 		powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1143 
1144 	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1145 	if (rc) {
1146 		pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1147 		goto cleanup_notifiers;
1148 	}
1149 
1150 	if (powernv_pstate_info.wof_enabled)
1151 		cpufreq_enable_boost_support();
1152 
1153 	return 0;
1154 cleanup_notifiers:
1155 	unregister_all_notifiers();
1156 	clean_chip_info();
1157 out:
1158 	pr_info("Platform driver disabled. System does not support PState control\n");
1159 	return rc;
1160 }
1161 module_init(powernv_cpufreq_init);
1162 
powernv_cpufreq_exit(void)1163 static void __exit powernv_cpufreq_exit(void)
1164 {
1165 	cpufreq_unregister_driver(&powernv_cpufreq_driver);
1166 	unregister_all_notifiers();
1167 	clean_chip_info();
1168 }
1169 module_exit(powernv_cpufreq_exit);
1170 
1171 MODULE_LICENSE("GPL");
1172 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1173