1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_mc.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static unsigned int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
edac_mc_get_log_ue(void)32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
edac_mc_get_log_ce(void)37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
edac_mc_get_panic_on_ue(void)42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
edac_mc_get_poll_msec(void)48 unsigned int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
edac_set_poll_msec(const char * val,const struct kernel_param * kp)53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54 {
55 	unsigned int i;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtouint(val, 0, &i);
62 	if (ret)
63 		return ret;
64 
65 	if (i < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned int *)kp->arg) = i;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(i);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const dev_types[] = {
95 	[DEV_UNKNOWN] = "Unknown",
96 	[DEV_X1] = "x1",
97 	[DEV_X2] = "x2",
98 	[DEV_X4] = "x4",
99 	[DEV_X8] = "x8",
100 	[DEV_X16] = "x16",
101 	[DEV_X32] = "x32",
102 	[DEV_X64] = "x64"
103 };
104 
105 static const char * const edac_caps[] = {
106 	[EDAC_UNKNOWN] = "Unknown",
107 	[EDAC_NONE] = "None",
108 	[EDAC_RESERVED] = "Reserved",
109 	[EDAC_PARITY] = "PARITY",
110 	[EDAC_EC] = "EC",
111 	[EDAC_SECDED] = "SECDED",
112 	[EDAC_S2ECD2ED] = "S2ECD2ED",
113 	[EDAC_S4ECD4ED] = "S4ECD4ED",
114 	[EDAC_S8ECD8ED] = "S8ECD8ED",
115 	[EDAC_S16ECD16ED] = "S16ECD16ED"
116 };
117 
118 #ifdef CONFIG_EDAC_LEGACY_SYSFS
119 /*
120  * EDAC sysfs CSROW data structures and methods
121  */
122 
123 #define to_csrow(k) container_of(k, struct csrow_info, dev)
124 
125 /*
126  * We need it to avoid namespace conflicts between the legacy API
127  * and the per-dimm/per-rank one
128  */
129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131 
132 struct dev_ch_attribute {
133 	struct device_attribute attr;
134 	int channel;
135 };
136 
137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 		{ __ATTR(_name, _mode, _show, _store), (_var) }
140 
141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142 
143 /* Set of more default csrow<id> attribute show/store functions */
csrow_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)144 static ssize_t csrow_ue_count_show(struct device *dev,
145 				   struct device_attribute *mattr, char *data)
146 {
147 	struct csrow_info *csrow = to_csrow(dev);
148 
149 	return sprintf(data, "%u\n", csrow->ue_count);
150 }
151 
csrow_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)152 static ssize_t csrow_ce_count_show(struct device *dev,
153 				   struct device_attribute *mattr, char *data)
154 {
155 	struct csrow_info *csrow = to_csrow(dev);
156 
157 	return sprintf(data, "%u\n", csrow->ce_count);
158 }
159 
csrow_size_show(struct device * dev,struct device_attribute * mattr,char * data)160 static ssize_t csrow_size_show(struct device *dev,
161 			       struct device_attribute *mattr, char *data)
162 {
163 	struct csrow_info *csrow = to_csrow(dev);
164 	int i;
165 	u32 nr_pages = 0;
166 
167 	for (i = 0; i < csrow->nr_channels; i++)
168 		nr_pages += csrow->channels[i]->dimm->nr_pages;
169 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
170 }
171 
csrow_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)172 static ssize_t csrow_mem_type_show(struct device *dev,
173 				   struct device_attribute *mattr, char *data)
174 {
175 	struct csrow_info *csrow = to_csrow(dev);
176 
177 	return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178 }
179 
csrow_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)180 static ssize_t csrow_dev_type_show(struct device *dev,
181 				   struct device_attribute *mattr, char *data)
182 {
183 	struct csrow_info *csrow = to_csrow(dev);
184 
185 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186 }
187 
csrow_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)188 static ssize_t csrow_edac_mode_show(struct device *dev,
189 				    struct device_attribute *mattr,
190 				    char *data)
191 {
192 	struct csrow_info *csrow = to_csrow(dev);
193 
194 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195 }
196 
197 /* show/store functions for DIMM Label attributes */
channel_dimm_label_show(struct device * dev,struct device_attribute * mattr,char * data)198 static ssize_t channel_dimm_label_show(struct device *dev,
199 				       struct device_attribute *mattr,
200 				       char *data)
201 {
202 	struct csrow_info *csrow = to_csrow(dev);
203 	unsigned chan = to_channel(mattr);
204 	struct rank_info *rank = csrow->channels[chan];
205 
206 	/* if field has not been initialized, there is nothing to send */
207 	if (!rank->dimm->label[0])
208 		return 0;
209 
210 	return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211 			rank->dimm->label);
212 }
213 
channel_dimm_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)214 static ssize_t channel_dimm_label_store(struct device *dev,
215 					struct device_attribute *mattr,
216 					const char *data, size_t count)
217 {
218 	struct csrow_info *csrow = to_csrow(dev);
219 	unsigned chan = to_channel(mattr);
220 	struct rank_info *rank = csrow->channels[chan];
221 	size_t copy_count = count;
222 
223 	if (count == 0)
224 		return -EINVAL;
225 
226 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
227 		copy_count -= 1;
228 
229 	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230 		return -EINVAL;
231 
232 	strncpy(rank->dimm->label, data, copy_count);
233 	rank->dimm->label[copy_count] = '\0';
234 
235 	return count;
236 }
237 
238 /* show function for dynamic chX_ce_count attribute */
channel_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)239 static ssize_t channel_ce_count_show(struct device *dev,
240 				     struct device_attribute *mattr, char *data)
241 {
242 	struct csrow_info *csrow = to_csrow(dev);
243 	unsigned chan = to_channel(mattr);
244 	struct rank_info *rank = csrow->channels[chan];
245 
246 	return sprintf(data, "%u\n", rank->ce_count);
247 }
248 
249 /* cwrow<id>/attribute files */
250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256 
257 /* default attributes of the CSROW<id> object */
258 static struct attribute *csrow_attrs[] = {
259 	&dev_attr_legacy_dev_type.attr,
260 	&dev_attr_legacy_mem_type.attr,
261 	&dev_attr_legacy_edac_mode.attr,
262 	&dev_attr_legacy_size_mb.attr,
263 	&dev_attr_legacy_ue_count.attr,
264 	&dev_attr_legacy_ce_count.attr,
265 	NULL,
266 };
267 
268 static const struct attribute_group csrow_attr_grp = {
269 	.attrs	= csrow_attrs,
270 };
271 
272 static const struct attribute_group *csrow_attr_groups[] = {
273 	&csrow_attr_grp,
274 	NULL
275 };
276 
csrow_attr_release(struct device * dev)277 static void csrow_attr_release(struct device *dev)
278 {
279 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
280 
281 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
282 	kfree(csrow);
283 }
284 
285 static const struct device_type csrow_attr_type = {
286 	.groups		= csrow_attr_groups,
287 	.release	= csrow_attr_release,
288 };
289 
290 /*
291  * possible dynamic channel DIMM Label attribute files
292  *
293  */
294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
295 	channel_dimm_label_show, channel_dimm_label_store, 0);
296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
297 	channel_dimm_label_show, channel_dimm_label_store, 1);
298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
299 	channel_dimm_label_show, channel_dimm_label_store, 2);
300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
301 	channel_dimm_label_show, channel_dimm_label_store, 3);
302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
303 	channel_dimm_label_show, channel_dimm_label_store, 4);
304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
305 	channel_dimm_label_show, channel_dimm_label_store, 5);
306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
307 	channel_dimm_label_show, channel_dimm_label_store, 6);
308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
309 	channel_dimm_label_show, channel_dimm_label_store, 7);
310 
311 /* Total possible dynamic DIMM Label attribute file table */
312 static struct attribute *dynamic_csrow_dimm_attr[] = {
313 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
314 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
315 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
316 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
317 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
318 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
319 	&dev_attr_legacy_ch6_dimm_label.attr.attr,
320 	&dev_attr_legacy_ch7_dimm_label.attr.attr,
321 	NULL
322 };
323 
324 /* possible dynamic channel ce_count attribute files */
325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
326 		   channel_ce_count_show, NULL, 0);
327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
328 		   channel_ce_count_show, NULL, 1);
329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
330 		   channel_ce_count_show, NULL, 2);
331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
332 		   channel_ce_count_show, NULL, 3);
333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
334 		   channel_ce_count_show, NULL, 4);
335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
336 		   channel_ce_count_show, NULL, 5);
337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
338 		   channel_ce_count_show, NULL, 6);
339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
340 		   channel_ce_count_show, NULL, 7);
341 
342 /* Total possible dynamic ce_count attribute file table */
343 static struct attribute *dynamic_csrow_ce_count_attr[] = {
344 	&dev_attr_legacy_ch0_ce_count.attr.attr,
345 	&dev_attr_legacy_ch1_ce_count.attr.attr,
346 	&dev_attr_legacy_ch2_ce_count.attr.attr,
347 	&dev_attr_legacy_ch3_ce_count.attr.attr,
348 	&dev_attr_legacy_ch4_ce_count.attr.attr,
349 	&dev_attr_legacy_ch5_ce_count.attr.attr,
350 	&dev_attr_legacy_ch6_ce_count.attr.attr,
351 	&dev_attr_legacy_ch7_ce_count.attr.attr,
352 	NULL
353 };
354 
csrow_dev_is_visible(struct kobject * kobj,struct attribute * attr,int idx)355 static umode_t csrow_dev_is_visible(struct kobject *kobj,
356 				    struct attribute *attr, int idx)
357 {
358 	struct device *dev = kobj_to_dev(kobj);
359 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
360 
361 	if (idx >= csrow->nr_channels)
362 		return 0;
363 
364 	if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
365 		WARN_ONCE(1, "idx: %d\n", idx);
366 		return 0;
367 	}
368 
369 	/* Only expose populated DIMMs */
370 	if (!csrow->channels[idx]->dimm->nr_pages)
371 		return 0;
372 
373 	return attr->mode;
374 }
375 
376 
377 static const struct attribute_group csrow_dev_dimm_group = {
378 	.attrs = dynamic_csrow_dimm_attr,
379 	.is_visible = csrow_dev_is_visible,
380 };
381 
382 static const struct attribute_group csrow_dev_ce_count_group = {
383 	.attrs = dynamic_csrow_ce_count_attr,
384 	.is_visible = csrow_dev_is_visible,
385 };
386 
387 static const struct attribute_group *csrow_dev_groups[] = {
388 	&csrow_dev_dimm_group,
389 	&csrow_dev_ce_count_group,
390 	NULL
391 };
392 
nr_pages_per_csrow(struct csrow_info * csrow)393 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
394 {
395 	int chan, nr_pages = 0;
396 
397 	for (chan = 0; chan < csrow->nr_channels; chan++)
398 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
399 
400 	return nr_pages;
401 }
402 
403 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_object(struct mem_ctl_info * mci,struct csrow_info * csrow,int index)404 static int edac_create_csrow_object(struct mem_ctl_info *mci,
405 				    struct csrow_info *csrow, int index)
406 {
407 	int err;
408 
409 	csrow->dev.type = &csrow_attr_type;
410 	csrow->dev.bus = mci->bus;
411 	csrow->dev.groups = csrow_dev_groups;
412 	device_initialize(&csrow->dev);
413 	csrow->dev.parent = &mci->dev;
414 	csrow->mci = mci;
415 	dev_set_name(&csrow->dev, "csrow%d", index);
416 	dev_set_drvdata(&csrow->dev, csrow);
417 
418 	edac_dbg(0, "creating (virtual) csrow node %s\n",
419 		 dev_name(&csrow->dev));
420 
421 	err = device_add(&csrow->dev);
422 	if (err)
423 		put_device(&csrow->dev);
424 
425 	return err;
426 }
427 
428 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_objects(struct mem_ctl_info * mci)429 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
430 {
431 	int err, i;
432 	struct csrow_info *csrow;
433 
434 	for (i = 0; i < mci->nr_csrows; i++) {
435 		csrow = mci->csrows[i];
436 		if (!nr_pages_per_csrow(csrow))
437 			continue;
438 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
439 		if (err < 0) {
440 			edac_dbg(1,
441 				 "failure: create csrow objects for csrow %d\n",
442 				 i);
443 			goto error;
444 		}
445 	}
446 	return 0;
447 
448 error:
449 	for (--i; i >= 0; i--) {
450 		csrow = mci->csrows[i];
451 		if (!nr_pages_per_csrow(csrow))
452 			continue;
453 		put_device(&mci->csrows[i]->dev);
454 	}
455 
456 	return err;
457 }
458 
edac_delete_csrow_objects(struct mem_ctl_info * mci)459 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
460 {
461 	int i;
462 	struct csrow_info *csrow;
463 
464 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
465 		csrow = mci->csrows[i];
466 		if (!nr_pages_per_csrow(csrow))
467 			continue;
468 		device_unregister(&mci->csrows[i]->dev);
469 	}
470 }
471 #endif
472 
473 /*
474  * Per-dimm (or per-rank) devices
475  */
476 
477 #define to_dimm(k) container_of(k, struct dimm_info, dev)
478 
479 /* show/store functions for DIMM Label attributes */
dimmdev_location_show(struct device * dev,struct device_attribute * mattr,char * data)480 static ssize_t dimmdev_location_show(struct device *dev,
481 				     struct device_attribute *mattr, char *data)
482 {
483 	struct dimm_info *dimm = to_dimm(dev);
484 
485 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
486 }
487 
dimmdev_label_show(struct device * dev,struct device_attribute * mattr,char * data)488 static ssize_t dimmdev_label_show(struct device *dev,
489 				  struct device_attribute *mattr, char *data)
490 {
491 	struct dimm_info *dimm = to_dimm(dev);
492 
493 	/* if field has not been initialized, there is nothing to send */
494 	if (!dimm->label[0])
495 		return 0;
496 
497 	return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
498 }
499 
dimmdev_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)500 static ssize_t dimmdev_label_store(struct device *dev,
501 				   struct device_attribute *mattr,
502 				   const char *data,
503 				   size_t count)
504 {
505 	struct dimm_info *dimm = to_dimm(dev);
506 	size_t copy_count = count;
507 
508 	if (count == 0)
509 		return -EINVAL;
510 
511 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
512 		copy_count -= 1;
513 
514 	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
515 		return -EINVAL;
516 
517 	strncpy(dimm->label, data, copy_count);
518 	dimm->label[copy_count] = '\0';
519 
520 	return count;
521 }
522 
dimmdev_size_show(struct device * dev,struct device_attribute * mattr,char * data)523 static ssize_t dimmdev_size_show(struct device *dev,
524 				 struct device_attribute *mattr, char *data)
525 {
526 	struct dimm_info *dimm = to_dimm(dev);
527 
528 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
529 }
530 
dimmdev_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)531 static ssize_t dimmdev_mem_type_show(struct device *dev,
532 				     struct device_attribute *mattr, char *data)
533 {
534 	struct dimm_info *dimm = to_dimm(dev);
535 
536 	return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
537 }
538 
dimmdev_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)539 static ssize_t dimmdev_dev_type_show(struct device *dev,
540 				     struct device_attribute *mattr, char *data)
541 {
542 	struct dimm_info *dimm = to_dimm(dev);
543 
544 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
545 }
546 
dimmdev_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)547 static ssize_t dimmdev_edac_mode_show(struct device *dev,
548 				      struct device_attribute *mattr,
549 				      char *data)
550 {
551 	struct dimm_info *dimm = to_dimm(dev);
552 
553 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
554 }
555 
dimmdev_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)556 static ssize_t dimmdev_ce_count_show(struct device *dev,
557 				      struct device_attribute *mattr,
558 				      char *data)
559 {
560 	struct dimm_info *dimm = to_dimm(dev);
561 	u32 count;
562 	int off;
563 
564 	off = EDAC_DIMM_OFF(dimm->mci->layers,
565 			    dimm->mci->n_layers,
566 			    dimm->location[0],
567 			    dimm->location[1],
568 			    dimm->location[2]);
569 	count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
570 	return sprintf(data, "%u\n", count);
571 }
572 
dimmdev_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)573 static ssize_t dimmdev_ue_count_show(struct device *dev,
574 				      struct device_attribute *mattr,
575 				      char *data)
576 {
577 	struct dimm_info *dimm = to_dimm(dev);
578 	u32 count;
579 	int off;
580 
581 	off = EDAC_DIMM_OFF(dimm->mci->layers,
582 			    dimm->mci->n_layers,
583 			    dimm->location[0],
584 			    dimm->location[1],
585 			    dimm->location[2]);
586 	count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
587 	return sprintf(data, "%u\n", count);
588 }
589 
590 /* dimm/rank attribute files */
591 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
592 		   dimmdev_label_show, dimmdev_label_store);
593 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
594 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
595 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
596 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
597 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
598 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
599 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
600 
601 /* attributes of the dimm<id>/rank<id> object */
602 static struct attribute *dimm_attrs[] = {
603 	&dev_attr_dimm_label.attr,
604 	&dev_attr_dimm_location.attr,
605 	&dev_attr_size.attr,
606 	&dev_attr_dimm_mem_type.attr,
607 	&dev_attr_dimm_dev_type.attr,
608 	&dev_attr_dimm_edac_mode.attr,
609 	&dev_attr_dimm_ce_count.attr,
610 	&dev_attr_dimm_ue_count.attr,
611 	NULL,
612 };
613 
614 static const struct attribute_group dimm_attr_grp = {
615 	.attrs	= dimm_attrs,
616 };
617 
618 static const struct attribute_group *dimm_attr_groups[] = {
619 	&dimm_attr_grp,
620 	NULL
621 };
622 
dimm_attr_release(struct device * dev)623 static void dimm_attr_release(struct device *dev)
624 {
625 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
626 
627 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
628 	kfree(dimm);
629 }
630 
631 static const struct device_type dimm_attr_type = {
632 	.groups		= dimm_attr_groups,
633 	.release	= dimm_attr_release,
634 };
635 
636 /* Create a DIMM object under specifed memory controller device */
edac_create_dimm_object(struct mem_ctl_info * mci,struct dimm_info * dimm,int index)637 static int edac_create_dimm_object(struct mem_ctl_info *mci,
638 				   struct dimm_info *dimm,
639 				   int index)
640 {
641 	int err;
642 	dimm->mci = mci;
643 
644 	dimm->dev.type = &dimm_attr_type;
645 	dimm->dev.bus = mci->bus;
646 	device_initialize(&dimm->dev);
647 
648 	dimm->dev.parent = &mci->dev;
649 	if (mci->csbased)
650 		dev_set_name(&dimm->dev, "rank%d", index);
651 	else
652 		dev_set_name(&dimm->dev, "dimm%d", index);
653 	dev_set_drvdata(&dimm->dev, dimm);
654 	pm_runtime_forbid(&mci->dev);
655 
656 	err =  device_add(&dimm->dev);
657 
658 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
659 
660 	return err;
661 }
662 
663 /*
664  * Memory controller device
665  */
666 
667 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
668 
mci_reset_counters_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)669 static ssize_t mci_reset_counters_store(struct device *dev,
670 					struct device_attribute *mattr,
671 					const char *data, size_t count)
672 {
673 	struct mem_ctl_info *mci = to_mci(dev);
674 	int cnt, row, chan, i;
675 	mci->ue_mc = 0;
676 	mci->ce_mc = 0;
677 	mci->ue_noinfo_count = 0;
678 	mci->ce_noinfo_count = 0;
679 
680 	for (row = 0; row < mci->nr_csrows; row++) {
681 		struct csrow_info *ri = mci->csrows[row];
682 
683 		ri->ue_count = 0;
684 		ri->ce_count = 0;
685 
686 		for (chan = 0; chan < ri->nr_channels; chan++)
687 			ri->channels[chan]->ce_count = 0;
688 	}
689 
690 	cnt = 1;
691 	for (i = 0; i < mci->n_layers; i++) {
692 		cnt *= mci->layers[i].size;
693 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
694 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
695 	}
696 
697 	mci->start_time = jiffies;
698 	return count;
699 }
700 
701 /* Memory scrubbing interface:
702  *
703  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
704  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
705  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
706  *
707  * Negative value still means that an error has occurred while setting
708  * the scrub rate.
709  */
mci_sdram_scrub_rate_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)710 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
711 					  struct device_attribute *mattr,
712 					  const char *data, size_t count)
713 {
714 	struct mem_ctl_info *mci = to_mci(dev);
715 	unsigned long bandwidth = 0;
716 	int new_bw = 0;
717 
718 	if (kstrtoul(data, 10, &bandwidth) < 0)
719 		return -EINVAL;
720 
721 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
722 	if (new_bw < 0) {
723 		edac_printk(KERN_WARNING, EDAC_MC,
724 			    "Error setting scrub rate to: %lu\n", bandwidth);
725 		return -EINVAL;
726 	}
727 
728 	return count;
729 }
730 
731 /*
732  * ->get_sdram_scrub_rate() return value semantics same as above.
733  */
mci_sdram_scrub_rate_show(struct device * dev,struct device_attribute * mattr,char * data)734 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
735 					 struct device_attribute *mattr,
736 					 char *data)
737 {
738 	struct mem_ctl_info *mci = to_mci(dev);
739 	int bandwidth = 0;
740 
741 	bandwidth = mci->get_sdram_scrub_rate(mci);
742 	if (bandwidth < 0) {
743 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
744 		return bandwidth;
745 	}
746 
747 	return sprintf(data, "%d\n", bandwidth);
748 }
749 
750 /* default attribute files for the MCI object */
mci_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)751 static ssize_t mci_ue_count_show(struct device *dev,
752 				 struct device_attribute *mattr,
753 				 char *data)
754 {
755 	struct mem_ctl_info *mci = to_mci(dev);
756 
757 	return sprintf(data, "%d\n", mci->ue_mc);
758 }
759 
mci_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)760 static ssize_t mci_ce_count_show(struct device *dev,
761 				 struct device_attribute *mattr,
762 				 char *data)
763 {
764 	struct mem_ctl_info *mci = to_mci(dev);
765 
766 	return sprintf(data, "%d\n", mci->ce_mc);
767 }
768 
mci_ce_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)769 static ssize_t mci_ce_noinfo_show(struct device *dev,
770 				  struct device_attribute *mattr,
771 				  char *data)
772 {
773 	struct mem_ctl_info *mci = to_mci(dev);
774 
775 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
776 }
777 
mci_ue_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)778 static ssize_t mci_ue_noinfo_show(struct device *dev,
779 				  struct device_attribute *mattr,
780 				  char *data)
781 {
782 	struct mem_ctl_info *mci = to_mci(dev);
783 
784 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
785 }
786 
mci_seconds_show(struct device * dev,struct device_attribute * mattr,char * data)787 static ssize_t mci_seconds_show(struct device *dev,
788 				struct device_attribute *mattr,
789 				char *data)
790 {
791 	struct mem_ctl_info *mci = to_mci(dev);
792 
793 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
794 }
795 
mci_ctl_name_show(struct device * dev,struct device_attribute * mattr,char * data)796 static ssize_t mci_ctl_name_show(struct device *dev,
797 				 struct device_attribute *mattr,
798 				 char *data)
799 {
800 	struct mem_ctl_info *mci = to_mci(dev);
801 
802 	return sprintf(data, "%s\n", mci->ctl_name);
803 }
804 
mci_size_mb_show(struct device * dev,struct device_attribute * mattr,char * data)805 static ssize_t mci_size_mb_show(struct device *dev,
806 				struct device_attribute *mattr,
807 				char *data)
808 {
809 	struct mem_ctl_info *mci = to_mci(dev);
810 	int total_pages = 0, csrow_idx, j;
811 
812 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
813 		struct csrow_info *csrow = mci->csrows[csrow_idx];
814 
815 		for (j = 0; j < csrow->nr_channels; j++) {
816 			struct dimm_info *dimm = csrow->channels[j]->dimm;
817 
818 			total_pages += dimm->nr_pages;
819 		}
820 	}
821 
822 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
823 }
824 
mci_max_location_show(struct device * dev,struct device_attribute * mattr,char * data)825 static ssize_t mci_max_location_show(struct device *dev,
826 				     struct device_attribute *mattr,
827 				     char *data)
828 {
829 	struct mem_ctl_info *mci = to_mci(dev);
830 	int i;
831 	char *p = data;
832 
833 	for (i = 0; i < mci->n_layers; i++) {
834 		p += sprintf(p, "%s %d ",
835 			     edac_layer_name[mci->layers[i].type],
836 			     mci->layers[i].size - 1);
837 	}
838 
839 	return p - data;
840 }
841 
842 /* default Control file */
843 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
844 
845 /* default Attribute files */
846 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
847 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
848 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
849 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
850 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
851 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
852 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
853 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
854 
855 /* memory scrubber attribute file */
856 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
857 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
858 
859 static struct attribute *mci_attrs[] = {
860 	&dev_attr_reset_counters.attr,
861 	&dev_attr_mc_name.attr,
862 	&dev_attr_size_mb.attr,
863 	&dev_attr_seconds_since_reset.attr,
864 	&dev_attr_ue_noinfo_count.attr,
865 	&dev_attr_ce_noinfo_count.attr,
866 	&dev_attr_ue_count.attr,
867 	&dev_attr_ce_count.attr,
868 	&dev_attr_max_location.attr,
869 	&dev_attr_sdram_scrub_rate.attr,
870 	NULL
871 };
872 
mci_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)873 static umode_t mci_attr_is_visible(struct kobject *kobj,
874 				   struct attribute *attr, int idx)
875 {
876 	struct device *dev = kobj_to_dev(kobj);
877 	struct mem_ctl_info *mci = to_mci(dev);
878 	umode_t mode = 0;
879 
880 	if (attr != &dev_attr_sdram_scrub_rate.attr)
881 		return attr->mode;
882 	if (mci->get_sdram_scrub_rate)
883 		mode |= S_IRUGO;
884 	if (mci->set_sdram_scrub_rate)
885 		mode |= S_IWUSR;
886 	return mode;
887 }
888 
889 static const struct attribute_group mci_attr_grp = {
890 	.attrs	= mci_attrs,
891 	.is_visible = mci_attr_is_visible,
892 };
893 
894 static const struct attribute_group *mci_attr_groups[] = {
895 	&mci_attr_grp,
896 	NULL
897 };
898 
mci_attr_release(struct device * dev)899 static void mci_attr_release(struct device *dev)
900 {
901 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
902 
903 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
904 	kfree(mci);
905 }
906 
907 static const struct device_type mci_attr_type = {
908 	.groups		= mci_attr_groups,
909 	.release	= mci_attr_release,
910 };
911 
912 /*
913  * Create a new Memory Controller kobject instance,
914  *	mc<id> under the 'mc' directory
915  *
916  * Return:
917  *	0	Success
918  *	!0	Failure
919  */
edac_create_sysfs_mci_device(struct mem_ctl_info * mci,const struct attribute_group ** groups)920 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
921 				 const struct attribute_group **groups)
922 {
923 	char *name;
924 	int i, err;
925 
926 	/*
927 	 * The memory controller needs its own bus, in order to avoid
928 	 * namespace conflicts at /sys/bus/edac.
929 	 */
930 	name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
931 	if (!name)
932 		return -ENOMEM;
933 
934 	mci->bus->name = name;
935 
936 	edac_dbg(0, "creating bus %s\n", mci->bus->name);
937 
938 	err = bus_register(mci->bus);
939 	if (err < 0) {
940 		kfree(name);
941 		return err;
942 	}
943 
944 	/* get the /sys/devices/system/edac subsys reference */
945 	mci->dev.type = &mci_attr_type;
946 	device_initialize(&mci->dev);
947 
948 	mci->dev.parent = mci_pdev;
949 	mci->dev.bus = mci->bus;
950 	mci->dev.groups = groups;
951 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
952 	dev_set_drvdata(&mci->dev, mci);
953 	pm_runtime_forbid(&mci->dev);
954 
955 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
956 	err = device_add(&mci->dev);
957 	if (err < 0) {
958 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
959 		goto fail_unregister_bus;
960 	}
961 
962 	/*
963 	 * Create the dimm/rank devices
964 	 */
965 	for (i = 0; i < mci->tot_dimms; i++) {
966 		struct dimm_info *dimm = mci->dimms[i];
967 		/* Only expose populated DIMMs */
968 		if (!dimm->nr_pages)
969 			continue;
970 
971 #ifdef CONFIG_EDAC_DEBUG
972 		edac_dbg(1, "creating dimm%d, located at ", i);
973 		if (edac_debug_level >= 1) {
974 			int lay;
975 			for (lay = 0; lay < mci->n_layers; lay++)
976 				printk(KERN_CONT "%s %d ",
977 					edac_layer_name[mci->layers[lay].type],
978 					dimm->location[lay]);
979 			printk(KERN_CONT "\n");
980 		}
981 #endif
982 		err = edac_create_dimm_object(mci, dimm, i);
983 		if (err) {
984 			edac_dbg(1, "failure: create dimm %d obj\n", i);
985 			goto fail_unregister_dimm;
986 		}
987 	}
988 
989 #ifdef CONFIG_EDAC_LEGACY_SYSFS
990 	err = edac_create_csrow_objects(mci);
991 	if (err < 0)
992 		goto fail_unregister_dimm;
993 #endif
994 
995 	edac_create_debugfs_nodes(mci);
996 	return 0;
997 
998 fail_unregister_dimm:
999 	for (i--; i >= 0; i--) {
1000 		struct dimm_info *dimm = mci->dimms[i];
1001 		if (!dimm->nr_pages)
1002 			continue;
1003 
1004 		device_unregister(&dimm->dev);
1005 	}
1006 	device_unregister(&mci->dev);
1007 fail_unregister_bus:
1008 	bus_unregister(mci->bus);
1009 	kfree(name);
1010 
1011 	return err;
1012 }
1013 
1014 /*
1015  * remove a Memory Controller instance
1016  */
edac_remove_sysfs_mci_device(struct mem_ctl_info * mci)1017 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1018 {
1019 	int i;
1020 
1021 	edac_dbg(0, "\n");
1022 
1023 #ifdef CONFIG_EDAC_DEBUG
1024 	edac_debugfs_remove_recursive(mci->debugfs);
1025 #endif
1026 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1027 	edac_delete_csrow_objects(mci);
1028 #endif
1029 
1030 	for (i = 0; i < mci->tot_dimms; i++) {
1031 		struct dimm_info *dimm = mci->dimms[i];
1032 		if (dimm->nr_pages == 0)
1033 			continue;
1034 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1035 		device_unregister(&dimm->dev);
1036 	}
1037 }
1038 
edac_unregister_sysfs(struct mem_ctl_info * mci)1039 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1040 {
1041 	struct bus_type *bus = mci->bus;
1042 	const char *name = mci->bus->name;
1043 
1044 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1045 	device_unregister(&mci->dev);
1046 	bus_unregister(bus);
1047 	kfree(name);
1048 }
1049 
mc_attr_release(struct device * dev)1050 static void mc_attr_release(struct device *dev)
1051 {
1052 	/*
1053 	 * There's no container structure here, as this is just the mci
1054 	 * parent device, used to create the /sys/devices/mc sysfs node.
1055 	 * So, there are no attributes on it.
1056 	 */
1057 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1058 	kfree(dev);
1059 }
1060 
1061 static const struct device_type mc_attr_type = {
1062 	.release	= mc_attr_release,
1063 };
1064 /*
1065  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1066  */
edac_mc_sysfs_init(void)1067 int __init edac_mc_sysfs_init(void)
1068 {
1069 	int err;
1070 
1071 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1072 	if (!mci_pdev) {
1073 		err = -ENOMEM;
1074 		goto out;
1075 	}
1076 
1077 	mci_pdev->bus = edac_get_sysfs_subsys();
1078 	mci_pdev->type = &mc_attr_type;
1079 	device_initialize(mci_pdev);
1080 	dev_set_name(mci_pdev, "mc");
1081 
1082 	err = device_add(mci_pdev);
1083 	if (err < 0)
1084 		goto out_put_device;
1085 
1086 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1087 
1088 	return 0;
1089 
1090  out_put_device:
1091 	put_device(mci_pdev);
1092  out:
1093 	return err;
1094 }
1095 
edac_mc_sysfs_exit(void)1096 void edac_mc_sysfs_exit(void)
1097 {
1098 	device_unregister(mci_pdev);
1099 }
1100