1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29 
30 #include "edac_module.h"
31 
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34 
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
39 #define EDAC_MOD_STR	    "sb_edac"
40 
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)			\
45 	edac_printk(level, "sbridge", fmt, ##arg)
46 
47 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
48 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi)	\
54 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 	0x80, 0x88, 0x90, 0x98, 0xa0,
59 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61 
62 static const u32 ibridge_dram_rule[] = {
63 	0x60, 0x68, 0x70, 0x78, 0x80,
64 	0x88, 0x90, 0x98, 0xa0,	0xa8,
65 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68 
69 static const u32 knl_dram_rule[] = {
70 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76 
77 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79 
show_dram_attr(u32 attr)80 static char *show_dram_attr(u32 attr)
81 {
82 	switch (attr) {
83 		case 0:
84 			return "DRAM";
85 		case 1:
86 			return "MMCFG";
87 		case 2:
88 			return "NXM";
89 		default:
90 			return "unknown";
91 	}
92 }
93 
94 static const u32 sbridge_interleave_list[] = {
95 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98 
99 static const u32 ibridge_interleave_list[] = {
100 	0x64, 0x6c, 0x74, 0x7c, 0x84,
101 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105 
106 static const u32 knl_interleave_list[] = {
107 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 #define MAX_INTERLEAVE							\
114 	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
115 	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
116 		     ARRAY_SIZE(knl_interleave_list))))
117 
118 struct interleave_pkg {
119 	unsigned char start;
120 	unsigned char end;
121 };
122 
123 static const struct interleave_pkg sbridge_interleave_pkg[] = {
124 	{ 0, 2 },
125 	{ 3, 5 },
126 	{ 8, 10 },
127 	{ 11, 13 },
128 	{ 16, 18 },
129 	{ 19, 21 },
130 	{ 24, 26 },
131 	{ 27, 29 },
132 };
133 
134 static const struct interleave_pkg ibridge_interleave_pkg[] = {
135 	{ 0, 3 },
136 	{ 4, 7 },
137 	{ 8, 11 },
138 	{ 12, 15 },
139 	{ 16, 19 },
140 	{ 20, 23 },
141 	{ 24, 27 },
142 	{ 28, 31 },
143 };
144 
sad_pkg(const struct interleave_pkg * table,u32 reg,int interleave)145 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
146 			  int interleave)
147 {
148 	return GET_BITFIELD(reg, table[interleave].start,
149 			    table[interleave].end);
150 }
151 
152 /* Devices 12 Function 7 */
153 
154 #define TOLM		0x80
155 #define TOHM		0x84
156 #define HASWELL_TOLM	0xd0
157 #define HASWELL_TOHM_0	0xd4
158 #define HASWELL_TOHM_1	0xd8
159 #define KNL_TOLM	0xd0
160 #define KNL_TOHM_0	0xd4
161 #define KNL_TOHM_1	0xd8
162 
163 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
164 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
165 
166 /* Device 13 Function 6 */
167 
168 #define SAD_TARGET	0xf0
169 
170 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
171 
172 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
173 
174 #define SAD_CONTROL	0xf4
175 
176 /* Device 14 function 0 */
177 
178 static const u32 tad_dram_rule[] = {
179 	0x40, 0x44, 0x48, 0x4c,
180 	0x50, 0x54, 0x58, 0x5c,
181 	0x60, 0x64, 0x68, 0x6c,
182 };
183 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
184 
185 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
187 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
188 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
189 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
190 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
191 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
192 
193 /* Device 15, function 0 */
194 
195 #define MCMTR			0x7c
196 #define KNL_MCMTR		0x624
197 
198 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
199 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
200 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
201 
202 /* Device 15, function 1 */
203 
204 #define RASENABLES		0xac
205 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
206 
207 /* Device 15, functions 2-5 */
208 
209 static const int mtr_regs[] = {
210 	0x80, 0x84, 0x88,
211 };
212 
213 static const int knl_mtr_reg = 0xb60;
214 
215 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
220 
221 static const u32 tad_ch_nilv_offset[] = {
222 	0x90, 0x94, 0x98, 0x9c,
223 	0xa0, 0xa4, 0xa8, 0xac,
224 	0xb0, 0xb4, 0xb8, 0xbc,
225 };
226 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
228 
229 static const u32 rir_way_limit[] = {
230 	0x108, 0x10c, 0x110, 0x114, 0x118,
231 };
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
233 
234 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
236 
237 #define MAX_RIR_WAY	8
238 
239 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245 };
246 
247 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
249 
250 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
252 
253 /* Device 16, functions 2-7 */
254 
255 /*
256  * FIXME: Implement the error count reads directly
257  */
258 
259 static const u32 correrrcnt[] = {
260 	0x104, 0x108, 0x10c, 0x110,
261 };
262 
263 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
264 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
266 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
267 
268 static const u32 correrrthrsld[] = {
269 	0x11c, 0x120, 0x124, 0x128,
270 };
271 
272 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
274 
275 
276 /* Device 17, function 0 */
277 
278 #define SB_RANK_CFG_A		0x0328
279 
280 #define IB_RANK_CFG_A		0x0320
281 
282 /*
283  * sbridge structs
284  */
285 
286 #define NUM_CHANNELS		6	/* Max channels per MC */
287 #define MAX_DIMMS		3	/* Max DIMMS per channel */
288 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
292 
293 enum type {
294 	SANDY_BRIDGE,
295 	IVY_BRIDGE,
296 	HASWELL,
297 	BROADWELL,
298 	KNIGHTS_LANDING,
299 };
300 
301 enum domain {
302 	IMC0 = 0,
303 	IMC1,
304 	SOCK,
305 };
306 
307 enum mirroring_mode {
308 	NON_MIRRORING,
309 	ADDR_RANGE_MIRRORING,
310 	FULL_MIRRORING,
311 };
312 
313 struct sbridge_pvt;
314 struct sbridge_info {
315 	enum type	type;
316 	u32		mcmtr;
317 	u32		rankcfgr;
318 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
319 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
320 	u64		(*rir_limit)(u32 reg);
321 	u64		(*sad_limit)(u32 reg);
322 	u32		(*interleave_mode)(u32 reg);
323 	u32		(*dram_attr)(u32 reg);
324 	const u32	*dram_rule;
325 	const u32	*interleave_list;
326 	const struct interleave_pkg *interleave_pkg;
327 	u8		max_sad;
328 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
329 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
330 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
331 	struct pci_dev	*pci_vtd;
332 };
333 
334 struct sbridge_channel {
335 	u32		ranks;
336 	u32		dimms;
337 };
338 
339 struct pci_id_descr {
340 	int			dev_id;
341 	int			optional;
342 	enum domain		dom;
343 };
344 
345 struct pci_id_table {
346 	const struct pci_id_descr	*descr;
347 	int				n_devs_per_imc;
348 	int				n_devs_per_sock;
349 	int				n_imcs_per_sock;
350 	enum type			type;
351 };
352 
353 struct sbridge_dev {
354 	struct list_head	list;
355 	int			seg;
356 	u8			bus, mc;
357 	u8			node_id, source_id;
358 	struct pci_dev		**pdev;
359 	enum domain		dom;
360 	int			n_devs;
361 	int			i_devs;
362 	struct mem_ctl_info	*mci;
363 };
364 
365 struct knl_pvt {
366 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
367 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
368 	struct pci_dev          *pci_mc0;
369 	struct pci_dev          *pci_mc1;
370 	struct pci_dev          *pci_mc0_misc;
371 	struct pci_dev          *pci_mc1_misc;
372 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
373 };
374 
375 struct sbridge_pvt {
376 	/* Devices per socket */
377 	struct pci_dev		*pci_ddrio;
378 	struct pci_dev		*pci_sad0, *pci_sad1;
379 	struct pci_dev		*pci_br0, *pci_br1;
380 	/* Devices per memory controller */
381 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
382 	struct pci_dev		*pci_tad[NUM_CHANNELS];
383 
384 	struct sbridge_dev	*sbridge_dev;
385 
386 	struct sbridge_info	info;
387 	struct sbridge_channel	channel[NUM_CHANNELS];
388 
389 	/* Memory type detection */
390 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
391 	bool			is_chan_hash;
392 	enum mirroring_mode	mirror_mode;
393 
394 	/* Memory description */
395 	u64			tolm, tohm;
396 	struct knl_pvt knl;
397 };
398 
399 #define PCI_DESCR(device_id, opt, domain)	\
400 	.dev_id = (device_id),		\
401 	.optional = opt,	\
402 	.dom = domain
403 
404 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
405 		/* Processor Home Agent */
406 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
407 
408 		/* Memory controller */
409 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
410 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
411 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
412 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
413 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
414 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
415 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
416 
417 		/* System Address Decoder */
418 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
419 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
420 
421 		/* Broadcast Registers */
422 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
423 };
424 
425 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
426 	.descr = A,			\
427 	.n_devs_per_imc = N,	\
428 	.n_devs_per_sock = ARRAY_SIZE(A),	\
429 	.n_imcs_per_sock = M,	\
430 	.type = T			\
431 }
432 
433 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
434 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
435 	{0,}			/* 0 terminated list. */
436 };
437 
438 /* This changes depending if 1HA or 2HA:
439  * 1HA:
440  *	0x0eb8 (17.0) is DDRIO0
441  * 2HA:
442  *	0x0ebc (17.4) is DDRIO0
443  */
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
446 
447 /* pci ids */
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
465 
466 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
467 		/* Processor Home Agent */
468 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
469 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
470 
471 		/* Memory controller */
472 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
473 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
474 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
475 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
476 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
477 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
478 
479 		/* Optional, mode 2HA */
480 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
485 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
486 
487 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
488 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
489 
490 		/* System Address Decoder */
491 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
492 
493 		/* Broadcast Registers */
494 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
495 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
496 
497 };
498 
499 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
500 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
501 	{0,}			/* 0 terminated list. */
502 };
503 
504 /* Haswell support */
505 /* EN processor:
506  *	- 1 IMC
507  *	- 3 DDR3 channels, 2 DPC per channel
508  * EP processor:
509  *	- 1 or 2 IMC
510  *	- 4 DDR4 channels, 3 DPC per channel
511  * EP 4S processor:
512  *	- 2 IMC
513  *	- 4 DDR4 channels, 3 DPC per channel
514  * EX processor:
515  *	- 2 IMC
516  *	- each IMC interfaces with a SMI 2 channel
517  *	- each SMI channel interfaces with a scalable memory buffer
518  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
519  */
520 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
521 #define HASWELL_HASYSDEFEATURE2 0x84
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
543 static const struct pci_id_descr pci_dev_descr_haswell[] = {
544 	/* first item must be the HA */
545 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
546 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
547 
548 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
549 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
550 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
551 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
552 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
553 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
554 
555 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
557 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
559 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
560 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
561 
562 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
563 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
564 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
565 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
566 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
567 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
568 };
569 
570 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
571 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
572 	{0,}			/* 0 terminated list. */
573 };
574 
575 /* Knight's Landing Support */
576 /*
577  * KNL's memory channels are swizzled between memory controllers.
578  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
579  */
580 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
581 
582 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
583 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
584 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
585 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
586 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
587 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
588 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
589 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
590 /* SAD target - 1-29-1 (1 of these) */
591 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
592 /* Caching / Home Agent */
593 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
594 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
595 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
596 
597 /*
598  * KNL differs from SB, IB, and Haswell in that it has multiple
599  * instances of the same device with the same device ID, so we handle that
600  * by creating as many copies in the table as we expect to find.
601  * (Like device ID must be grouped together.)
602  */
603 
604 static const struct pci_id_descr pci_dev_descr_knl[] = {
605 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
606 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
607 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
608 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
609 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
610 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
611 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
612 };
613 
614 static const struct pci_id_table pci_dev_descr_knl_table[] = {
615 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
616 	{0,}
617 };
618 
619 /*
620  * Broadwell support
621  *
622  * DE processor:
623  *	- 1 IMC
624  *	- 2 DDR3 channels, 2 DPC per channel
625  * EP processor:
626  *	- 1 or 2 IMC
627  *	- 4 DDR4 channels, 3 DPC per channel
628  * EP 4S processor:
629  *	- 2 IMC
630  *	- 4 DDR4 channels, 3 DPC per channel
631  * EX processor:
632  *	- 2 IMC
633  *	- each IMC interfaces with a SMI 2 channel
634  *	- each SMI channel interfaces with a scalable memory buffer
635  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
636  */
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
655 
656 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
657 	/* first item must be the HA */
658 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
659 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
660 
661 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
662 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
663 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
664 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
665 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
666 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
667 
668 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
669 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
670 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
671 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
672 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
673 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
674 
675 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
676 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
677 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
678 };
679 
680 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
681 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
682 	{0,}			/* 0 terminated list. */
683 };
684 
685 
686 /****************************************************************************
687 			Ancillary status routines
688  ****************************************************************************/
689 
numrank(enum type type,u32 mtr)690 static inline int numrank(enum type type, u32 mtr)
691 {
692 	int ranks = (1 << RANK_CNT_BITS(mtr));
693 	int max = 4;
694 
695 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
696 		max = 8;
697 
698 	if (ranks > max) {
699 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
700 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
701 		return -EINVAL;
702 	}
703 
704 	return ranks;
705 }
706 
numrow(u32 mtr)707 static inline int numrow(u32 mtr)
708 {
709 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
710 
711 	if (rows < 13 || rows > 18) {
712 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
713 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
714 		return -EINVAL;
715 	}
716 
717 	return 1 << rows;
718 }
719 
numcol(u32 mtr)720 static inline int numcol(u32 mtr)
721 {
722 	int cols = (COL_WIDTH_BITS(mtr) + 10);
723 
724 	if (cols > 12) {
725 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
726 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
727 		return -EINVAL;
728 	}
729 
730 	return 1 << cols;
731 }
732 
get_sbridge_dev(int seg,u8 bus,enum domain dom,int multi_bus,struct sbridge_dev * prev)733 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
734 					   int multi_bus,
735 					   struct sbridge_dev *prev)
736 {
737 	struct sbridge_dev *sbridge_dev;
738 
739 	/*
740 	 * If we have devices scattered across several busses that pertain
741 	 * to the same memory controller, we'll lump them all together.
742 	 */
743 	if (multi_bus) {
744 		return list_first_entry_or_null(&sbridge_edac_list,
745 				struct sbridge_dev, list);
746 	}
747 
748 	sbridge_dev = list_entry(prev ? prev->list.next
749 				      : sbridge_edac_list.next, struct sbridge_dev, list);
750 
751 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
752 		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
753 				(dom == SOCK || dom == sbridge_dev->dom))
754 			return sbridge_dev;
755 	}
756 
757 	return NULL;
758 }
759 
alloc_sbridge_dev(int seg,u8 bus,enum domain dom,const struct pci_id_table * table)760 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
761 					     const struct pci_id_table *table)
762 {
763 	struct sbridge_dev *sbridge_dev;
764 
765 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
766 	if (!sbridge_dev)
767 		return NULL;
768 
769 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
770 				    sizeof(*sbridge_dev->pdev),
771 				    GFP_KERNEL);
772 	if (!sbridge_dev->pdev) {
773 		kfree(sbridge_dev);
774 		return NULL;
775 	}
776 
777 	sbridge_dev->seg = seg;
778 	sbridge_dev->bus = bus;
779 	sbridge_dev->dom = dom;
780 	sbridge_dev->n_devs = table->n_devs_per_imc;
781 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
782 
783 	return sbridge_dev;
784 }
785 
free_sbridge_dev(struct sbridge_dev * sbridge_dev)786 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
787 {
788 	list_del(&sbridge_dev->list);
789 	kfree(sbridge_dev->pdev);
790 	kfree(sbridge_dev);
791 }
792 
sbridge_get_tolm(struct sbridge_pvt * pvt)793 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
794 {
795 	u32 reg;
796 
797 	/* Address range is 32:28 */
798 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
799 	return GET_TOLM(reg);
800 }
801 
sbridge_get_tohm(struct sbridge_pvt * pvt)802 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
803 {
804 	u32 reg;
805 
806 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
807 	return GET_TOHM(reg);
808 }
809 
ibridge_get_tolm(struct sbridge_pvt * pvt)810 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
811 {
812 	u32 reg;
813 
814 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
815 
816 	return GET_TOLM(reg);
817 }
818 
ibridge_get_tohm(struct sbridge_pvt * pvt)819 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
820 {
821 	u32 reg;
822 
823 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
824 
825 	return GET_TOHM(reg);
826 }
827 
rir_limit(u32 reg)828 static u64 rir_limit(u32 reg)
829 {
830 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
831 }
832 
sad_limit(u32 reg)833 static u64 sad_limit(u32 reg)
834 {
835 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
836 }
837 
interleave_mode(u32 reg)838 static u32 interleave_mode(u32 reg)
839 {
840 	return GET_BITFIELD(reg, 1, 1);
841 }
842 
dram_attr(u32 reg)843 static u32 dram_attr(u32 reg)
844 {
845 	return GET_BITFIELD(reg, 2, 3);
846 }
847 
knl_sad_limit(u32 reg)848 static u64 knl_sad_limit(u32 reg)
849 {
850 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
851 }
852 
knl_interleave_mode(u32 reg)853 static u32 knl_interleave_mode(u32 reg)
854 {
855 	return GET_BITFIELD(reg, 1, 2);
856 }
857 
858 static const char * const knl_intlv_mode[] = {
859 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
860 };
861 
get_intlv_mode_str(u32 reg,enum type t)862 static const char *get_intlv_mode_str(u32 reg, enum type t)
863 {
864 	if (t == KNIGHTS_LANDING)
865 		return knl_intlv_mode[knl_interleave_mode(reg)];
866 	else
867 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
868 }
869 
dram_attr_knl(u32 reg)870 static u32 dram_attr_knl(u32 reg)
871 {
872 	return GET_BITFIELD(reg, 3, 4);
873 }
874 
875 
get_memory_type(struct sbridge_pvt * pvt)876 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
877 {
878 	u32 reg;
879 	enum mem_type mtype;
880 
881 	if (pvt->pci_ddrio) {
882 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
883 				      &reg);
884 		if (GET_BITFIELD(reg, 11, 11))
885 			/* FIXME: Can also be LRDIMM */
886 			mtype = MEM_RDDR3;
887 		else
888 			mtype = MEM_DDR3;
889 	} else
890 		mtype = MEM_UNKNOWN;
891 
892 	return mtype;
893 }
894 
haswell_get_memory_type(struct sbridge_pvt * pvt)895 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
896 {
897 	u32 reg;
898 	bool registered = false;
899 	enum mem_type mtype = MEM_UNKNOWN;
900 
901 	if (!pvt->pci_ddrio)
902 		goto out;
903 
904 	pci_read_config_dword(pvt->pci_ddrio,
905 			      HASWELL_DDRCRCLKCONTROLS, &reg);
906 	/* Is_Rdimm */
907 	if (GET_BITFIELD(reg, 16, 16))
908 		registered = true;
909 
910 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
911 	if (GET_BITFIELD(reg, 14, 14)) {
912 		if (registered)
913 			mtype = MEM_RDDR4;
914 		else
915 			mtype = MEM_DDR4;
916 	} else {
917 		if (registered)
918 			mtype = MEM_RDDR3;
919 		else
920 			mtype = MEM_DDR3;
921 	}
922 
923 out:
924 	return mtype;
925 }
926 
knl_get_width(struct sbridge_pvt * pvt,u32 mtr)927 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
928 {
929 	/* for KNL value is fixed */
930 	return DEV_X16;
931 }
932 
sbridge_get_width(struct sbridge_pvt * pvt,u32 mtr)933 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
934 {
935 	/* there's no way to figure out */
936 	return DEV_UNKNOWN;
937 }
938 
__ibridge_get_width(u32 mtr)939 static enum dev_type __ibridge_get_width(u32 mtr)
940 {
941 	enum dev_type type;
942 
943 	switch (mtr) {
944 	case 3:
945 		type = DEV_UNKNOWN;
946 		break;
947 	case 2:
948 		type = DEV_X16;
949 		break;
950 	case 1:
951 		type = DEV_X8;
952 		break;
953 	case 0:
954 		type = DEV_X4;
955 		break;
956 	}
957 
958 	return type;
959 }
960 
ibridge_get_width(struct sbridge_pvt * pvt,u32 mtr)961 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
962 {
963 	/*
964 	 * ddr3_width on the documentation but also valid for DDR4 on
965 	 * Haswell
966 	 */
967 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
968 }
969 
broadwell_get_width(struct sbridge_pvt * pvt,u32 mtr)970 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
971 {
972 	/* ddr3_width on the documentation but also valid for DDR4 */
973 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
974 }
975 
knl_get_memory_type(struct sbridge_pvt * pvt)976 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
977 {
978 	/* DDR4 RDIMMS and LRDIMMS are supported */
979 	return MEM_RDDR4;
980 }
981 
get_node_id(struct sbridge_pvt * pvt)982 static u8 get_node_id(struct sbridge_pvt *pvt)
983 {
984 	u32 reg;
985 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
986 	return GET_BITFIELD(reg, 0, 2);
987 }
988 
haswell_get_node_id(struct sbridge_pvt * pvt)989 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
990 {
991 	u32 reg;
992 
993 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
994 	return GET_BITFIELD(reg, 0, 3);
995 }
996 
knl_get_node_id(struct sbridge_pvt * pvt)997 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
998 {
999 	u32 reg;
1000 
1001 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1002 	return GET_BITFIELD(reg, 0, 2);
1003 }
1004 
1005 
haswell_get_tolm(struct sbridge_pvt * pvt)1006 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1007 {
1008 	u32 reg;
1009 
1010 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1011 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1012 }
1013 
haswell_get_tohm(struct sbridge_pvt * pvt)1014 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1015 {
1016 	u64 rc;
1017 	u32 reg;
1018 
1019 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1020 	rc = GET_BITFIELD(reg, 26, 31);
1021 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1022 	rc = ((reg << 6) | rc) << 26;
1023 
1024 	return rc | 0x3ffffff;
1025 }
1026 
knl_get_tolm(struct sbridge_pvt * pvt)1027 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1028 {
1029 	u32 reg;
1030 
1031 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1032 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1033 }
1034 
knl_get_tohm(struct sbridge_pvt * pvt)1035 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1036 {
1037 	u64 rc;
1038 	u32 reg_lo, reg_hi;
1039 
1040 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1041 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1042 	rc = ((u64)reg_hi << 32) | reg_lo;
1043 	return rc | 0x3ffffff;
1044 }
1045 
1046 
haswell_rir_limit(u32 reg)1047 static u64 haswell_rir_limit(u32 reg)
1048 {
1049 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1050 }
1051 
sad_pkg_socket(u8 pkg)1052 static inline u8 sad_pkg_socket(u8 pkg)
1053 {
1054 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1055 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1056 }
1057 
sad_pkg_ha(u8 pkg)1058 static inline u8 sad_pkg_ha(u8 pkg)
1059 {
1060 	return (pkg >> 2) & 0x1;
1061 }
1062 
haswell_chan_hash(int idx,u64 addr)1063 static int haswell_chan_hash(int idx, u64 addr)
1064 {
1065 	int i;
1066 
1067 	/*
1068 	 * XOR even bits from 12:26 to bit0 of idx,
1069 	 *     odd bits from 13:27 to bit1
1070 	 */
1071 	for (i = 12; i < 28; i += 2)
1072 		idx ^= (addr >> i) & 3;
1073 
1074 	return idx;
1075 }
1076 
1077 /* Low bits of TAD limit, and some metadata. */
1078 static const u32 knl_tad_dram_limit_lo[] = {
1079 	0x400, 0x500, 0x600, 0x700,
1080 	0x800, 0x900, 0xa00, 0xb00,
1081 };
1082 
1083 /* Low bits of TAD offset. */
1084 static const u32 knl_tad_dram_offset_lo[] = {
1085 	0x404, 0x504, 0x604, 0x704,
1086 	0x804, 0x904, 0xa04, 0xb04,
1087 };
1088 
1089 /* High 16 bits of TAD limit and offset. */
1090 static const u32 knl_tad_dram_hi[] = {
1091 	0x408, 0x508, 0x608, 0x708,
1092 	0x808, 0x908, 0xa08, 0xb08,
1093 };
1094 
1095 /* Number of ways a tad entry is interleaved. */
1096 static const u32 knl_tad_ways[] = {
1097 	8, 6, 4, 3, 2, 1,
1098 };
1099 
1100 /*
1101  * Retrieve the n'th Target Address Decode table entry
1102  * from the memory controller's TAD table.
1103  *
1104  * @pvt:	driver private data
1105  * @entry:	which entry you want to retrieve
1106  * @mc:		which memory controller (0 or 1)
1107  * @offset:	output tad range offset
1108  * @limit:	output address of first byte above tad range
1109  * @ways:	output number of interleave ways
1110  *
1111  * The offset value has curious semantics.  It's a sort of running total
1112  * of the sizes of all the memory regions that aren't mapped in this
1113  * tad table.
1114  */
knl_get_tad(const struct sbridge_pvt * pvt,const int entry,const int mc,u64 * offset,u64 * limit,int * ways)1115 static int knl_get_tad(const struct sbridge_pvt *pvt,
1116 		const int entry,
1117 		const int mc,
1118 		u64 *offset,
1119 		u64 *limit,
1120 		int *ways)
1121 {
1122 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1123 	struct pci_dev *pci_mc;
1124 	int way_id;
1125 
1126 	switch (mc) {
1127 	case 0:
1128 		pci_mc = pvt->knl.pci_mc0;
1129 		break;
1130 	case 1:
1131 		pci_mc = pvt->knl.pci_mc1;
1132 		break;
1133 	default:
1134 		WARN_ON(1);
1135 		return -EINVAL;
1136 	}
1137 
1138 	pci_read_config_dword(pci_mc,
1139 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1140 	pci_read_config_dword(pci_mc,
1141 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1142 	pci_read_config_dword(pci_mc,
1143 			knl_tad_dram_hi[entry], &reg_hi);
1144 
1145 	/* Is this TAD entry enabled? */
1146 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1147 		return -ENODEV;
1148 
1149 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1150 
1151 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1152 		*ways = knl_tad_ways[way_id];
1153 	} else {
1154 		*ways = 0;
1155 		sbridge_printk(KERN_ERR,
1156 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1157 				way_id);
1158 		return -ENODEV;
1159 	}
1160 
1161 	/*
1162 	 * The least significant 6 bits of base and limit are truncated.
1163 	 * For limit, we fill the missing bits with 1s.
1164 	 */
1165 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1166 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1167 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1168 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1169 
1170 	return 0;
1171 }
1172 
1173 /* Determine which memory controller is responsible for a given channel. */
knl_channel_mc(int channel)1174 static int knl_channel_mc(int channel)
1175 {
1176 	WARN_ON(channel < 0 || channel >= 6);
1177 
1178 	return channel < 3 ? 1 : 0;
1179 }
1180 
1181 /*
1182  * Get the Nth entry from EDC_ROUTE_TABLE register.
1183  * (This is the per-tile mapping of logical interleave targets to
1184  *  physical EDC modules.)
1185  *
1186  * entry 0: 0:2
1187  *       1: 3:5
1188  *       2: 6:8
1189  *       3: 9:11
1190  *       4: 12:14
1191  *       5: 15:17
1192  *       6: 18:20
1193  *       7: 21:23
1194  * reserved: 24:31
1195  */
knl_get_edc_route(int entry,u32 reg)1196 static u32 knl_get_edc_route(int entry, u32 reg)
1197 {
1198 	WARN_ON(entry >= KNL_MAX_EDCS);
1199 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1200 }
1201 
1202 /*
1203  * Get the Nth entry from MC_ROUTE_TABLE register.
1204  * (This is the per-tile mapping of logical interleave targets to
1205  *  physical DRAM channels modules.)
1206  *
1207  * entry 0: mc 0:2   channel 18:19
1208  *       1: mc 3:5   channel 20:21
1209  *       2: mc 6:8   channel 22:23
1210  *       3: mc 9:11  channel 24:25
1211  *       4: mc 12:14 channel 26:27
1212  *       5: mc 15:17 channel 28:29
1213  * reserved: 30:31
1214  *
1215  * Though we have 3 bits to identify the MC, we should only see
1216  * the values 0 or 1.
1217  */
1218 
knl_get_mc_route(int entry,u32 reg)1219 static u32 knl_get_mc_route(int entry, u32 reg)
1220 {
1221 	int mc, chan;
1222 
1223 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1224 
1225 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1226 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1227 
1228 	return knl_channel_remap(mc, chan);
1229 }
1230 
1231 /*
1232  * Render the EDC_ROUTE register in human-readable form.
1233  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1234  */
knl_show_edc_route(u32 reg,char * s)1235 static void knl_show_edc_route(u32 reg, char *s)
1236 {
1237 	int i;
1238 
1239 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1240 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1241 		s[i*2+1] = '-';
1242 	}
1243 
1244 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1245 }
1246 
1247 /*
1248  * Render the MC_ROUTE register in human-readable form.
1249  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1250  */
knl_show_mc_route(u32 reg,char * s)1251 static void knl_show_mc_route(u32 reg, char *s)
1252 {
1253 	int i;
1254 
1255 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1256 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1257 		s[i*2+1] = '-';
1258 	}
1259 
1260 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1261 }
1262 
1263 #define KNL_EDC_ROUTE 0xb8
1264 #define KNL_MC_ROUTE 0xb4
1265 
1266 /* Is this dram rule backed by regular DRAM in flat mode? */
1267 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1268 
1269 /* Is this dram rule cached? */
1270 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1271 
1272 /* Is this rule backed by edc ? */
1273 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1274 
1275 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1276 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1277 
1278 /* Is this rule mod3? */
1279 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1280 
1281 /*
1282  * Figure out how big our RAM modules are.
1283  *
1284  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1285  * have to figure this out from the SAD rules, interleave lists, route tables,
1286  * and TAD rules.
1287  *
1288  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1289  * inspect the TAD rules to figure out how large the SAD regions really are.
1290  *
1291  * When we know the real size of a SAD region and how many ways it's
1292  * interleaved, we know the individual contribution of each channel to
1293  * TAD is size/ways.
1294  *
1295  * Finally, we have to check whether each channel participates in each SAD
1296  * region.
1297  *
1298  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1299  * much memory the channel uses, we know the DIMM is at least that large.
1300  * (The BIOS might possibly choose not to map all available memory, in which
1301  * case we will underreport the size of the DIMM.)
1302  *
1303  * In theory, we could try to determine the EDC sizes as well, but that would
1304  * only work in flat mode, not in cache mode.
1305  *
1306  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1307  *            elements)
1308  */
knl_get_dimm_capacity(struct sbridge_pvt * pvt,u64 * mc_sizes)1309 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1310 {
1311 	u64 sad_base, sad_size, sad_limit = 0;
1312 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1313 	int sad_rule = 0;
1314 	int tad_rule = 0;
1315 	int intrlv_ways, tad_ways;
1316 	u32 first_pkg, pkg;
1317 	int i;
1318 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1319 	u32 dram_rule, interleave_reg;
1320 	u32 mc_route_reg[KNL_MAX_CHAS];
1321 	u32 edc_route_reg[KNL_MAX_CHAS];
1322 	int edram_only;
1323 	char edc_route_string[KNL_MAX_EDCS*2];
1324 	char mc_route_string[KNL_MAX_CHANNELS*2];
1325 	int cur_reg_start;
1326 	int mc;
1327 	int channel;
1328 	int participants[KNL_MAX_CHANNELS];
1329 
1330 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1331 		mc_sizes[i] = 0;
1332 
1333 	/* Read the EDC route table in each CHA. */
1334 	cur_reg_start = 0;
1335 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1336 		pci_read_config_dword(pvt->knl.pci_cha[i],
1337 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1338 
1339 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1340 			knl_show_edc_route(edc_route_reg[i-1],
1341 					edc_route_string);
1342 			if (cur_reg_start == i-1)
1343 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1344 					cur_reg_start, edc_route_string);
1345 			else
1346 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1347 					cur_reg_start, i-1, edc_route_string);
1348 			cur_reg_start = i;
1349 		}
1350 	}
1351 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1352 	if (cur_reg_start == i-1)
1353 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1354 			cur_reg_start, edc_route_string);
1355 	else
1356 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1357 			cur_reg_start, i-1, edc_route_string);
1358 
1359 	/* Read the MC route table in each CHA. */
1360 	cur_reg_start = 0;
1361 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1362 		pci_read_config_dword(pvt->knl.pci_cha[i],
1363 			KNL_MC_ROUTE, &mc_route_reg[i]);
1364 
1365 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1366 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1367 			if (cur_reg_start == i-1)
1368 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1369 					cur_reg_start, mc_route_string);
1370 			else
1371 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1372 					cur_reg_start, i-1, mc_route_string);
1373 			cur_reg_start = i;
1374 		}
1375 	}
1376 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1377 	if (cur_reg_start == i-1)
1378 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1379 			cur_reg_start, mc_route_string);
1380 	else
1381 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1382 			cur_reg_start, i-1, mc_route_string);
1383 
1384 	/* Process DRAM rules */
1385 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1386 		/* previous limit becomes the new base */
1387 		sad_base = sad_limit;
1388 
1389 		pci_read_config_dword(pvt->pci_sad0,
1390 			pvt->info.dram_rule[sad_rule], &dram_rule);
1391 
1392 		if (!DRAM_RULE_ENABLE(dram_rule))
1393 			break;
1394 
1395 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1396 
1397 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1398 		sad_size = sad_limit - sad_base;
1399 
1400 		pci_read_config_dword(pvt->pci_sad0,
1401 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1402 
1403 		/*
1404 		 * Find out how many ways this dram rule is interleaved.
1405 		 * We stop when we see the first channel again.
1406 		 */
1407 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1408 						interleave_reg, 0);
1409 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1410 			pkg = sad_pkg(pvt->info.interleave_pkg,
1411 						interleave_reg, intrlv_ways);
1412 
1413 			if ((pkg & 0x8) == 0) {
1414 				/*
1415 				 * 0 bit means memory is non-local,
1416 				 * which KNL doesn't support
1417 				 */
1418 				edac_dbg(0, "Unexpected interleave target %d\n",
1419 					pkg);
1420 				return -1;
1421 			}
1422 
1423 			if (pkg == first_pkg)
1424 				break;
1425 		}
1426 		if (KNL_MOD3(dram_rule))
1427 			intrlv_ways *= 3;
1428 
1429 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1430 			sad_rule,
1431 			sad_base,
1432 			sad_limit,
1433 			intrlv_ways,
1434 			edram_only ? ", EDRAM" : "");
1435 
1436 		/*
1437 		 * Find out how big the SAD region really is by iterating
1438 		 * over TAD tables (SAD regions may contain holes).
1439 		 * Each memory controller might have a different TAD table, so
1440 		 * we have to look at both.
1441 		 *
1442 		 * Livespace is the memory that's mapped in this TAD table,
1443 		 * deadspace is the holes (this could be the MMIO hole, or it
1444 		 * could be memory that's mapped by the other TAD table but
1445 		 * not this one).
1446 		 */
1447 		for (mc = 0; mc < 2; mc++) {
1448 			sad_actual_size[mc] = 0;
1449 			tad_livespace = 0;
1450 			for (tad_rule = 0;
1451 					tad_rule < ARRAY_SIZE(
1452 						knl_tad_dram_limit_lo);
1453 					tad_rule++) {
1454 				if (knl_get_tad(pvt,
1455 						tad_rule,
1456 						mc,
1457 						&tad_deadspace,
1458 						&tad_limit,
1459 						&tad_ways))
1460 					break;
1461 
1462 				tad_size = (tad_limit+1) -
1463 					(tad_livespace + tad_deadspace);
1464 				tad_livespace += tad_size;
1465 				tad_base = (tad_limit+1) - tad_size;
1466 
1467 				if (tad_base < sad_base) {
1468 					if (tad_limit > sad_base)
1469 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1470 				} else if (tad_base < sad_limit) {
1471 					if (tad_limit+1 > sad_limit) {
1472 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1473 					} else {
1474 						/* TAD region is completely inside SAD region */
1475 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1476 							tad_rule, tad_base,
1477 							tad_limit, tad_size,
1478 							mc);
1479 						sad_actual_size[mc] += tad_size;
1480 					}
1481 				}
1482 				tad_base = tad_limit+1;
1483 			}
1484 		}
1485 
1486 		for (mc = 0; mc < 2; mc++) {
1487 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1488 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1489 		}
1490 
1491 		/* Ignore EDRAM rule */
1492 		if (edram_only)
1493 			continue;
1494 
1495 		/* Figure out which channels participate in interleave. */
1496 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1497 			participants[channel] = 0;
1498 
1499 		/* For each channel, does at least one CHA have
1500 		 * this channel mapped to the given target?
1501 		 */
1502 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1503 			int target;
1504 			int cha;
1505 
1506 			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1507 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1508 					if (knl_get_mc_route(target,
1509 						mc_route_reg[cha]) == channel
1510 						&& !participants[channel]) {
1511 						participants[channel] = 1;
1512 						break;
1513 					}
1514 				}
1515 			}
1516 		}
1517 
1518 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1519 			mc = knl_channel_mc(channel);
1520 			if (participants[channel]) {
1521 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1522 					channel,
1523 					sad_actual_size[mc]/intrlv_ways,
1524 					sad_rule);
1525 				mc_sizes[channel] +=
1526 					sad_actual_size[mc]/intrlv_ways;
1527 			}
1528 		}
1529 	}
1530 
1531 	return 0;
1532 }
1533 
get_source_id(struct mem_ctl_info * mci)1534 static void get_source_id(struct mem_ctl_info *mci)
1535 {
1536 	struct sbridge_pvt *pvt = mci->pvt_info;
1537 	u32 reg;
1538 
1539 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1540 	    pvt->info.type == KNIGHTS_LANDING)
1541 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1542 	else
1543 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1544 
1545 	if (pvt->info.type == KNIGHTS_LANDING)
1546 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1547 	else
1548 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1549 }
1550 
__populate_dimms(struct mem_ctl_info * mci,u64 knl_mc_sizes[KNL_MAX_CHANNELS],enum edac_type mode)1551 static int __populate_dimms(struct mem_ctl_info *mci,
1552 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1553 			    enum edac_type mode)
1554 {
1555 	struct sbridge_pvt *pvt = mci->pvt_info;
1556 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1557 							 : NUM_CHANNELS;
1558 	unsigned int i, j, banks, ranks, rows, cols, npages;
1559 	struct dimm_info *dimm;
1560 	enum mem_type mtype;
1561 	u64 size;
1562 
1563 	mtype = pvt->info.get_memory_type(pvt);
1564 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1565 		edac_dbg(0, "Memory is registered\n");
1566 	else if (mtype == MEM_UNKNOWN)
1567 		edac_dbg(0, "Cannot determine memory type\n");
1568 	else
1569 		edac_dbg(0, "Memory is unregistered\n");
1570 
1571 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1572 		banks = 16;
1573 	else
1574 		banks = 8;
1575 
1576 	for (i = 0; i < channels; i++) {
1577 		u32 mtr;
1578 
1579 		int max_dimms_per_channel;
1580 
1581 		if (pvt->info.type == KNIGHTS_LANDING) {
1582 			max_dimms_per_channel = 1;
1583 			if (!pvt->knl.pci_channel[i])
1584 				continue;
1585 		} else {
1586 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1587 			if (!pvt->pci_tad[i])
1588 				continue;
1589 		}
1590 
1591 		for (j = 0; j < max_dimms_per_channel; j++) {
1592 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1593 			if (pvt->info.type == KNIGHTS_LANDING) {
1594 				pci_read_config_dword(pvt->knl.pci_channel[i],
1595 					knl_mtr_reg, &mtr);
1596 			} else {
1597 				pci_read_config_dword(pvt->pci_tad[i],
1598 					mtr_regs[j], &mtr);
1599 			}
1600 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1601 			if (IS_DIMM_PRESENT(mtr)) {
1602 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1603 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1604 						       pvt->sbridge_dev->source_id,
1605 						       pvt->sbridge_dev->dom, i);
1606 					return -ENODEV;
1607 				}
1608 				pvt->channel[i].dimms++;
1609 
1610 				ranks = numrank(pvt->info.type, mtr);
1611 
1612 				if (pvt->info.type == KNIGHTS_LANDING) {
1613 					/* For DDR4, this is fixed. */
1614 					cols = 1 << 10;
1615 					rows = knl_mc_sizes[i] /
1616 						((u64) cols * ranks * banks * 8);
1617 				} else {
1618 					rows = numrow(mtr);
1619 					cols = numcol(mtr);
1620 				}
1621 
1622 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1623 				npages = MiB_TO_PAGES(size);
1624 
1625 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1626 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1627 					 size, npages,
1628 					 banks, ranks, rows, cols);
1629 
1630 				dimm->nr_pages = npages;
1631 				dimm->grain = 32;
1632 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1633 				dimm->mtype = mtype;
1634 				dimm->edac_mode = mode;
1635 				snprintf(dimm->label, sizeof(dimm->label),
1636 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1637 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1638 			}
1639 		}
1640 	}
1641 
1642 	return 0;
1643 }
1644 
get_dimm_config(struct mem_ctl_info * mci)1645 static int get_dimm_config(struct mem_ctl_info *mci)
1646 {
1647 	struct sbridge_pvt *pvt = mci->pvt_info;
1648 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1649 	enum edac_type mode;
1650 	u32 reg;
1651 
1652 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1653 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1654 		 pvt->sbridge_dev->mc,
1655 		 pvt->sbridge_dev->node_id,
1656 		 pvt->sbridge_dev->source_id);
1657 
1658 	/* KNL doesn't support mirroring or lockstep,
1659 	 * and is always closed page
1660 	 */
1661 	if (pvt->info.type == KNIGHTS_LANDING) {
1662 		mode = EDAC_S4ECD4ED;
1663 		pvt->mirror_mode = NON_MIRRORING;
1664 		pvt->is_cur_addr_mirrored = false;
1665 
1666 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1667 			return -1;
1668 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1669 			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1670 			return -ENODEV;
1671 		}
1672 	} else {
1673 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1674 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1675 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1676 				return -ENODEV;
1677 			}
1678 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1679 			if (GET_BITFIELD(reg, 28, 28)) {
1680 				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1681 				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1682 				goto next;
1683 			}
1684 		}
1685 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1686 			edac_dbg(0, "Failed to read RASENABLES register\n");
1687 			return -ENODEV;
1688 		}
1689 		if (IS_MIRROR_ENABLED(reg)) {
1690 			pvt->mirror_mode = FULL_MIRRORING;
1691 			edac_dbg(0, "Full memory mirroring is enabled\n");
1692 		} else {
1693 			pvt->mirror_mode = NON_MIRRORING;
1694 			edac_dbg(0, "Memory mirroring is disabled\n");
1695 		}
1696 
1697 next:
1698 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1699 			edac_dbg(0, "Failed to read MCMTR register\n");
1700 			return -ENODEV;
1701 		}
1702 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1703 			edac_dbg(0, "Lockstep is enabled\n");
1704 			mode = EDAC_S8ECD8ED;
1705 			pvt->is_lockstep = true;
1706 		} else {
1707 			edac_dbg(0, "Lockstep is disabled\n");
1708 			mode = EDAC_S4ECD4ED;
1709 			pvt->is_lockstep = false;
1710 		}
1711 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1712 			edac_dbg(0, "address map is on closed page mode\n");
1713 			pvt->is_close_pg = true;
1714 		} else {
1715 			edac_dbg(0, "address map is on open page mode\n");
1716 			pvt->is_close_pg = false;
1717 		}
1718 	}
1719 
1720 	return __populate_dimms(mci, knl_mc_sizes, mode);
1721 }
1722 
get_memory_layout(const struct mem_ctl_info * mci)1723 static void get_memory_layout(const struct mem_ctl_info *mci)
1724 {
1725 	struct sbridge_pvt *pvt = mci->pvt_info;
1726 	int i, j, k, n_sads, n_tads, sad_interl;
1727 	u32 reg;
1728 	u64 limit, prv = 0;
1729 	u64 tmp_mb;
1730 	u32 gb, mb;
1731 	u32 rir_way;
1732 
1733 	/*
1734 	 * Step 1) Get TOLM/TOHM ranges
1735 	 */
1736 
1737 	pvt->tolm = pvt->info.get_tolm(pvt);
1738 	tmp_mb = (1 + pvt->tolm) >> 20;
1739 
1740 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1741 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1742 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1743 
1744 	/* Address range is already 45:25 */
1745 	pvt->tohm = pvt->info.get_tohm(pvt);
1746 	tmp_mb = (1 + pvt->tohm) >> 20;
1747 
1748 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1749 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1750 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1751 
1752 	/*
1753 	 * Step 2) Get SAD range and SAD Interleave list
1754 	 * TAD registers contain the interleave wayness. However, it
1755 	 * seems simpler to just discover it indirectly, with the
1756 	 * algorithm bellow.
1757 	 */
1758 	prv = 0;
1759 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1760 		/* SAD_LIMIT Address range is 45:26 */
1761 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1762 				      &reg);
1763 		limit = pvt->info.sad_limit(reg);
1764 
1765 		if (!DRAM_RULE_ENABLE(reg))
1766 			continue;
1767 
1768 		if (limit <= prv)
1769 			break;
1770 
1771 		tmp_mb = (limit + 1) >> 20;
1772 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1773 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1774 			 n_sads,
1775 			 show_dram_attr(pvt->info.dram_attr(reg)),
1776 			 gb, (mb*1000)/1024,
1777 			 ((u64)tmp_mb) << 20L,
1778 			 get_intlv_mode_str(reg, pvt->info.type),
1779 			 reg);
1780 		prv = limit;
1781 
1782 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1783 				      &reg);
1784 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1785 		for (j = 0; j < 8; j++) {
1786 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1787 			if (j > 0 && sad_interl == pkg)
1788 				break;
1789 
1790 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1791 				 n_sads, j, pkg);
1792 		}
1793 	}
1794 
1795 	if (pvt->info.type == KNIGHTS_LANDING)
1796 		return;
1797 
1798 	/*
1799 	 * Step 3) Get TAD range
1800 	 */
1801 	prv = 0;
1802 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1803 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1804 		limit = TAD_LIMIT(reg);
1805 		if (limit <= prv)
1806 			break;
1807 		tmp_mb = (limit + 1) >> 20;
1808 
1809 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1810 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1811 			 n_tads, gb, (mb*1000)/1024,
1812 			 ((u64)tmp_mb) << 20L,
1813 			 (u32)(1 << TAD_SOCK(reg)),
1814 			 (u32)TAD_CH(reg) + 1,
1815 			 (u32)TAD_TGT0(reg),
1816 			 (u32)TAD_TGT1(reg),
1817 			 (u32)TAD_TGT2(reg),
1818 			 (u32)TAD_TGT3(reg),
1819 			 reg);
1820 		prv = limit;
1821 	}
1822 
1823 	/*
1824 	 * Step 4) Get TAD offsets, per each channel
1825 	 */
1826 	for (i = 0; i < NUM_CHANNELS; i++) {
1827 		if (!pvt->channel[i].dimms)
1828 			continue;
1829 		for (j = 0; j < n_tads; j++) {
1830 			pci_read_config_dword(pvt->pci_tad[i],
1831 					      tad_ch_nilv_offset[j],
1832 					      &reg);
1833 			tmp_mb = TAD_OFFSET(reg) >> 20;
1834 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1835 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1836 				 i, j,
1837 				 gb, (mb*1000)/1024,
1838 				 ((u64)tmp_mb) << 20L,
1839 				 reg);
1840 		}
1841 	}
1842 
1843 	/*
1844 	 * Step 6) Get RIR Wayness/Limit, per each channel
1845 	 */
1846 	for (i = 0; i < NUM_CHANNELS; i++) {
1847 		if (!pvt->channel[i].dimms)
1848 			continue;
1849 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1850 			pci_read_config_dword(pvt->pci_tad[i],
1851 					      rir_way_limit[j],
1852 					      &reg);
1853 
1854 			if (!IS_RIR_VALID(reg))
1855 				continue;
1856 
1857 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1858 			rir_way = 1 << RIR_WAY(reg);
1859 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1860 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1861 				 i, j,
1862 				 gb, (mb*1000)/1024,
1863 				 ((u64)tmp_mb) << 20L,
1864 				 rir_way,
1865 				 reg);
1866 
1867 			for (k = 0; k < rir_way; k++) {
1868 				pci_read_config_dword(pvt->pci_tad[i],
1869 						      rir_offset[j][k],
1870 						      &reg);
1871 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1872 
1873 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1874 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1875 					 i, j, k,
1876 					 gb, (mb*1000)/1024,
1877 					 ((u64)tmp_mb) << 20L,
1878 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1879 					 reg);
1880 			}
1881 		}
1882 	}
1883 }
1884 
get_mci_for_node_id(u8 node_id,u8 ha)1885 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1886 {
1887 	struct sbridge_dev *sbridge_dev;
1888 
1889 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1890 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1891 			return sbridge_dev->mci;
1892 	}
1893 	return NULL;
1894 }
1895 
get_memory_error_data(struct mem_ctl_info * mci,u64 addr,u8 * socket,u8 * ha,long * channel_mask,u8 * rank,char ** area_type,char * msg)1896 static int get_memory_error_data(struct mem_ctl_info *mci,
1897 				 u64 addr,
1898 				 u8 *socket, u8 *ha,
1899 				 long *channel_mask,
1900 				 u8 *rank,
1901 				 char **area_type, char *msg)
1902 {
1903 	struct mem_ctl_info	*new_mci;
1904 	struct sbridge_pvt *pvt = mci->pvt_info;
1905 	struct pci_dev		*pci_ha;
1906 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1907 	int			sad_interl, idx, base_ch;
1908 	int			interleave_mode, shiftup = 0;
1909 	unsigned int		sad_interleave[MAX_INTERLEAVE];
1910 	u32			reg, dram_rule;
1911 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1912 	u32			tad_offset;
1913 	u32			rir_way;
1914 	u32			mb, gb;
1915 	u64			ch_addr, offset, limit = 0, prv = 0;
1916 
1917 
1918 	/*
1919 	 * Step 0) Check if the address is at special memory ranges
1920 	 * The check bellow is probably enough to fill all cases where
1921 	 * the error is not inside a memory, except for the legacy
1922 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1923 	 * memory controller would generate an error on that range.
1924 	 */
1925 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1926 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1927 		return -EINVAL;
1928 	}
1929 	if (addr >= (u64)pvt->tohm) {
1930 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1931 		return -EINVAL;
1932 	}
1933 
1934 	/*
1935 	 * Step 1) Get socket
1936 	 */
1937 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1938 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1939 				      &reg);
1940 
1941 		if (!DRAM_RULE_ENABLE(reg))
1942 			continue;
1943 
1944 		limit = pvt->info.sad_limit(reg);
1945 		if (limit <= prv) {
1946 			sprintf(msg, "Can't discover the memory socket");
1947 			return -EINVAL;
1948 		}
1949 		if  (addr <= limit)
1950 			break;
1951 		prv = limit;
1952 	}
1953 	if (n_sads == pvt->info.max_sad) {
1954 		sprintf(msg, "Can't discover the memory socket");
1955 		return -EINVAL;
1956 	}
1957 	dram_rule = reg;
1958 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1959 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1960 
1961 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1962 			      &reg);
1963 
1964 	if (pvt->info.type == SANDY_BRIDGE) {
1965 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1966 		for (sad_way = 0; sad_way < 8; sad_way++) {
1967 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1968 			if (sad_way > 0 && sad_interl == pkg)
1969 				break;
1970 			sad_interleave[sad_way] = pkg;
1971 			edac_dbg(0, "SAD interleave #%d: %d\n",
1972 				 sad_way, sad_interleave[sad_way]);
1973 		}
1974 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1975 			 pvt->sbridge_dev->mc,
1976 			 n_sads,
1977 			 addr,
1978 			 limit,
1979 			 sad_way + 7,
1980 			 !interleave_mode ? "" : "XOR[18:16]");
1981 		if (interleave_mode)
1982 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1983 		else
1984 			idx = (addr >> 6) & 7;
1985 		switch (sad_way) {
1986 		case 1:
1987 			idx = 0;
1988 			break;
1989 		case 2:
1990 			idx = idx & 1;
1991 			break;
1992 		case 4:
1993 			idx = idx & 3;
1994 			break;
1995 		case 8:
1996 			break;
1997 		default:
1998 			sprintf(msg, "Can't discover socket interleave");
1999 			return -EINVAL;
2000 		}
2001 		*socket = sad_interleave[idx];
2002 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2003 			 idx, sad_way, *socket);
2004 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2005 		int bits, a7mode = A7MODE(dram_rule);
2006 
2007 		if (a7mode) {
2008 			/* A7 mode swaps P9 with P6 */
2009 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2010 			bits |= GET_BITFIELD(addr, 9, 9);
2011 		} else
2012 			bits = GET_BITFIELD(addr, 6, 8);
2013 
2014 		if (interleave_mode == 0) {
2015 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2016 			idx = GET_BITFIELD(addr, 16, 18);
2017 			idx ^= bits;
2018 		} else
2019 			idx = bits;
2020 
2021 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2022 		*socket = sad_pkg_socket(pkg);
2023 		sad_ha = sad_pkg_ha(pkg);
2024 
2025 		if (a7mode) {
2026 			/* MCChanShiftUpEnable */
2027 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2028 			shiftup = GET_BITFIELD(reg, 22, 22);
2029 		}
2030 
2031 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2032 			 idx, *socket, sad_ha, shiftup);
2033 	} else {
2034 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2035 		idx = (addr >> 6) & 7;
2036 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2037 		*socket = sad_pkg_socket(pkg);
2038 		sad_ha = sad_pkg_ha(pkg);
2039 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2040 			 idx, *socket, sad_ha);
2041 	}
2042 
2043 	*ha = sad_ha;
2044 
2045 	/*
2046 	 * Move to the proper node structure, in order to access the
2047 	 * right PCI registers
2048 	 */
2049 	new_mci = get_mci_for_node_id(*socket, sad_ha);
2050 	if (!new_mci) {
2051 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2052 			*socket);
2053 		return -EINVAL;
2054 	}
2055 	mci = new_mci;
2056 	pvt = mci->pvt_info;
2057 
2058 	/*
2059 	 * Step 2) Get memory channel
2060 	 */
2061 	prv = 0;
2062 	pci_ha = pvt->pci_ha;
2063 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2064 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2065 		limit = TAD_LIMIT(reg);
2066 		if (limit <= prv) {
2067 			sprintf(msg, "Can't discover the memory channel");
2068 			return -EINVAL;
2069 		}
2070 		if  (addr <= limit)
2071 			break;
2072 		prv = limit;
2073 	}
2074 	if (n_tads == MAX_TAD) {
2075 		sprintf(msg, "Can't discover the memory channel");
2076 		return -EINVAL;
2077 	}
2078 
2079 	ch_way = TAD_CH(reg) + 1;
2080 	sck_way = TAD_SOCK(reg);
2081 
2082 	if (ch_way == 3)
2083 		idx = addr >> 6;
2084 	else {
2085 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2086 		if (pvt->is_chan_hash)
2087 			idx = haswell_chan_hash(idx, addr);
2088 	}
2089 	idx = idx % ch_way;
2090 
2091 	/*
2092 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2093 	 */
2094 	switch (idx) {
2095 	case 0:
2096 		base_ch = TAD_TGT0(reg);
2097 		break;
2098 	case 1:
2099 		base_ch = TAD_TGT1(reg);
2100 		break;
2101 	case 2:
2102 		base_ch = TAD_TGT2(reg);
2103 		break;
2104 	case 3:
2105 		base_ch = TAD_TGT3(reg);
2106 		break;
2107 	default:
2108 		sprintf(msg, "Can't discover the TAD target");
2109 		return -EINVAL;
2110 	}
2111 	*channel_mask = 1 << base_ch;
2112 
2113 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2114 
2115 	if (pvt->mirror_mode == FULL_MIRRORING ||
2116 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2117 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2118 		switch(ch_way) {
2119 		case 2:
2120 		case 4:
2121 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2122 			break;
2123 		default:
2124 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2125 			return -EINVAL;
2126 		}
2127 
2128 		pvt->is_cur_addr_mirrored = true;
2129 	} else {
2130 		sck_xch = (1 << sck_way) * ch_way;
2131 		pvt->is_cur_addr_mirrored = false;
2132 	}
2133 
2134 	if (pvt->is_lockstep)
2135 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2136 
2137 	offset = TAD_OFFSET(tad_offset);
2138 
2139 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2140 		 n_tads,
2141 		 addr,
2142 		 limit,
2143 		 sck_way,
2144 		 ch_way,
2145 		 offset,
2146 		 idx,
2147 		 base_ch,
2148 		 *channel_mask);
2149 
2150 	/* Calculate channel address */
2151 	/* Remove the TAD offset */
2152 
2153 	if (offset > addr) {
2154 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2155 			offset, addr);
2156 		return -EINVAL;
2157 	}
2158 
2159 	ch_addr = addr - offset;
2160 	ch_addr >>= (6 + shiftup);
2161 	ch_addr /= sck_xch;
2162 	ch_addr <<= (6 + shiftup);
2163 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2164 
2165 	/*
2166 	 * Step 3) Decode rank
2167 	 */
2168 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2169 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2170 
2171 		if (!IS_RIR_VALID(reg))
2172 			continue;
2173 
2174 		limit = pvt->info.rir_limit(reg);
2175 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2176 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2177 			 n_rir,
2178 			 gb, (mb*1000)/1024,
2179 			 limit,
2180 			 1 << RIR_WAY(reg));
2181 		if  (ch_addr <= limit)
2182 			break;
2183 	}
2184 	if (n_rir == MAX_RIR_RANGES) {
2185 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2186 			ch_addr);
2187 		return -EINVAL;
2188 	}
2189 	rir_way = RIR_WAY(reg);
2190 
2191 	if (pvt->is_close_pg)
2192 		idx = (ch_addr >> 6);
2193 	else
2194 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2195 	idx %= 1 << rir_way;
2196 
2197 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2198 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2199 
2200 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2201 		 n_rir,
2202 		 ch_addr,
2203 		 limit,
2204 		 rir_way,
2205 		 idx);
2206 
2207 	return 0;
2208 }
2209 
2210 /****************************************************************************
2211 	Device initialization routines: put/get, init/exit
2212  ****************************************************************************/
2213 
2214 /*
2215  *	sbridge_put_all_devices	'put' all the devices that we have
2216  *				reserved via 'get'
2217  */
sbridge_put_devices(struct sbridge_dev * sbridge_dev)2218 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2219 {
2220 	int i;
2221 
2222 	edac_dbg(0, "\n");
2223 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2224 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2225 		if (!pdev)
2226 			continue;
2227 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2228 			 pdev->bus->number,
2229 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2230 		pci_dev_put(pdev);
2231 	}
2232 }
2233 
sbridge_put_all_devices(void)2234 static void sbridge_put_all_devices(void)
2235 {
2236 	struct sbridge_dev *sbridge_dev, *tmp;
2237 
2238 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2239 		sbridge_put_devices(sbridge_dev);
2240 		free_sbridge_dev(sbridge_dev);
2241 	}
2242 }
2243 
sbridge_get_onedevice(struct pci_dev ** prev,u8 * num_mc,const struct pci_id_table * table,const unsigned devno,const int multi_bus)2244 static int sbridge_get_onedevice(struct pci_dev **prev,
2245 				 u8 *num_mc,
2246 				 const struct pci_id_table *table,
2247 				 const unsigned devno,
2248 				 const int multi_bus)
2249 {
2250 	struct sbridge_dev *sbridge_dev = NULL;
2251 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2252 	struct pci_dev *pdev = NULL;
2253 	int seg = 0;
2254 	u8 bus = 0;
2255 	int i = 0;
2256 
2257 	sbridge_printk(KERN_DEBUG,
2258 		"Seeking for: PCI ID %04x:%04x\n",
2259 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2260 
2261 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2262 			      dev_descr->dev_id, *prev);
2263 
2264 	if (!pdev) {
2265 		if (*prev) {
2266 			*prev = pdev;
2267 			return 0;
2268 		}
2269 
2270 		if (dev_descr->optional)
2271 			return 0;
2272 
2273 		/* if the HA wasn't found */
2274 		if (devno == 0)
2275 			return -ENODEV;
2276 
2277 		sbridge_printk(KERN_INFO,
2278 			"Device not found: %04x:%04x\n",
2279 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2280 
2281 		/* End of list, leave */
2282 		return -ENODEV;
2283 	}
2284 	seg = pci_domain_nr(pdev->bus);
2285 	bus = pdev->bus->number;
2286 
2287 next_imc:
2288 	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2289 				      multi_bus, sbridge_dev);
2290 	if (!sbridge_dev) {
2291 		/* If the HA1 wasn't found, don't create EDAC second memory controller */
2292 		if (dev_descr->dom == IMC1 && devno != 1) {
2293 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2294 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2295 			pci_dev_put(pdev);
2296 			return 0;
2297 		}
2298 
2299 		if (dev_descr->dom == SOCK)
2300 			goto out_imc;
2301 
2302 		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2303 		if (!sbridge_dev) {
2304 			pci_dev_put(pdev);
2305 			return -ENOMEM;
2306 		}
2307 		(*num_mc)++;
2308 	}
2309 
2310 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2311 		sbridge_printk(KERN_ERR,
2312 			"Duplicated device for %04x:%04x\n",
2313 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2314 		pci_dev_put(pdev);
2315 		return -ENODEV;
2316 	}
2317 
2318 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2319 
2320 	/* pdev belongs to more than one IMC, do extra gets */
2321 	if (++i > 1)
2322 		pci_dev_get(pdev);
2323 
2324 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2325 		goto next_imc;
2326 
2327 out_imc:
2328 	/* Be sure that the device is enabled */
2329 	if (unlikely(pci_enable_device(pdev) < 0)) {
2330 		sbridge_printk(KERN_ERR,
2331 			"Couldn't enable %04x:%04x\n",
2332 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2333 		return -ENODEV;
2334 	}
2335 
2336 	edac_dbg(0, "Detected %04x:%04x\n",
2337 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2338 
2339 	/*
2340 	 * As stated on drivers/pci/search.c, the reference count for
2341 	 * @from is always decremented if it is not %NULL. So, as we need
2342 	 * to get all devices up to null, we need to do a get for the device
2343 	 */
2344 	pci_dev_get(pdev);
2345 
2346 	*prev = pdev;
2347 
2348 	return 0;
2349 }
2350 
2351 /*
2352  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2353  *			     devices we want to reference for this driver.
2354  * @num_mc: pointer to the memory controllers count, to be incremented in case
2355  *	    of success.
2356  * @table: model specific table
2357  *
2358  * returns 0 in case of success or error code
2359  */
sbridge_get_all_devices(u8 * num_mc,const struct pci_id_table * table)2360 static int sbridge_get_all_devices(u8 *num_mc,
2361 					const struct pci_id_table *table)
2362 {
2363 	int i, rc;
2364 	struct pci_dev *pdev = NULL;
2365 	int allow_dups = 0;
2366 	int multi_bus = 0;
2367 
2368 	if (table->type == KNIGHTS_LANDING)
2369 		allow_dups = multi_bus = 1;
2370 	while (table && table->descr) {
2371 		for (i = 0; i < table->n_devs_per_sock; i++) {
2372 			if (!allow_dups || i == 0 ||
2373 					table->descr[i].dev_id !=
2374 						table->descr[i-1].dev_id) {
2375 				pdev = NULL;
2376 			}
2377 			do {
2378 				rc = sbridge_get_onedevice(&pdev, num_mc,
2379 							   table, i, multi_bus);
2380 				if (rc < 0) {
2381 					if (i == 0) {
2382 						i = table->n_devs_per_sock;
2383 						break;
2384 					}
2385 					sbridge_put_all_devices();
2386 					return -ENODEV;
2387 				}
2388 			} while (pdev && !allow_dups);
2389 		}
2390 		table++;
2391 	}
2392 
2393 	return 0;
2394 }
2395 
2396 /*
2397  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2398  * the format: XXXa. So we can convert from a device to the corresponding
2399  * channel like this
2400  */
2401 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2402 
sbridge_mci_bind_devs(struct mem_ctl_info * mci,struct sbridge_dev * sbridge_dev)2403 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2404 				 struct sbridge_dev *sbridge_dev)
2405 {
2406 	struct sbridge_pvt *pvt = mci->pvt_info;
2407 	struct pci_dev *pdev;
2408 	u8 saw_chan_mask = 0;
2409 	int i;
2410 
2411 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2412 		pdev = sbridge_dev->pdev[i];
2413 		if (!pdev)
2414 			continue;
2415 
2416 		switch (pdev->device) {
2417 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2418 			pvt->pci_sad0 = pdev;
2419 			break;
2420 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2421 			pvt->pci_sad1 = pdev;
2422 			break;
2423 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2424 			pvt->pci_br0 = pdev;
2425 			break;
2426 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2427 			pvt->pci_ha = pdev;
2428 			break;
2429 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2430 			pvt->pci_ta = pdev;
2431 			break;
2432 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2433 			pvt->pci_ras = pdev;
2434 			break;
2435 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2436 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2437 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2438 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2439 		{
2440 			int id = TAD_DEV_TO_CHAN(pdev->device);
2441 			pvt->pci_tad[id] = pdev;
2442 			saw_chan_mask |= 1 << id;
2443 		}
2444 			break;
2445 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2446 			pvt->pci_ddrio = pdev;
2447 			break;
2448 		default:
2449 			goto error;
2450 		}
2451 
2452 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2453 			 pdev->vendor, pdev->device,
2454 			 sbridge_dev->bus,
2455 			 pdev);
2456 	}
2457 
2458 	/* Check if everything were registered */
2459 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2460 	    !pvt->pci_ras || !pvt->pci_ta)
2461 		goto enodev;
2462 
2463 	if (saw_chan_mask != 0x0f)
2464 		goto enodev;
2465 	return 0;
2466 
2467 enodev:
2468 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2469 	return -ENODEV;
2470 
2471 error:
2472 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2473 		       PCI_VENDOR_ID_INTEL, pdev->device);
2474 	return -EINVAL;
2475 }
2476 
ibridge_mci_bind_devs(struct mem_ctl_info * mci,struct sbridge_dev * sbridge_dev)2477 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2478 				 struct sbridge_dev *sbridge_dev)
2479 {
2480 	struct sbridge_pvt *pvt = mci->pvt_info;
2481 	struct pci_dev *pdev;
2482 	u8 saw_chan_mask = 0;
2483 	int i;
2484 
2485 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2486 		pdev = sbridge_dev->pdev[i];
2487 		if (!pdev)
2488 			continue;
2489 
2490 		switch (pdev->device) {
2491 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2492 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2493 			pvt->pci_ha = pdev;
2494 			break;
2495 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2496 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2497 			pvt->pci_ta = pdev;
2498 			break;
2499 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2500 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2501 			pvt->pci_ras = pdev;
2502 			break;
2503 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2504 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2505 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2506 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2507 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2508 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2509 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2510 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2511 		{
2512 			int id = TAD_DEV_TO_CHAN(pdev->device);
2513 			pvt->pci_tad[id] = pdev;
2514 			saw_chan_mask |= 1 << id;
2515 		}
2516 			break;
2517 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2518 			pvt->pci_ddrio = pdev;
2519 			break;
2520 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2521 			pvt->pci_ddrio = pdev;
2522 			break;
2523 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2524 			pvt->pci_sad0 = pdev;
2525 			break;
2526 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2527 			pvt->pci_br0 = pdev;
2528 			break;
2529 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2530 			pvt->pci_br1 = pdev;
2531 			break;
2532 		default:
2533 			goto error;
2534 		}
2535 
2536 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2537 			 sbridge_dev->bus,
2538 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2539 			 pdev);
2540 	}
2541 
2542 	/* Check if everything were registered */
2543 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2544 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2545 		goto enodev;
2546 
2547 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2548 	    saw_chan_mask != 0x03)   /* -EP */
2549 		goto enodev;
2550 	return 0;
2551 
2552 enodev:
2553 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2554 	return -ENODEV;
2555 
2556 error:
2557 	sbridge_printk(KERN_ERR,
2558 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2559 			pdev->device);
2560 	return -EINVAL;
2561 }
2562 
haswell_mci_bind_devs(struct mem_ctl_info * mci,struct sbridge_dev * sbridge_dev)2563 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2564 				 struct sbridge_dev *sbridge_dev)
2565 {
2566 	struct sbridge_pvt *pvt = mci->pvt_info;
2567 	struct pci_dev *pdev;
2568 	u8 saw_chan_mask = 0;
2569 	int i;
2570 
2571 	/* there's only one device per system; not tied to any bus */
2572 	if (pvt->info.pci_vtd == NULL)
2573 		/* result will be checked later */
2574 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2575 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2576 						   NULL);
2577 
2578 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2579 		pdev = sbridge_dev->pdev[i];
2580 		if (!pdev)
2581 			continue;
2582 
2583 		switch (pdev->device) {
2584 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2585 			pvt->pci_sad0 = pdev;
2586 			break;
2587 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2588 			pvt->pci_sad1 = pdev;
2589 			break;
2590 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2591 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2592 			pvt->pci_ha = pdev;
2593 			break;
2594 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2595 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2596 			pvt->pci_ta = pdev;
2597 			break;
2598 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2599 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2600 			pvt->pci_ras = pdev;
2601 			break;
2602 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2603 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2604 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2605 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2606 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2607 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2608 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2609 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2610 		{
2611 			int id = TAD_DEV_TO_CHAN(pdev->device);
2612 			pvt->pci_tad[id] = pdev;
2613 			saw_chan_mask |= 1 << id;
2614 		}
2615 			break;
2616 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2617 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2618 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2619 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2620 			if (!pvt->pci_ddrio)
2621 				pvt->pci_ddrio = pdev;
2622 			break;
2623 		default:
2624 			break;
2625 		}
2626 
2627 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2628 			 sbridge_dev->bus,
2629 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2630 			 pdev);
2631 	}
2632 
2633 	/* Check if everything were registered */
2634 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2635 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2636 		goto enodev;
2637 
2638 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2639 	    saw_chan_mask != 0x03)   /* -EP */
2640 		goto enodev;
2641 	return 0;
2642 
2643 enodev:
2644 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2645 	return -ENODEV;
2646 }
2647 
broadwell_mci_bind_devs(struct mem_ctl_info * mci,struct sbridge_dev * sbridge_dev)2648 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2649 				 struct sbridge_dev *sbridge_dev)
2650 {
2651 	struct sbridge_pvt *pvt = mci->pvt_info;
2652 	struct pci_dev *pdev;
2653 	u8 saw_chan_mask = 0;
2654 	int i;
2655 
2656 	/* there's only one device per system; not tied to any bus */
2657 	if (pvt->info.pci_vtd == NULL)
2658 		/* result will be checked later */
2659 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2660 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2661 						   NULL);
2662 
2663 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2664 		pdev = sbridge_dev->pdev[i];
2665 		if (!pdev)
2666 			continue;
2667 
2668 		switch (pdev->device) {
2669 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2670 			pvt->pci_sad0 = pdev;
2671 			break;
2672 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2673 			pvt->pci_sad1 = pdev;
2674 			break;
2675 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2676 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2677 			pvt->pci_ha = pdev;
2678 			break;
2679 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2680 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2681 			pvt->pci_ta = pdev;
2682 			break;
2683 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2684 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2685 			pvt->pci_ras = pdev;
2686 			break;
2687 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2688 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2689 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2690 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2691 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2692 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2693 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2694 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2695 		{
2696 			int id = TAD_DEV_TO_CHAN(pdev->device);
2697 			pvt->pci_tad[id] = pdev;
2698 			saw_chan_mask |= 1 << id;
2699 		}
2700 			break;
2701 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2702 			pvt->pci_ddrio = pdev;
2703 			break;
2704 		default:
2705 			break;
2706 		}
2707 
2708 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2709 			 sbridge_dev->bus,
2710 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2711 			 pdev);
2712 	}
2713 
2714 	/* Check if everything were registered */
2715 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2716 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2717 		goto enodev;
2718 
2719 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2720 	    saw_chan_mask != 0x03)   /* -EP */
2721 		goto enodev;
2722 	return 0;
2723 
2724 enodev:
2725 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2726 	return -ENODEV;
2727 }
2728 
knl_mci_bind_devs(struct mem_ctl_info * mci,struct sbridge_dev * sbridge_dev)2729 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2730 			struct sbridge_dev *sbridge_dev)
2731 {
2732 	struct sbridge_pvt *pvt = mci->pvt_info;
2733 	struct pci_dev *pdev;
2734 	int dev, func;
2735 
2736 	int i;
2737 	int devidx;
2738 
2739 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2740 		pdev = sbridge_dev->pdev[i];
2741 		if (!pdev)
2742 			continue;
2743 
2744 		/* Extract PCI device and function. */
2745 		dev = (pdev->devfn >> 3) & 0x1f;
2746 		func = pdev->devfn & 0x7;
2747 
2748 		switch (pdev->device) {
2749 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2750 			if (dev == 8)
2751 				pvt->knl.pci_mc0 = pdev;
2752 			else if (dev == 9)
2753 				pvt->knl.pci_mc1 = pdev;
2754 			else {
2755 				sbridge_printk(KERN_ERR,
2756 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2757 					dev, func);
2758 				continue;
2759 			}
2760 			break;
2761 
2762 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2763 			pvt->pci_sad0 = pdev;
2764 			break;
2765 
2766 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2767 			pvt->pci_sad1 = pdev;
2768 			break;
2769 
2770 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2771 			/* There are one of these per tile, and range from
2772 			 * 1.14.0 to 1.18.5.
2773 			 */
2774 			devidx = ((dev-14)*8)+func;
2775 
2776 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2777 				sbridge_printk(KERN_ERR,
2778 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2779 					dev, func);
2780 				continue;
2781 			}
2782 
2783 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2784 
2785 			pvt->knl.pci_cha[devidx] = pdev;
2786 			break;
2787 
2788 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2789 			devidx = -1;
2790 
2791 			/*
2792 			 *  MC0 channels 0-2 are device 9 function 2-4,
2793 			 *  MC1 channels 3-5 are device 8 function 2-4.
2794 			 */
2795 
2796 			if (dev == 9)
2797 				devidx = func-2;
2798 			else if (dev == 8)
2799 				devidx = 3 + (func-2);
2800 
2801 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2802 				sbridge_printk(KERN_ERR,
2803 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2804 					dev, func);
2805 				continue;
2806 			}
2807 
2808 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2809 			pvt->knl.pci_channel[devidx] = pdev;
2810 			break;
2811 
2812 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2813 			pvt->knl.pci_mc_info = pdev;
2814 			break;
2815 
2816 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2817 			pvt->pci_ta = pdev;
2818 			break;
2819 
2820 		default:
2821 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2822 				pdev->device);
2823 			break;
2824 		}
2825 	}
2826 
2827 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2828 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2829 	    !pvt->pci_ta) {
2830 		goto enodev;
2831 	}
2832 
2833 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2834 		if (!pvt->knl.pci_channel[i]) {
2835 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2836 			goto enodev;
2837 		}
2838 	}
2839 
2840 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2841 		if (!pvt->knl.pci_cha[i]) {
2842 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2843 			goto enodev;
2844 		}
2845 	}
2846 
2847 	return 0;
2848 
2849 enodev:
2850 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2851 	return -ENODEV;
2852 }
2853 
2854 /****************************************************************************
2855 			Error check routines
2856  ****************************************************************************/
2857 
2858 /*
2859  * While Sandy Bridge has error count registers, SMI BIOS read values from
2860  * and resets the counters. So, they are not reliable for the OS to read
2861  * from them. So, we have no option but to just trust on whatever MCE is
2862  * telling us about the errors.
2863  */
sbridge_mce_output_error(struct mem_ctl_info * mci,const struct mce * m)2864 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2865 				    const struct mce *m)
2866 {
2867 	struct mem_ctl_info *new_mci;
2868 	struct sbridge_pvt *pvt = mci->pvt_info;
2869 	enum hw_event_mc_err_type tp_event;
2870 	char *type, *optype, msg[256];
2871 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2872 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2873 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2874 	bool recoverable;
2875 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2876 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2877 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2878 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2879 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2880 	long channel_mask, first_channel;
2881 	u8  rank, socket, ha;
2882 	int rc, dimm;
2883 	char *area_type = NULL;
2884 
2885 	if (pvt->info.type != SANDY_BRIDGE)
2886 		recoverable = true;
2887 	else
2888 		recoverable = GET_BITFIELD(m->status, 56, 56);
2889 
2890 	if (uncorrected_error) {
2891 		core_err_cnt = 1;
2892 		if (ripv) {
2893 			type = "FATAL";
2894 			tp_event = HW_EVENT_ERR_FATAL;
2895 		} else {
2896 			type = "NON_FATAL";
2897 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2898 		}
2899 	} else {
2900 		type = "CORRECTED";
2901 		tp_event = HW_EVENT_ERR_CORRECTED;
2902 	}
2903 
2904 	/*
2905 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2906 	 * memory errors should fit in this mask:
2907 	 *	000f 0000 1mmm cccc (binary)
2908 	 * where:
2909 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2910 	 *	    won't be shown
2911 	 *	mmm = error type
2912 	 *	cccc = channel
2913 	 * If the mask doesn't match, report an error to the parsing logic
2914 	 */
2915 	switch (optypenum) {
2916 	case 0:
2917 		optype = "generic undef request error";
2918 		break;
2919 	case 1:
2920 		optype = "memory read error";
2921 		break;
2922 	case 2:
2923 		optype = "memory write error";
2924 		break;
2925 	case 3:
2926 		optype = "addr/cmd error";
2927 		break;
2928 	case 4:
2929 		optype = "memory scrubbing error";
2930 		break;
2931 	default:
2932 		optype = "reserved";
2933 		break;
2934 	}
2935 
2936 	if (pvt->info.type == KNIGHTS_LANDING) {
2937 		if (channel == 14) {
2938 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2939 				overflow ? " OVERFLOW" : "",
2940 				(uncorrected_error && recoverable)
2941 				? " recoverable" : "",
2942 				mscod, errcode,
2943 				m->bank);
2944 		} else {
2945 			char A = *("A");
2946 
2947 			/*
2948 			 * Reported channel is in range 0-2, so we can't map it
2949 			 * back to mc. To figure out mc we check machine check
2950 			 * bank register that reported this error.
2951 			 * bank15 means mc0 and bank16 means mc1.
2952 			 */
2953 			channel = knl_channel_remap(m->bank == 16, channel);
2954 			channel_mask = 1 << channel;
2955 
2956 			snprintf(msg, sizeof(msg),
2957 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2958 				overflow ? " OVERFLOW" : "",
2959 				(uncorrected_error && recoverable)
2960 				? " recoverable" : " ",
2961 				mscod, errcode, channel, A + channel);
2962 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
2963 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2964 				channel, 0, -1,
2965 				optype, msg);
2966 		}
2967 		return;
2968 	} else {
2969 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2970 				&channel_mask, &rank, &area_type, msg);
2971 	}
2972 
2973 	if (rc < 0)
2974 		goto err_parsing;
2975 	new_mci = get_mci_for_node_id(socket, ha);
2976 	if (!new_mci) {
2977 		strcpy(msg, "Error: socket got corrupted!");
2978 		goto err_parsing;
2979 	}
2980 	mci = new_mci;
2981 	pvt = mci->pvt_info;
2982 
2983 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2984 
2985 	if (rank < 4)
2986 		dimm = 0;
2987 	else if (rank < 8)
2988 		dimm = 1;
2989 	else
2990 		dimm = 2;
2991 
2992 
2993 	/*
2994 	 * FIXME: On some memory configurations (mirror, lockstep), the
2995 	 * Memory Controller can't point the error to a single DIMM. The
2996 	 * EDAC core should be handling the channel mask, in order to point
2997 	 * to the group of dimm's where the error may be happening.
2998 	 */
2999 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3000 		channel = first_channel;
3001 
3002 	snprintf(msg, sizeof(msg),
3003 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3004 		 overflow ? " OVERFLOW" : "",
3005 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3006 		 area_type,
3007 		 mscod, errcode,
3008 		 socket, ha,
3009 		 channel_mask,
3010 		 rank);
3011 
3012 	edac_dbg(0, "%s\n", msg);
3013 
3014 	/* FIXME: need support for channel mask */
3015 
3016 	if (channel == CHANNEL_UNSPECIFIED)
3017 		channel = -1;
3018 
3019 	/* Call the helper to output message */
3020 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3021 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3022 			     channel, dimm, -1,
3023 			     optype, msg);
3024 	return;
3025 err_parsing:
3026 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3027 			     -1, -1, -1,
3028 			     msg, "");
3029 
3030 }
3031 
3032 /*
3033  * Check that logging is enabled and that this is the right type
3034  * of error for us to handle.
3035  */
sbridge_mce_check_error(struct notifier_block * nb,unsigned long val,void * data)3036 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3037 				   void *data)
3038 {
3039 	struct mce *mce = (struct mce *)data;
3040 	struct mem_ctl_info *mci;
3041 	char *type;
3042 
3043 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3044 		return NOTIFY_DONE;
3045 
3046 	/*
3047 	 * Just let mcelog handle it if the error is
3048 	 * outside the memory controller. A memory error
3049 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3050 	 * bit 12 has an special meaning.
3051 	 */
3052 	if ((mce->status & 0xefff) >> 7 != 1)
3053 		return NOTIFY_DONE;
3054 
3055 	/* Check ADDRV bit in STATUS */
3056 	if (!GET_BITFIELD(mce->status, 58, 58))
3057 		return NOTIFY_DONE;
3058 
3059 	/* Check MISCV bit in STATUS */
3060 	if (!GET_BITFIELD(mce->status, 59, 59))
3061 		return NOTIFY_DONE;
3062 
3063 	/* Check address type in MISC (physical address only) */
3064 	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3065 		return NOTIFY_DONE;
3066 
3067 	mci = get_mci_for_node_id(mce->socketid, IMC0);
3068 	if (!mci)
3069 		return NOTIFY_DONE;
3070 
3071 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3072 		type = "Exception";
3073 	else
3074 		type = "Event";
3075 
3076 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3077 
3078 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3079 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3080 			  mce->mcgstatus, mce->bank, mce->status);
3081 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3082 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3083 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3084 
3085 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3086 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3087 			  mce->time, mce->socketid, mce->apicid);
3088 
3089 	sbridge_mce_output_error(mci, mce);
3090 
3091 	/* Advice mcelog that the error were handled */
3092 	return NOTIFY_STOP;
3093 }
3094 
3095 static struct notifier_block sbridge_mce_dec = {
3096 	.notifier_call	= sbridge_mce_check_error,
3097 	.priority	= MCE_PRIO_EDAC,
3098 };
3099 
3100 /****************************************************************************
3101 			EDAC register/unregister logic
3102  ****************************************************************************/
3103 
sbridge_unregister_mci(struct sbridge_dev * sbridge_dev)3104 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3105 {
3106 	struct mem_ctl_info *mci = sbridge_dev->mci;
3107 	struct sbridge_pvt *pvt;
3108 
3109 	if (unlikely(!mci || !mci->pvt_info)) {
3110 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3111 
3112 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3113 		return;
3114 	}
3115 
3116 	pvt = mci->pvt_info;
3117 
3118 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3119 		 mci, &sbridge_dev->pdev[0]->dev);
3120 
3121 	/* Remove MC sysfs nodes */
3122 	edac_mc_del_mc(mci->pdev);
3123 
3124 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3125 	kfree(mci->ctl_name);
3126 	edac_mc_free(mci);
3127 	sbridge_dev->mci = NULL;
3128 }
3129 
sbridge_register_mci(struct sbridge_dev * sbridge_dev,enum type type)3130 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3131 {
3132 	struct mem_ctl_info *mci;
3133 	struct edac_mc_layer layers[2];
3134 	struct sbridge_pvt *pvt;
3135 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3136 	int rc;
3137 
3138 	/* allocate a new MC control structure */
3139 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3140 	layers[0].size = type == KNIGHTS_LANDING ?
3141 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3142 	layers[0].is_virt_csrow = false;
3143 	layers[1].type = EDAC_MC_LAYER_SLOT;
3144 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3145 	layers[1].is_virt_csrow = true;
3146 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3147 			    sizeof(*pvt));
3148 
3149 	if (unlikely(!mci))
3150 		return -ENOMEM;
3151 
3152 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3153 		 mci, &pdev->dev);
3154 
3155 	pvt = mci->pvt_info;
3156 	memset(pvt, 0, sizeof(*pvt));
3157 
3158 	/* Associate sbridge_dev and mci for future usage */
3159 	pvt->sbridge_dev = sbridge_dev;
3160 	sbridge_dev->mci = mci;
3161 
3162 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3163 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3164 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3165 	mci->edac_cap = EDAC_FLAG_NONE;
3166 	mci->mod_name = EDAC_MOD_STR;
3167 	mci->dev_name = pci_name(pdev);
3168 	mci->ctl_page_to_phys = NULL;
3169 
3170 	pvt->info.type = type;
3171 	switch (type) {
3172 	case IVY_BRIDGE:
3173 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3174 		pvt->info.get_tolm = ibridge_get_tolm;
3175 		pvt->info.get_tohm = ibridge_get_tohm;
3176 		pvt->info.dram_rule = ibridge_dram_rule;
3177 		pvt->info.get_memory_type = get_memory_type;
3178 		pvt->info.get_node_id = get_node_id;
3179 		pvt->info.rir_limit = rir_limit;
3180 		pvt->info.sad_limit = sad_limit;
3181 		pvt->info.interleave_mode = interleave_mode;
3182 		pvt->info.dram_attr = dram_attr;
3183 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3184 		pvt->info.interleave_list = ibridge_interleave_list;
3185 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3186 		pvt->info.get_width = ibridge_get_width;
3187 
3188 		/* Store pci devices at mci for faster access */
3189 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3190 		if (unlikely(rc < 0))
3191 			goto fail0;
3192 		get_source_id(mci);
3193 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3194 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3195 		break;
3196 	case SANDY_BRIDGE:
3197 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3198 		pvt->info.get_tolm = sbridge_get_tolm;
3199 		pvt->info.get_tohm = sbridge_get_tohm;
3200 		pvt->info.dram_rule = sbridge_dram_rule;
3201 		pvt->info.get_memory_type = get_memory_type;
3202 		pvt->info.get_node_id = get_node_id;
3203 		pvt->info.rir_limit = rir_limit;
3204 		pvt->info.sad_limit = sad_limit;
3205 		pvt->info.interleave_mode = interleave_mode;
3206 		pvt->info.dram_attr = dram_attr;
3207 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3208 		pvt->info.interleave_list = sbridge_interleave_list;
3209 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3210 		pvt->info.get_width = sbridge_get_width;
3211 
3212 		/* Store pci devices at mci for faster access */
3213 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3214 		if (unlikely(rc < 0))
3215 			goto fail0;
3216 		get_source_id(mci);
3217 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3218 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3219 		break;
3220 	case HASWELL:
3221 		/* rankcfgr isn't used */
3222 		pvt->info.get_tolm = haswell_get_tolm;
3223 		pvt->info.get_tohm = haswell_get_tohm;
3224 		pvt->info.dram_rule = ibridge_dram_rule;
3225 		pvt->info.get_memory_type = haswell_get_memory_type;
3226 		pvt->info.get_node_id = haswell_get_node_id;
3227 		pvt->info.rir_limit = haswell_rir_limit;
3228 		pvt->info.sad_limit = sad_limit;
3229 		pvt->info.interleave_mode = interleave_mode;
3230 		pvt->info.dram_attr = dram_attr;
3231 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3232 		pvt->info.interleave_list = ibridge_interleave_list;
3233 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3234 		pvt->info.get_width = ibridge_get_width;
3235 
3236 		/* Store pci devices at mci for faster access */
3237 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3238 		if (unlikely(rc < 0))
3239 			goto fail0;
3240 		get_source_id(mci);
3241 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3242 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3243 		break;
3244 	case BROADWELL:
3245 		/* rankcfgr isn't used */
3246 		pvt->info.get_tolm = haswell_get_tolm;
3247 		pvt->info.get_tohm = haswell_get_tohm;
3248 		pvt->info.dram_rule = ibridge_dram_rule;
3249 		pvt->info.get_memory_type = haswell_get_memory_type;
3250 		pvt->info.get_node_id = haswell_get_node_id;
3251 		pvt->info.rir_limit = haswell_rir_limit;
3252 		pvt->info.sad_limit = sad_limit;
3253 		pvt->info.interleave_mode = interleave_mode;
3254 		pvt->info.dram_attr = dram_attr;
3255 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3256 		pvt->info.interleave_list = ibridge_interleave_list;
3257 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3258 		pvt->info.get_width = broadwell_get_width;
3259 
3260 		/* Store pci devices at mci for faster access */
3261 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3262 		if (unlikely(rc < 0))
3263 			goto fail0;
3264 		get_source_id(mci);
3265 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3266 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3267 		break;
3268 	case KNIGHTS_LANDING:
3269 		/* pvt->info.rankcfgr == ??? */
3270 		pvt->info.get_tolm = knl_get_tolm;
3271 		pvt->info.get_tohm = knl_get_tohm;
3272 		pvt->info.dram_rule = knl_dram_rule;
3273 		pvt->info.get_memory_type = knl_get_memory_type;
3274 		pvt->info.get_node_id = knl_get_node_id;
3275 		pvt->info.rir_limit = NULL;
3276 		pvt->info.sad_limit = knl_sad_limit;
3277 		pvt->info.interleave_mode = knl_interleave_mode;
3278 		pvt->info.dram_attr = dram_attr_knl;
3279 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3280 		pvt->info.interleave_list = knl_interleave_list;
3281 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3282 		pvt->info.get_width = knl_get_width;
3283 
3284 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3285 		if (unlikely(rc < 0))
3286 			goto fail0;
3287 		get_source_id(mci);
3288 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3289 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3290 		break;
3291 	}
3292 
3293 	if (!mci->ctl_name) {
3294 		rc = -ENOMEM;
3295 		goto fail0;
3296 	}
3297 
3298 	/* Get dimm basic config and the memory layout */
3299 	rc = get_dimm_config(mci);
3300 	if (rc < 0) {
3301 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3302 		goto fail;
3303 	}
3304 	get_memory_layout(mci);
3305 
3306 	/* record ptr to the generic device */
3307 	mci->pdev = &pdev->dev;
3308 
3309 	/* add this new MC control structure to EDAC's list of MCs */
3310 	if (unlikely(edac_mc_add_mc(mci))) {
3311 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3312 		rc = -EINVAL;
3313 		goto fail;
3314 	}
3315 
3316 	return 0;
3317 
3318 fail:
3319 	kfree(mci->ctl_name);
3320 fail0:
3321 	edac_mc_free(mci);
3322 	sbridge_dev->mci = NULL;
3323 	return rc;
3324 }
3325 
3326 #define ICPU(model, table) \
3327 	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3328 
3329 static const struct x86_cpu_id sbridge_cpuids[] = {
3330 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
3331 	ICPU(INTEL_FAM6_IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
3332 	ICPU(INTEL_FAM6_HASWELL_X,	  pci_dev_descr_haswell_table),
3333 	ICPU(INTEL_FAM6_BROADWELL_X,	  pci_dev_descr_broadwell_table),
3334 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3335 	ICPU(INTEL_FAM6_XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3336 	ICPU(INTEL_FAM6_XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3337 	{ }
3338 };
3339 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3340 
3341 /*
3342  *	sbridge_probe	Get all devices and register memory controllers
3343  *			present.
3344  *	return:
3345  *		0 for FOUND a device
3346  *		< 0 for error code
3347  */
3348 
sbridge_probe(const struct x86_cpu_id * id)3349 static int sbridge_probe(const struct x86_cpu_id *id)
3350 {
3351 	int rc = -ENODEV;
3352 	u8 mc, num_mc = 0;
3353 	struct sbridge_dev *sbridge_dev;
3354 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3355 
3356 	/* get the pci devices we want to reserve for our use */
3357 	rc = sbridge_get_all_devices(&num_mc, ptable);
3358 
3359 	if (unlikely(rc < 0)) {
3360 		edac_dbg(0, "couldn't get all devices\n");
3361 		goto fail0;
3362 	}
3363 
3364 	mc = 0;
3365 
3366 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3367 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3368 			 mc, mc + 1, num_mc);
3369 
3370 		sbridge_dev->mc = mc++;
3371 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3372 		if (unlikely(rc < 0))
3373 			goto fail1;
3374 	}
3375 
3376 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3377 
3378 	return 0;
3379 
3380 fail1:
3381 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3382 		sbridge_unregister_mci(sbridge_dev);
3383 
3384 	sbridge_put_all_devices();
3385 fail0:
3386 	return rc;
3387 }
3388 
3389 /*
3390  *	sbridge_remove	cleanup
3391  *
3392  */
sbridge_remove(void)3393 static void sbridge_remove(void)
3394 {
3395 	struct sbridge_dev *sbridge_dev;
3396 
3397 	edac_dbg(0, "\n");
3398 
3399 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3400 		sbridge_unregister_mci(sbridge_dev);
3401 
3402 	/* Release PCI resources */
3403 	sbridge_put_all_devices();
3404 }
3405 
3406 /*
3407  *	sbridge_init		Module entry function
3408  *			Try to initialize this module for its devices
3409  */
sbridge_init(void)3410 static int __init sbridge_init(void)
3411 {
3412 	const struct x86_cpu_id *id;
3413 	const char *owner;
3414 	int rc;
3415 
3416 	edac_dbg(2, "\n");
3417 
3418 	owner = edac_get_owner();
3419 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3420 		return -EBUSY;
3421 
3422 	id = x86_match_cpu(sbridge_cpuids);
3423 	if (!id)
3424 		return -ENODEV;
3425 
3426 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3427 	opstate_init();
3428 
3429 	rc = sbridge_probe(id);
3430 
3431 	if (rc >= 0) {
3432 		mce_register_decode_chain(&sbridge_mce_dec);
3433 		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3434 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3435 		return 0;
3436 	}
3437 
3438 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3439 		      rc);
3440 
3441 	return rc;
3442 }
3443 
3444 /*
3445  *	sbridge_exit()	Module exit function
3446  *			Unregister the driver
3447  */
sbridge_exit(void)3448 static void __exit sbridge_exit(void)
3449 {
3450 	edac_dbg(2, "\n");
3451 	sbridge_remove();
3452 	mce_unregister_decode_chain(&sbridge_mce_dec);
3453 }
3454 
3455 module_init(sbridge_init);
3456 module_exit(sbridge_exit);
3457 
3458 module_param(edac_op_state, int, 0444);
3459 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3460 
3461 MODULE_LICENSE("GPL");
3462 MODULE_AUTHOR("Mauro Carvalho Chehab");
3463 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3464 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3465 		   SBRIDGE_REVISION);
3466