1 /*
2  * (C) Copyright 2003-2004
3  * Humboldt Solutions Ltd, adrian@humboldt.co.uk.
4 
5  * This is a combined i2c adapter and algorithm driver for the
6  * MPC107/Tsi107 PowerPC northbridge and processors that include
7  * the same I2C unit (8240, 8245, 85xx).
8  *
9  * Release 0.8
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/sched/signal.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/slab.h>
23 
24 #include <linux/clk.h>
25 #include <linux/io.h>
26 #include <linux/iopoll.h>
27 #include <linux/fsl_devices.h>
28 #include <linux/i2c.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 
32 #include <asm/mpc52xx.h>
33 #include <asm/mpc85xx.h>
34 #include <sysdev/fsl_soc.h>
35 
36 #define DRV_NAME "mpc-i2c"
37 
38 #define MPC_I2C_CLOCK_LEGACY   0
39 #define MPC_I2C_CLOCK_PRESERVE (~0U)
40 
41 #define MPC_I2C_FDR   0x04
42 #define MPC_I2C_CR    0x08
43 #define MPC_I2C_SR    0x0c
44 #define MPC_I2C_DR    0x10
45 #define MPC_I2C_DFSRR 0x14
46 
47 #define CCR_MEN  0x80
48 #define CCR_MIEN 0x40
49 #define CCR_MSTA 0x20
50 #define CCR_MTX  0x10
51 #define CCR_TXAK 0x08
52 #define CCR_RSTA 0x04
53 #define CCR_RSVD 0x02
54 
55 #define CSR_MCF  0x80
56 #define CSR_MAAS 0x40
57 #define CSR_MBB  0x20
58 #define CSR_MAL  0x10
59 #define CSR_SRW  0x04
60 #define CSR_MIF  0x02
61 #define CSR_RXAK 0x01
62 
63 struct mpc_i2c {
64 	struct device *dev;
65 	void __iomem *base;
66 	u32 interrupt;
67 	wait_queue_head_t queue;
68 	struct i2c_adapter adap;
69 	int irq;
70 	u32 real_clk;
71 #ifdef CONFIG_PM_SLEEP
72 	u8 fdr, dfsrr;
73 #endif
74 	struct clk *clk_per;
75 	bool has_errata_A004447;
76 };
77 
78 struct mpc_i2c_divider {
79 	u16 divider;
80 	u16 fdr;	/* including dfsrr */
81 };
82 
83 struct mpc_i2c_data {
84 	void (*setup)(struct device_node *node, struct mpc_i2c *i2c, u32 clock);
85 };
86 
writeccr(struct mpc_i2c * i2c,u32 x)87 static inline void writeccr(struct mpc_i2c *i2c, u32 x)
88 {
89 	writeb(x, i2c->base + MPC_I2C_CR);
90 }
91 
mpc_i2c_isr(int irq,void * dev_id)92 static irqreturn_t mpc_i2c_isr(int irq, void *dev_id)
93 {
94 	struct mpc_i2c *i2c = dev_id;
95 	if (readb(i2c->base + MPC_I2C_SR) & CSR_MIF) {
96 		/* Read again to allow register to stabilise */
97 		i2c->interrupt = readb(i2c->base + MPC_I2C_SR);
98 		writeb(0, i2c->base + MPC_I2C_SR);
99 		wake_up(&i2c->queue);
100 		return IRQ_HANDLED;
101 	}
102 	return IRQ_NONE;
103 }
104 
105 /* Sometimes 9th clock pulse isn't generated, and slave doesn't release
106  * the bus, because it wants to send ACK.
107  * Following sequence of enabling/disabling and sending start/stop generates
108  * the 9 pulses, each with a START then ending with STOP, so it's all OK.
109  */
mpc_i2c_fixup(struct mpc_i2c * i2c)110 static void mpc_i2c_fixup(struct mpc_i2c *i2c)
111 {
112 	int k;
113 	unsigned long flags;
114 
115 	for (k = 9; k; k--) {
116 		writeccr(i2c, 0);
117 		writeb(0, i2c->base + MPC_I2C_SR); /* clear any status bits */
118 		writeccr(i2c, CCR_MEN | CCR_MSTA); /* START */
119 		readb(i2c->base + MPC_I2C_DR); /* init xfer */
120 		udelay(15); /* let it hit the bus */
121 		local_irq_save(flags); /* should not be delayed further */
122 		writeccr(i2c, CCR_MEN | CCR_MSTA | CCR_RSTA); /* delay SDA */
123 		readb(i2c->base + MPC_I2C_DR);
124 		if (k != 1)
125 			udelay(5);
126 		local_irq_restore(flags);
127 	}
128 	writeccr(i2c, CCR_MEN); /* Initiate STOP */
129 	readb(i2c->base + MPC_I2C_DR);
130 	udelay(15); /* Let STOP propagate */
131 	writeccr(i2c, 0);
132 }
133 
i2c_wait(struct mpc_i2c * i2c,unsigned timeout,int writing)134 static int i2c_wait(struct mpc_i2c *i2c, unsigned timeout, int writing)
135 {
136 	unsigned long orig_jiffies = jiffies;
137 	u32 cmd_err;
138 	int result = 0;
139 
140 	if (!i2c->irq) {
141 		while (!(readb(i2c->base + MPC_I2C_SR) & CSR_MIF)) {
142 			schedule();
143 			if (time_after(jiffies, orig_jiffies + timeout)) {
144 				dev_dbg(i2c->dev, "timeout\n");
145 				writeccr(i2c, 0);
146 				result = -ETIMEDOUT;
147 				break;
148 			}
149 		}
150 		cmd_err = readb(i2c->base + MPC_I2C_SR);
151 		writeb(0, i2c->base + MPC_I2C_SR);
152 	} else {
153 		/* Interrupt mode */
154 		result = wait_event_timeout(i2c->queue,
155 			(i2c->interrupt & CSR_MIF), timeout);
156 
157 		if (unlikely(!(i2c->interrupt & CSR_MIF))) {
158 			dev_dbg(i2c->dev, "wait timeout\n");
159 			writeccr(i2c, 0);
160 			result = -ETIMEDOUT;
161 		}
162 
163 		cmd_err = i2c->interrupt;
164 		i2c->interrupt = 0;
165 	}
166 
167 	if (result < 0)
168 		return result;
169 
170 	if (!(cmd_err & CSR_MCF)) {
171 		dev_dbg(i2c->dev, "unfinished\n");
172 		return -EIO;
173 	}
174 
175 	if (cmd_err & CSR_MAL) {
176 		dev_dbg(i2c->dev, "MAL\n");
177 		return -EAGAIN;
178 	}
179 
180 	if (writing && (cmd_err & CSR_RXAK)) {
181 		dev_dbg(i2c->dev, "No RXAK\n");
182 		/* generate stop */
183 		writeccr(i2c, CCR_MEN);
184 		return -ENXIO;
185 	}
186 	return 0;
187 }
188 
i2c_mpc_wait_sr(struct mpc_i2c * i2c,int mask)189 static int i2c_mpc_wait_sr(struct mpc_i2c *i2c, int mask)
190 {
191 	void __iomem *addr = i2c->base + MPC_I2C_SR;
192 	u8 val;
193 
194 	return readb_poll_timeout(addr, val, val & mask, 0, 100);
195 }
196 
197 /*
198  * Workaround for Erratum A004447. From the P2040CE Rev Q
199  *
200  * 1.  Set up the frequency divider and sampling rate.
201  * 2.  I2CCR - a0h
202  * 3.  Poll for I2CSR[MBB] to get set.
203  * 4.  If I2CSR[MAL] is set (an indication that SDA is stuck low), then go to
204  *     step 5. If MAL is not set, then go to step 13.
205  * 5.  I2CCR - 00h
206  * 6.  I2CCR - 22h
207  * 7.  I2CCR - a2h
208  * 8.  Poll for I2CSR[MBB] to get set.
209  * 9.  Issue read to I2CDR.
210  * 10. Poll for I2CSR[MIF] to be set.
211  * 11. I2CCR - 82h
212  * 12. Workaround complete. Skip the next steps.
213  * 13. Issue read to I2CDR.
214  * 14. Poll for I2CSR[MIF] to be set.
215  * 15. I2CCR - 80h
216  */
mpc_i2c_fixup_A004447(struct mpc_i2c * i2c)217 static void mpc_i2c_fixup_A004447(struct mpc_i2c *i2c)
218 {
219 	int ret;
220 	u32 val;
221 
222 	writeccr(i2c, CCR_MEN | CCR_MSTA);
223 	ret = i2c_mpc_wait_sr(i2c, CSR_MBB);
224 	if (ret) {
225 		dev_err(i2c->dev, "timeout waiting for CSR_MBB\n");
226 		return;
227 	}
228 
229 	val = readb(i2c->base + MPC_I2C_SR);
230 
231 	if (val & CSR_MAL) {
232 		writeccr(i2c, 0x00);
233 		writeccr(i2c, CCR_MSTA | CCR_RSVD);
234 		writeccr(i2c, CCR_MEN | CCR_MSTA | CCR_RSVD);
235 		ret = i2c_mpc_wait_sr(i2c, CSR_MBB);
236 		if (ret) {
237 			dev_err(i2c->dev, "timeout waiting for CSR_MBB\n");
238 			return;
239 		}
240 		val = readb(i2c->base + MPC_I2C_DR);
241 		ret = i2c_mpc_wait_sr(i2c, CSR_MIF);
242 		if (ret) {
243 			dev_err(i2c->dev, "timeout waiting for CSR_MIF\n");
244 			return;
245 		}
246 		writeccr(i2c, CCR_MEN | CCR_RSVD);
247 	} else {
248 		val = readb(i2c->base + MPC_I2C_DR);
249 		ret = i2c_mpc_wait_sr(i2c, CSR_MIF);
250 		if (ret) {
251 			dev_err(i2c->dev, "timeout waiting for CSR_MIF\n");
252 			return;
253 		}
254 		writeccr(i2c, CCR_MEN);
255 	}
256 }
257 
258 #if defined(CONFIG_PPC_MPC52xx) || defined(CONFIG_PPC_MPC512x)
259 static const struct mpc_i2c_divider mpc_i2c_dividers_52xx[] = {
260 	{20, 0x20}, {22, 0x21}, {24, 0x22}, {26, 0x23},
261 	{28, 0x24}, {30, 0x01}, {32, 0x25}, {34, 0x02},
262 	{36, 0x26}, {40, 0x27}, {44, 0x04}, {48, 0x28},
263 	{52, 0x63}, {56, 0x29}, {60, 0x41}, {64, 0x2a},
264 	{68, 0x07}, {72, 0x2b}, {80, 0x2c}, {88, 0x09},
265 	{96, 0x2d}, {104, 0x0a}, {112, 0x2e}, {120, 0x81},
266 	{128, 0x2f}, {136, 0x47}, {144, 0x0c}, {160, 0x30},
267 	{176, 0x49}, {192, 0x31}, {208, 0x4a}, {224, 0x32},
268 	{240, 0x0f}, {256, 0x33}, {272, 0x87}, {288, 0x10},
269 	{320, 0x34}, {352, 0x89}, {384, 0x35}, {416, 0x8a},
270 	{448, 0x36}, {480, 0x13}, {512, 0x37}, {576, 0x14},
271 	{640, 0x38}, {768, 0x39}, {896, 0x3a}, {960, 0x17},
272 	{1024, 0x3b}, {1152, 0x18}, {1280, 0x3c}, {1536, 0x3d},
273 	{1792, 0x3e}, {1920, 0x1b}, {2048, 0x3f}, {2304, 0x1c},
274 	{2560, 0x1d}, {3072, 0x1e}, {3584, 0x7e}, {3840, 0x1f},
275 	{4096, 0x7f}, {4608, 0x5c}, {5120, 0x5d}, {6144, 0x5e},
276 	{7168, 0xbe}, {7680, 0x5f}, {8192, 0xbf}, {9216, 0x9c},
277 	{10240, 0x9d}, {12288, 0x9e}, {15360, 0x9f}
278 };
279 
mpc_i2c_get_fdr_52xx(struct device_node * node,u32 clock,u32 * real_clk)280 static int mpc_i2c_get_fdr_52xx(struct device_node *node, u32 clock,
281 					  u32 *real_clk)
282 {
283 	const struct mpc_i2c_divider *div = NULL;
284 	unsigned int pvr = mfspr(SPRN_PVR);
285 	u32 divider;
286 	int i;
287 
288 	if (clock == MPC_I2C_CLOCK_LEGACY) {
289 		/* see below - default fdr = 0x3f -> div = 2048 */
290 		*real_clk = mpc5xxx_get_bus_frequency(node) / 2048;
291 		return -EINVAL;
292 	}
293 
294 	/* Determine divider value */
295 	divider = mpc5xxx_get_bus_frequency(node) / clock;
296 
297 	/*
298 	 * We want to choose an FDR/DFSR that generates an I2C bus speed that
299 	 * is equal to or lower than the requested speed.
300 	 */
301 	for (i = 0; i < ARRAY_SIZE(mpc_i2c_dividers_52xx); i++) {
302 		div = &mpc_i2c_dividers_52xx[i];
303 		/* Old MPC5200 rev A CPUs do not support the high bits */
304 		if (div->fdr & 0xc0 && pvr == 0x80822011)
305 			continue;
306 		if (div->divider >= divider)
307 			break;
308 	}
309 
310 	*real_clk = mpc5xxx_get_bus_frequency(node) / div->divider;
311 	return (int)div->fdr;
312 }
313 
mpc_i2c_setup_52xx(struct device_node * node,struct mpc_i2c * i2c,u32 clock)314 static void mpc_i2c_setup_52xx(struct device_node *node,
315 					 struct mpc_i2c *i2c,
316 					 u32 clock)
317 {
318 	int ret, fdr;
319 
320 	if (clock == MPC_I2C_CLOCK_PRESERVE) {
321 		dev_dbg(i2c->dev, "using fdr %d\n",
322 			readb(i2c->base + MPC_I2C_FDR));
323 		return;
324 	}
325 
326 	ret = mpc_i2c_get_fdr_52xx(node, clock, &i2c->real_clk);
327 	fdr = (ret >= 0) ? ret : 0x3f; /* backward compatibility */
328 
329 	writeb(fdr & 0xff, i2c->base + MPC_I2C_FDR);
330 
331 	if (ret >= 0)
332 		dev_info(i2c->dev, "clock %u Hz (fdr=%d)\n", i2c->real_clk,
333 			 fdr);
334 }
335 #else /* !(CONFIG_PPC_MPC52xx || CONFIG_PPC_MPC512x) */
mpc_i2c_setup_52xx(struct device_node * node,struct mpc_i2c * i2c,u32 clock)336 static void mpc_i2c_setup_52xx(struct device_node *node,
337 					 struct mpc_i2c *i2c,
338 					 u32 clock)
339 {
340 }
341 #endif /* CONFIG_PPC_MPC52xx || CONFIG_PPC_MPC512x */
342 
343 #ifdef CONFIG_PPC_MPC512x
mpc_i2c_setup_512x(struct device_node * node,struct mpc_i2c * i2c,u32 clock)344 static void mpc_i2c_setup_512x(struct device_node *node,
345 					 struct mpc_i2c *i2c,
346 					 u32 clock)
347 {
348 	struct device_node *node_ctrl;
349 	void __iomem *ctrl;
350 	const u32 *pval;
351 	u32 idx;
352 
353 	/* Enable I2C interrupts for mpc5121 */
354 	node_ctrl = of_find_compatible_node(NULL, NULL,
355 					    "fsl,mpc5121-i2c-ctrl");
356 	if (node_ctrl) {
357 		ctrl = of_iomap(node_ctrl, 0);
358 		if (ctrl) {
359 			/* Interrupt enable bits for i2c-0/1/2: bit 24/26/28 */
360 			pval = of_get_property(node, "reg", NULL);
361 			idx = (*pval & 0xff) / 0x20;
362 			setbits32(ctrl, 1 << (24 + idx * 2));
363 			iounmap(ctrl);
364 		}
365 		of_node_put(node_ctrl);
366 	}
367 
368 	/* The clock setup for the 52xx works also fine for the 512x */
369 	mpc_i2c_setup_52xx(node, i2c, clock);
370 }
371 #else /* CONFIG_PPC_MPC512x */
mpc_i2c_setup_512x(struct device_node * node,struct mpc_i2c * i2c,u32 clock)372 static void mpc_i2c_setup_512x(struct device_node *node,
373 					 struct mpc_i2c *i2c,
374 					 u32 clock)
375 {
376 }
377 #endif /* CONFIG_PPC_MPC512x */
378 
379 #ifdef CONFIG_FSL_SOC
380 static const struct mpc_i2c_divider mpc_i2c_dividers_8xxx[] = {
381 	{160, 0x0120}, {192, 0x0121}, {224, 0x0122}, {256, 0x0123},
382 	{288, 0x0100}, {320, 0x0101}, {352, 0x0601}, {384, 0x0102},
383 	{416, 0x0602}, {448, 0x0126}, {480, 0x0103}, {512, 0x0127},
384 	{544, 0x0b03}, {576, 0x0104}, {608, 0x1603}, {640, 0x0105},
385 	{672, 0x2003}, {704, 0x0b05}, {736, 0x2b03}, {768, 0x0106},
386 	{800, 0x3603}, {832, 0x0b06}, {896, 0x012a}, {960, 0x0107},
387 	{1024, 0x012b}, {1088, 0x1607}, {1152, 0x0108}, {1216, 0x2b07},
388 	{1280, 0x0109}, {1408, 0x1609}, {1536, 0x010a}, {1664, 0x160a},
389 	{1792, 0x012e}, {1920, 0x010b}, {2048, 0x012f}, {2176, 0x2b0b},
390 	{2304, 0x010c}, {2560, 0x010d}, {2816, 0x2b0d}, {3072, 0x010e},
391 	{3328, 0x2b0e}, {3584, 0x0132}, {3840, 0x010f}, {4096, 0x0133},
392 	{4608, 0x0110}, {5120, 0x0111}, {6144, 0x0112}, {7168, 0x0136},
393 	{7680, 0x0113}, {8192, 0x0137}, {9216, 0x0114}, {10240, 0x0115},
394 	{12288, 0x0116}, {14336, 0x013a}, {15360, 0x0117}, {16384, 0x013b},
395 	{18432, 0x0118}, {20480, 0x0119}, {24576, 0x011a}, {28672, 0x013e},
396 	{30720, 0x011b}, {32768, 0x013f}, {36864, 0x011c}, {40960, 0x011d},
397 	{49152, 0x011e}, {61440, 0x011f}
398 };
399 
mpc_i2c_get_sec_cfg_8xxx(void)400 static u32 mpc_i2c_get_sec_cfg_8xxx(void)
401 {
402 	struct device_node *node;
403 	u32 __iomem *reg;
404 	u32 val = 0;
405 
406 	node = of_find_node_by_name(NULL, "global-utilities");
407 	if (node) {
408 		const u32 *prop = of_get_property(node, "reg", NULL);
409 		if (prop) {
410 			/*
411 			 * Map and check POR Device Status Register 2
412 			 * (PORDEVSR2) at 0xE0014. Note than while MPC8533
413 			 * and MPC8544 indicate SEC frequency ratio
414 			 * configuration as bit 26 in PORDEVSR2, other MPC8xxx
415 			 * parts may store it differently or may not have it
416 			 * at all.
417 			 */
418 			reg = ioremap(get_immrbase() + *prop + 0x14, 0x4);
419 			if (!reg)
420 				printk(KERN_ERR
421 				       "Error: couldn't map PORDEVSR2\n");
422 			else
423 				val = in_be32(reg) & 0x00000020; /* sec-cfg */
424 			iounmap(reg);
425 		}
426 	}
427 	of_node_put(node);
428 
429 	return val;
430 }
431 
mpc_i2c_get_prescaler_8xxx(void)432 static u32 mpc_i2c_get_prescaler_8xxx(void)
433 {
434 	/*
435 	 * According to the AN2919 all MPC824x have prescaler 1, while MPC83xx
436 	 * may have prescaler 1, 2, or 3, depending on the power-on
437 	 * configuration.
438 	 */
439 	u32 prescaler = 1;
440 
441 	/* mpc85xx */
442 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)
443 		|| pvr_version_is(PVR_VER_E500MC)
444 		|| pvr_version_is(PVR_VER_E5500)
445 		|| pvr_version_is(PVR_VER_E6500)) {
446 		unsigned int svr = mfspr(SPRN_SVR);
447 
448 		if ((SVR_SOC_VER(svr) == SVR_8540)
449 			|| (SVR_SOC_VER(svr) == SVR_8541)
450 			|| (SVR_SOC_VER(svr) == SVR_8560)
451 			|| (SVR_SOC_VER(svr) == SVR_8555)
452 			|| (SVR_SOC_VER(svr) == SVR_8610))
453 			/* the above 85xx SoCs have prescaler 1 */
454 			prescaler = 1;
455 		else if ((SVR_SOC_VER(svr) == SVR_8533)
456 			|| (SVR_SOC_VER(svr) == SVR_8544))
457 			/* the above 85xx SoCs have prescaler 3 or 2 */
458 			prescaler = mpc_i2c_get_sec_cfg_8xxx() ? 3 : 2;
459 		else
460 			/* all the other 85xx have prescaler 2 */
461 			prescaler = 2;
462 	}
463 
464 	return prescaler;
465 }
466 
mpc_i2c_get_fdr_8xxx(struct device_node * node,u32 clock,u32 * real_clk)467 static int mpc_i2c_get_fdr_8xxx(struct device_node *node, u32 clock,
468 					  u32 *real_clk)
469 {
470 	const struct mpc_i2c_divider *div = NULL;
471 	u32 prescaler = mpc_i2c_get_prescaler_8xxx();
472 	u32 divider;
473 	int i;
474 
475 	if (clock == MPC_I2C_CLOCK_LEGACY) {
476 		/* see below - default fdr = 0x1031 -> div = 16 * 3072 */
477 		*real_clk = fsl_get_sys_freq() / prescaler / (16 * 3072);
478 		return -EINVAL;
479 	}
480 
481 	divider = fsl_get_sys_freq() / clock / prescaler;
482 
483 	pr_debug("I2C: src_clock=%d clock=%d divider=%d\n",
484 		 fsl_get_sys_freq(), clock, divider);
485 
486 	/*
487 	 * We want to choose an FDR/DFSR that generates an I2C bus speed that
488 	 * is equal to or lower than the requested speed.
489 	 */
490 	for (i = 0; i < ARRAY_SIZE(mpc_i2c_dividers_8xxx); i++) {
491 		div = &mpc_i2c_dividers_8xxx[i];
492 		if (div->divider >= divider)
493 			break;
494 	}
495 
496 	*real_clk = fsl_get_sys_freq() / prescaler / div->divider;
497 	return div ? (int)div->fdr : -EINVAL;
498 }
499 
mpc_i2c_setup_8xxx(struct device_node * node,struct mpc_i2c * i2c,u32 clock)500 static void mpc_i2c_setup_8xxx(struct device_node *node,
501 					 struct mpc_i2c *i2c,
502 					 u32 clock)
503 {
504 	int ret, fdr;
505 
506 	if (clock == MPC_I2C_CLOCK_PRESERVE) {
507 		dev_dbg(i2c->dev, "using dfsrr %d, fdr %d\n",
508 			readb(i2c->base + MPC_I2C_DFSRR),
509 			readb(i2c->base + MPC_I2C_FDR));
510 		return;
511 	}
512 
513 	ret = mpc_i2c_get_fdr_8xxx(node, clock, &i2c->real_clk);
514 	fdr = (ret >= 0) ? ret : 0x1031; /* backward compatibility */
515 
516 	writeb(fdr & 0xff, i2c->base + MPC_I2C_FDR);
517 	writeb((fdr >> 8) & 0xff, i2c->base + MPC_I2C_DFSRR);
518 
519 	if (ret >= 0)
520 		dev_info(i2c->dev, "clock %d Hz (dfsrr=%d fdr=%d)\n",
521 			 i2c->real_clk, fdr >> 8, fdr & 0xff);
522 }
523 
524 #else /* !CONFIG_FSL_SOC */
mpc_i2c_setup_8xxx(struct device_node * node,struct mpc_i2c * i2c,u32 clock)525 static void mpc_i2c_setup_8xxx(struct device_node *node,
526 					 struct mpc_i2c *i2c,
527 					 u32 clock)
528 {
529 }
530 #endif /* CONFIG_FSL_SOC */
531 
mpc_i2c_start(struct mpc_i2c * i2c)532 static void mpc_i2c_start(struct mpc_i2c *i2c)
533 {
534 	/* Clear arbitration */
535 	writeb(0, i2c->base + MPC_I2C_SR);
536 	/* Start with MEN */
537 	writeccr(i2c, CCR_MEN);
538 }
539 
mpc_i2c_stop(struct mpc_i2c * i2c)540 static void mpc_i2c_stop(struct mpc_i2c *i2c)
541 {
542 	writeccr(i2c, CCR_MEN);
543 }
544 
mpc_write(struct mpc_i2c * i2c,int target,const u8 * data,int length,int restart)545 static int mpc_write(struct mpc_i2c *i2c, int target,
546 		     const u8 *data, int length, int restart)
547 {
548 	int i, result;
549 	unsigned timeout = i2c->adap.timeout;
550 	u32 flags = restart ? CCR_RSTA : 0;
551 
552 	/* Start as master */
553 	writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
554 	/* Write target byte */
555 	writeb((target << 1), i2c->base + MPC_I2C_DR);
556 
557 	result = i2c_wait(i2c, timeout, 1);
558 	if (result < 0)
559 		return result;
560 
561 	for (i = 0; i < length; i++) {
562 		/* Write data byte */
563 		writeb(data[i], i2c->base + MPC_I2C_DR);
564 
565 		result = i2c_wait(i2c, timeout, 1);
566 		if (result < 0)
567 			return result;
568 	}
569 
570 	return 0;
571 }
572 
mpc_read(struct mpc_i2c * i2c,int target,u8 * data,int length,int restart,bool recv_len)573 static int mpc_read(struct mpc_i2c *i2c, int target,
574 		    u8 *data, int length, int restart, bool recv_len)
575 {
576 	unsigned timeout = i2c->adap.timeout;
577 	int i, result;
578 	u32 flags = restart ? CCR_RSTA : 0;
579 
580 	/* Switch to read - restart */
581 	writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
582 	/* Write target address byte - this time with the read flag set */
583 	writeb((target << 1) | 1, i2c->base + MPC_I2C_DR);
584 
585 	result = i2c_wait(i2c, timeout, 1);
586 	if (result < 0)
587 		return result;
588 
589 	if (length) {
590 		if (length == 1 && !recv_len)
591 			writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_TXAK);
592 		else
593 			writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA);
594 		/* Dummy read */
595 		readb(i2c->base + MPC_I2C_DR);
596 	}
597 
598 	for (i = 0; i < length; i++) {
599 		u8 byte;
600 
601 		result = i2c_wait(i2c, timeout, 0);
602 		if (result < 0)
603 			return result;
604 
605 		/*
606 		 * For block reads, we have to know the total length (1st byte)
607 		 * before we can determine if we are done.
608 		 */
609 		if (i || !recv_len) {
610 			/* Generate txack on next to last byte */
611 			if (i == length - 2)
612 				writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA
613 					 | CCR_TXAK);
614 			/* Do not generate stop on last byte */
615 			if (i == length - 1)
616 				writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA
617 					 | CCR_MTX);
618 		}
619 
620 		byte = readb(i2c->base + MPC_I2C_DR);
621 
622 		/*
623 		 * Adjust length if first received byte is length.
624 		 * The length is 1 length byte plus actually data length
625 		 */
626 		if (i == 0 && recv_len) {
627 			if (byte == 0 || byte > I2C_SMBUS_BLOCK_MAX)
628 				return -EPROTO;
629 			length += byte;
630 			/*
631 			 * For block reads, generate txack here if data length
632 			 * is 1 byte (total length is 2 bytes).
633 			 */
634 			if (length == 2)
635 				writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA
636 					 | CCR_TXAK);
637 		}
638 		data[i] = byte;
639 	}
640 
641 	return length;
642 }
643 
mpc_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)644 static int mpc_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
645 {
646 	struct i2c_msg *pmsg;
647 	int i;
648 	int ret = 0;
649 	unsigned long orig_jiffies = jiffies;
650 	struct mpc_i2c *i2c = i2c_get_adapdata(adap);
651 
652 	mpc_i2c_start(i2c);
653 
654 	/* Allow bus up to 1s to become not busy */
655 	while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) {
656 		if (signal_pending(current)) {
657 			dev_dbg(i2c->dev, "Interrupted\n");
658 			writeccr(i2c, 0);
659 			return -EINTR;
660 		}
661 		if (time_after(jiffies, orig_jiffies + HZ)) {
662 			u8 status = readb(i2c->base + MPC_I2C_SR);
663 
664 			dev_dbg(i2c->dev, "timeout\n");
665 			if ((status & (CSR_MCF | CSR_MBB | CSR_RXAK)) != 0) {
666 				writeb(status & ~CSR_MAL,
667 				       i2c->base + MPC_I2C_SR);
668 				i2c_recover_bus(&i2c->adap);
669 			}
670 			return -EIO;
671 		}
672 		schedule();
673 	}
674 
675 	for (i = 0; ret >= 0 && i < num; i++) {
676 		pmsg = &msgs[i];
677 		dev_dbg(i2c->dev,
678 			"Doing %s %d bytes to 0x%02x - %d of %d messages\n",
679 			pmsg->flags & I2C_M_RD ? "read" : "write",
680 			pmsg->len, pmsg->addr, i + 1, num);
681 		if (pmsg->flags & I2C_M_RD) {
682 			bool recv_len = pmsg->flags & I2C_M_RECV_LEN;
683 
684 			ret = mpc_read(i2c, pmsg->addr, pmsg->buf, pmsg->len, i,
685 				       recv_len);
686 			if (recv_len && ret > 0)
687 				pmsg->len = ret;
688 		} else {
689 			ret =
690 			    mpc_write(i2c, pmsg->addr, pmsg->buf, pmsg->len, i);
691 		}
692 	}
693 	mpc_i2c_stop(i2c); /* Initiate STOP */
694 	orig_jiffies = jiffies;
695 	/* Wait until STOP is seen, allow up to 1 s */
696 	while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) {
697 		if (time_after(jiffies, orig_jiffies + HZ)) {
698 			u8 status = readb(i2c->base + MPC_I2C_SR);
699 
700 			dev_dbg(i2c->dev, "timeout\n");
701 			if ((status & (CSR_MCF | CSR_MBB | CSR_RXAK)) != 0) {
702 				writeb(status & ~CSR_MAL,
703 				       i2c->base + MPC_I2C_SR);
704 				i2c_recover_bus(&i2c->adap);
705 			}
706 			return -EIO;
707 		}
708 		cond_resched();
709 	}
710 	return (ret < 0) ? ret : num;
711 }
712 
mpc_functionality(struct i2c_adapter * adap)713 static u32 mpc_functionality(struct i2c_adapter *adap)
714 {
715 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
716 	  | I2C_FUNC_SMBUS_READ_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL;
717 }
718 
fsl_i2c_bus_recovery(struct i2c_adapter * adap)719 static int fsl_i2c_bus_recovery(struct i2c_adapter *adap)
720 {
721 	struct mpc_i2c *i2c = i2c_get_adapdata(adap);
722 
723 	if (i2c->has_errata_A004447)
724 		mpc_i2c_fixup_A004447(i2c);
725 	else
726 		mpc_i2c_fixup(i2c);
727 
728 	return 0;
729 }
730 
731 static const struct i2c_algorithm mpc_algo = {
732 	.master_xfer = mpc_xfer,
733 	.functionality = mpc_functionality,
734 };
735 
736 static struct i2c_adapter mpc_ops = {
737 	.owner = THIS_MODULE,
738 	.algo = &mpc_algo,
739 	.timeout = HZ,
740 };
741 
742 static struct i2c_bus_recovery_info fsl_i2c_recovery_info = {
743 	.recover_bus = fsl_i2c_bus_recovery,
744 };
745 
746 static const struct of_device_id mpc_i2c_of_match[];
fsl_i2c_probe(struct platform_device * op)747 static int fsl_i2c_probe(struct platform_device *op)
748 {
749 	const struct of_device_id *match;
750 	struct mpc_i2c *i2c;
751 	const u32 *prop;
752 	u32 clock = MPC_I2C_CLOCK_LEGACY;
753 	int result = 0;
754 	int plen;
755 	struct resource res;
756 	struct clk *clk;
757 	int err;
758 
759 	match = of_match_device(mpc_i2c_of_match, &op->dev);
760 	if (!match)
761 		return -EINVAL;
762 
763 	i2c = kzalloc(sizeof(*i2c), GFP_KERNEL);
764 	if (!i2c)
765 		return -ENOMEM;
766 
767 	i2c->dev = &op->dev; /* for debug and error output */
768 
769 	init_waitqueue_head(&i2c->queue);
770 
771 	i2c->base = of_iomap(op->dev.of_node, 0);
772 	if (!i2c->base) {
773 		dev_err(i2c->dev, "failed to map controller\n");
774 		result = -ENOMEM;
775 		goto fail_map;
776 	}
777 
778 	i2c->irq = irq_of_parse_and_map(op->dev.of_node, 0);
779 	if (i2c->irq) { /* no i2c->irq implies polling */
780 		result = request_irq(i2c->irq, mpc_i2c_isr,
781 				     IRQF_SHARED, "i2c-mpc", i2c);
782 		if (result < 0) {
783 			dev_err(i2c->dev, "failed to attach interrupt\n");
784 			goto fail_request;
785 		}
786 	}
787 
788 	/*
789 	 * enable clock for the I2C peripheral (non fatal),
790 	 * keep a reference upon successful allocation
791 	 */
792 	clk = devm_clk_get(&op->dev, NULL);
793 	if (!IS_ERR(clk)) {
794 		err = clk_prepare_enable(clk);
795 		if (err) {
796 			dev_err(&op->dev, "failed to enable clock\n");
797 			goto fail_request;
798 		} else {
799 			i2c->clk_per = clk;
800 		}
801 	}
802 
803 	if (of_property_read_bool(op->dev.of_node, "fsl,preserve-clocking")) {
804 		clock = MPC_I2C_CLOCK_PRESERVE;
805 	} else {
806 		prop = of_get_property(op->dev.of_node, "clock-frequency",
807 					&plen);
808 		if (prop && plen == sizeof(u32))
809 			clock = *prop;
810 	}
811 
812 	if (match->data) {
813 		const struct mpc_i2c_data *data = match->data;
814 		data->setup(op->dev.of_node, i2c, clock);
815 	} else {
816 		/* Backwards compatibility */
817 		if (of_get_property(op->dev.of_node, "dfsrr", NULL))
818 			mpc_i2c_setup_8xxx(op->dev.of_node, i2c, clock);
819 	}
820 
821 	prop = of_get_property(op->dev.of_node, "fsl,timeout", &plen);
822 	if (prop && plen == sizeof(u32)) {
823 		mpc_ops.timeout = *prop * HZ / 1000000;
824 		if (mpc_ops.timeout < 5)
825 			mpc_ops.timeout = 5;
826 	}
827 	dev_info(i2c->dev, "timeout %u us\n", mpc_ops.timeout * 1000000 / HZ);
828 
829 	platform_set_drvdata(op, i2c);
830 	if (of_property_read_bool(op->dev.of_node, "fsl,i2c-erratum-a004447"))
831 		i2c->has_errata_A004447 = true;
832 
833 	i2c->adap = mpc_ops;
834 	of_address_to_resource(op->dev.of_node, 0, &res);
835 	scnprintf(i2c->adap.name, sizeof(i2c->adap.name),
836 		  "MPC adapter at 0x%llx", (unsigned long long)res.start);
837 	i2c_set_adapdata(&i2c->adap, i2c);
838 	i2c->adap.dev.parent = &op->dev;
839 	i2c->adap.dev.of_node = of_node_get(op->dev.of_node);
840 	i2c->adap.bus_recovery_info = &fsl_i2c_recovery_info;
841 
842 	result = i2c_add_adapter(&i2c->adap);
843 	if (result < 0)
844 		goto fail_add;
845 
846 	return result;
847 
848  fail_add:
849 	if (i2c->clk_per)
850 		clk_disable_unprepare(i2c->clk_per);
851 	free_irq(i2c->irq, i2c);
852  fail_request:
853 	irq_dispose_mapping(i2c->irq);
854 	iounmap(i2c->base);
855  fail_map:
856 	kfree(i2c);
857 	return result;
858 };
859 
fsl_i2c_remove(struct platform_device * op)860 static int fsl_i2c_remove(struct platform_device *op)
861 {
862 	struct mpc_i2c *i2c = platform_get_drvdata(op);
863 
864 	i2c_del_adapter(&i2c->adap);
865 
866 	if (i2c->clk_per)
867 		clk_disable_unprepare(i2c->clk_per);
868 
869 	if (i2c->irq)
870 		free_irq(i2c->irq, i2c);
871 
872 	irq_dispose_mapping(i2c->irq);
873 	iounmap(i2c->base);
874 	kfree(i2c);
875 	return 0;
876 };
877 
878 #ifdef CONFIG_PM_SLEEP
mpc_i2c_suspend(struct device * dev)879 static int mpc_i2c_suspend(struct device *dev)
880 {
881 	struct mpc_i2c *i2c = dev_get_drvdata(dev);
882 
883 	i2c->fdr = readb(i2c->base + MPC_I2C_FDR);
884 	i2c->dfsrr = readb(i2c->base + MPC_I2C_DFSRR);
885 
886 	return 0;
887 }
888 
mpc_i2c_resume(struct device * dev)889 static int mpc_i2c_resume(struct device *dev)
890 {
891 	struct mpc_i2c *i2c = dev_get_drvdata(dev);
892 
893 	writeb(i2c->fdr, i2c->base + MPC_I2C_FDR);
894 	writeb(i2c->dfsrr, i2c->base + MPC_I2C_DFSRR);
895 
896 	return 0;
897 }
898 
899 static SIMPLE_DEV_PM_OPS(mpc_i2c_pm_ops, mpc_i2c_suspend, mpc_i2c_resume);
900 #define MPC_I2C_PM_OPS	(&mpc_i2c_pm_ops)
901 #else
902 #define MPC_I2C_PM_OPS	NULL
903 #endif
904 
905 static const struct mpc_i2c_data mpc_i2c_data_512x = {
906 	.setup = mpc_i2c_setup_512x,
907 };
908 
909 static const struct mpc_i2c_data mpc_i2c_data_52xx = {
910 	.setup = mpc_i2c_setup_52xx,
911 };
912 
913 static const struct mpc_i2c_data mpc_i2c_data_8313 = {
914 	.setup = mpc_i2c_setup_8xxx,
915 };
916 
917 static const struct mpc_i2c_data mpc_i2c_data_8543 = {
918 	.setup = mpc_i2c_setup_8xxx,
919 };
920 
921 static const struct mpc_i2c_data mpc_i2c_data_8544 = {
922 	.setup = mpc_i2c_setup_8xxx,
923 };
924 
925 static const struct of_device_id mpc_i2c_of_match[] = {
926 	{.compatible = "mpc5200-i2c", .data = &mpc_i2c_data_52xx, },
927 	{.compatible = "fsl,mpc5200b-i2c", .data = &mpc_i2c_data_52xx, },
928 	{.compatible = "fsl,mpc5200-i2c", .data = &mpc_i2c_data_52xx, },
929 	{.compatible = "fsl,mpc5121-i2c", .data = &mpc_i2c_data_512x, },
930 	{.compatible = "fsl,mpc8313-i2c", .data = &mpc_i2c_data_8313, },
931 	{.compatible = "fsl,mpc8543-i2c", .data = &mpc_i2c_data_8543, },
932 	{.compatible = "fsl,mpc8544-i2c", .data = &mpc_i2c_data_8544, },
933 	/* Backward compatibility */
934 	{.compatible = "fsl-i2c", },
935 	{},
936 };
937 MODULE_DEVICE_TABLE(of, mpc_i2c_of_match);
938 
939 /* Structure for a device driver */
940 static struct platform_driver mpc_i2c_driver = {
941 	.probe		= fsl_i2c_probe,
942 	.remove		= fsl_i2c_remove,
943 	.driver = {
944 		.name = DRV_NAME,
945 		.of_match_table = mpc_i2c_of_match,
946 		.pm = MPC_I2C_PM_OPS,
947 	},
948 };
949 
950 module_platform_driver(mpc_i2c_driver);
951 
952 MODULE_AUTHOR("Adrian Cox <adrian@humboldt.co.uk>");
953 MODULE_DESCRIPTION("I2C-Bus adapter for MPC107 bridge and "
954 		   "MPC824x/83xx/85xx/86xx/512x/52xx processors");
955 MODULE_LICENSE("GPL");
956