1 /*
2 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
3 * Copyright (c) 2012 Bosch Sensortec GmbH
4 * Copyright (c) 2012 Unixphere AB
5 * Copyright (c) 2014 Intel Corporation
6 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
7 *
8 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * Datasheet:
15 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
16 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
17 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
18 */
19
20 #define pr_fmt(fmt) "bmp280: " fmt
21
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/delay.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h> /* For irq_get_irq_data() */
32 #include <linux/completion.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/random.h>
35
36 #include "bmp280.h"
37
38 /*
39 * These enums are used for indexing into the array of calibration
40 * coefficients for BMP180.
41 */
42 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
43
44 struct bmp180_calib {
45 s16 AC1;
46 s16 AC2;
47 s16 AC3;
48 u16 AC4;
49 u16 AC5;
50 u16 AC6;
51 s16 B1;
52 s16 B2;
53 s16 MB;
54 s16 MC;
55 s16 MD;
56 };
57
58 /* See datasheet Section 4.2.2. */
59 struct bmp280_calib {
60 u16 T1;
61 s16 T2;
62 s16 T3;
63 u16 P1;
64 s16 P2;
65 s16 P3;
66 s16 P4;
67 s16 P5;
68 s16 P6;
69 s16 P7;
70 s16 P8;
71 s16 P9;
72 u8 H1;
73 s16 H2;
74 u8 H3;
75 s16 H4;
76 s16 H5;
77 s8 H6;
78 };
79
80 struct bmp280_data {
81 struct device *dev;
82 struct mutex lock;
83 struct regmap *regmap;
84 struct completion done;
85 bool use_eoc;
86 const struct bmp280_chip_info *chip_info;
87 union {
88 struct bmp180_calib bmp180;
89 struct bmp280_calib bmp280;
90 } calib;
91 struct regulator *vddd;
92 struct regulator *vdda;
93 unsigned int start_up_time; /* in microseconds */
94
95 /* log of base 2 of oversampling rate */
96 u8 oversampling_press;
97 u8 oversampling_temp;
98 u8 oversampling_humid;
99
100 /*
101 * Carryover value from temperature conversion, used in pressure
102 * calculation.
103 */
104 s32 t_fine;
105 };
106
107 struct bmp280_chip_info {
108 const int *oversampling_temp_avail;
109 int num_oversampling_temp_avail;
110
111 const int *oversampling_press_avail;
112 int num_oversampling_press_avail;
113
114 const int *oversampling_humid_avail;
115 int num_oversampling_humid_avail;
116
117 int (*chip_config)(struct bmp280_data *);
118 int (*read_temp)(struct bmp280_data *, int *);
119 int (*read_press)(struct bmp280_data *, int *, int *);
120 int (*read_humid)(struct bmp280_data *, int *, int *);
121 };
122
123 /*
124 * These enums are used for indexing into the array of compensation
125 * parameters for BMP280.
126 */
127 enum { T1, T2, T3 };
128 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
129
130 static const struct iio_chan_spec bmp280_channels[] = {
131 {
132 .type = IIO_PRESSURE,
133 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
134 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
135 },
136 {
137 .type = IIO_TEMP,
138 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
139 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
140 },
141 {
142 .type = IIO_HUMIDITYRELATIVE,
143 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
144 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
145 },
146 };
147
bmp280_read_calib(struct bmp280_data * data,struct bmp280_calib * calib,unsigned int chip)148 static int bmp280_read_calib(struct bmp280_data *data,
149 struct bmp280_calib *calib,
150 unsigned int chip)
151 {
152 int ret;
153 unsigned int tmp;
154 struct device *dev = data->dev;
155 __le16 t_buf[BMP280_COMP_TEMP_REG_COUNT / 2];
156 __le16 p_buf[BMP280_COMP_PRESS_REG_COUNT / 2];
157
158 /* Read temperature calibration values. */
159 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
160 t_buf, BMP280_COMP_TEMP_REG_COUNT);
161 if (ret < 0) {
162 dev_err(data->dev,
163 "failed to read temperature calibration parameters\n");
164 return ret;
165 }
166
167 calib->T1 = le16_to_cpu(t_buf[T1]);
168 calib->T2 = le16_to_cpu(t_buf[T2]);
169 calib->T3 = le16_to_cpu(t_buf[T3]);
170
171 /* Read pressure calibration values. */
172 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
173 p_buf, BMP280_COMP_PRESS_REG_COUNT);
174 if (ret < 0) {
175 dev_err(data->dev,
176 "failed to read pressure calibration parameters\n");
177 return ret;
178 }
179
180 calib->P1 = le16_to_cpu(p_buf[P1]);
181 calib->P2 = le16_to_cpu(p_buf[P2]);
182 calib->P3 = le16_to_cpu(p_buf[P3]);
183 calib->P4 = le16_to_cpu(p_buf[P4]);
184 calib->P5 = le16_to_cpu(p_buf[P5]);
185 calib->P6 = le16_to_cpu(p_buf[P6]);
186 calib->P7 = le16_to_cpu(p_buf[P7]);
187 calib->P8 = le16_to_cpu(p_buf[P8]);
188 calib->P9 = le16_to_cpu(p_buf[P9]);
189
190 /*
191 * Read humidity calibration values.
192 * Due to some odd register addressing we cannot just
193 * do a big bulk read. Instead, we have to read each Hx
194 * value separately and sometimes do some bit shifting...
195 * Humidity data is only available on BME280.
196 */
197 if (chip != BME280_CHIP_ID)
198 return 0;
199
200 ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
201 if (ret < 0) {
202 dev_err(dev, "failed to read H1 comp value\n");
203 return ret;
204 }
205 calib->H1 = tmp;
206
207 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
208 if (ret < 0) {
209 dev_err(dev, "failed to read H2 comp value\n");
210 return ret;
211 }
212 calib->H2 = sign_extend32(le16_to_cpu(tmp), 15);
213
214 ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
215 if (ret < 0) {
216 dev_err(dev, "failed to read H3 comp value\n");
217 return ret;
218 }
219 calib->H3 = tmp;
220
221 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
222 if (ret < 0) {
223 dev_err(dev, "failed to read H4 comp value\n");
224 return ret;
225 }
226 calib->H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
227 (be16_to_cpu(tmp) & 0xf), 11);
228
229 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
230 if (ret < 0) {
231 dev_err(dev, "failed to read H5 comp value\n");
232 return ret;
233 }
234 calib->H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
235
236 ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
237 if (ret < 0) {
238 dev_err(dev, "failed to read H6 comp value\n");
239 return ret;
240 }
241 calib->H6 = sign_extend32(tmp, 7);
242
243 return 0;
244 }
245 /*
246 * Returns humidity in percent, resolution is 0.01 percent. Output value of
247 * "47445" represents 47445/1024 = 46.333 %RH.
248 *
249 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
250 */
bmp280_compensate_humidity(struct bmp280_data * data,s32 adc_humidity)251 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
252 s32 adc_humidity)
253 {
254 s32 var;
255 struct bmp280_calib *calib = &data->calib.bmp280;
256
257 var = ((s32)data->t_fine) - (s32)76800;
258 var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
259 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
260 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
261 + (s32)2097152) * calib->H2 + 8192) >> 14);
262 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
263
264 var = clamp_val(var, 0, 419430400);
265
266 return var >> 12;
267 };
268
269 /*
270 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of
271 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global
272 * value.
273 *
274 * Taken from datasheet, Section 3.11.3, "Compensation formula".
275 */
bmp280_compensate_temp(struct bmp280_data * data,s32 adc_temp)276 static s32 bmp280_compensate_temp(struct bmp280_data *data,
277 s32 adc_temp)
278 {
279 s32 var1, var2;
280 struct bmp280_calib *calib = &data->calib.bmp280;
281
282 var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
283 ((s32)calib->T2)) >> 11;
284 var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
285 ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
286 ((s32)calib->T3)) >> 14;
287 data->t_fine = var1 + var2;
288
289 return (data->t_fine * 5 + 128) >> 8;
290 }
291
292 /*
293 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
294 * integer bits and 8 fractional bits). Output value of "24674867"
295 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
296 *
297 * Taken from datasheet, Section 3.11.3, "Compensation formula".
298 */
bmp280_compensate_press(struct bmp280_data * data,s32 adc_press)299 static u32 bmp280_compensate_press(struct bmp280_data *data,
300 s32 adc_press)
301 {
302 s64 var1, var2, p;
303 struct bmp280_calib *calib = &data->calib.bmp280;
304
305 var1 = ((s64)data->t_fine) - 128000;
306 var2 = var1 * var1 * (s64)calib->P6;
307 var2 += (var1 * (s64)calib->P5) << 17;
308 var2 += ((s64)calib->P4) << 35;
309 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
310 ((var1 * (s64)calib->P2) << 12);
311 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
312
313 if (var1 == 0)
314 return 0;
315
316 p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
317 p = div64_s64(p, var1);
318 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
319 var2 = ((s64)(calib->P8) * p) >> 19;
320 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
321
322 return (u32)p;
323 }
324
bmp280_read_temp(struct bmp280_data * data,int * val)325 static int bmp280_read_temp(struct bmp280_data *data,
326 int *val)
327 {
328 int ret;
329 __be32 tmp = 0;
330 s32 adc_temp, comp_temp;
331
332 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
333 (u8 *) &tmp, 3);
334 if (ret < 0) {
335 dev_err(data->dev, "failed to read temperature\n");
336 return ret;
337 }
338
339 adc_temp = be32_to_cpu(tmp) >> 12;
340 if (adc_temp == BMP280_TEMP_SKIPPED) {
341 /* reading was skipped */
342 dev_err(data->dev, "reading temperature skipped\n");
343 return -EIO;
344 }
345 comp_temp = bmp280_compensate_temp(data, adc_temp);
346
347 /*
348 * val might be NULL if we're called by the read_press routine,
349 * who only cares about the carry over t_fine value.
350 */
351 if (val) {
352 *val = comp_temp * 10;
353 return IIO_VAL_INT;
354 }
355
356 return 0;
357 }
358
bmp280_read_press(struct bmp280_data * data,int * val,int * val2)359 static int bmp280_read_press(struct bmp280_data *data,
360 int *val, int *val2)
361 {
362 int ret;
363 __be32 tmp = 0;
364 s32 adc_press;
365 u32 comp_press;
366
367 /* Read and compensate temperature so we get a reading of t_fine. */
368 ret = bmp280_read_temp(data, NULL);
369 if (ret < 0)
370 return ret;
371
372 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
373 (u8 *) &tmp, 3);
374 if (ret < 0) {
375 dev_err(data->dev, "failed to read pressure\n");
376 return ret;
377 }
378
379 adc_press = be32_to_cpu(tmp) >> 12;
380 if (adc_press == BMP280_PRESS_SKIPPED) {
381 /* reading was skipped */
382 dev_err(data->dev, "reading pressure skipped\n");
383 return -EIO;
384 }
385 comp_press = bmp280_compensate_press(data, adc_press);
386
387 *val = comp_press;
388 *val2 = 256000;
389
390 return IIO_VAL_FRACTIONAL;
391 }
392
bmp280_read_humid(struct bmp280_data * data,int * val,int * val2)393 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
394 {
395 int ret;
396 __be16 tmp = 0;
397 s32 adc_humidity;
398 u32 comp_humidity;
399
400 /* Read and compensate temperature so we get a reading of t_fine. */
401 ret = bmp280_read_temp(data, NULL);
402 if (ret < 0)
403 return ret;
404
405 ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
406 (u8 *) &tmp, 2);
407 if (ret < 0) {
408 dev_err(data->dev, "failed to read humidity\n");
409 return ret;
410 }
411
412 adc_humidity = be16_to_cpu(tmp);
413 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
414 /* reading was skipped */
415 dev_err(data->dev, "reading humidity skipped\n");
416 return -EIO;
417 }
418 comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
419
420 *val = comp_humidity * 1000 / 1024;
421
422 return IIO_VAL_INT;
423 }
424
bmp280_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)425 static int bmp280_read_raw(struct iio_dev *indio_dev,
426 struct iio_chan_spec const *chan,
427 int *val, int *val2, long mask)
428 {
429 int ret;
430 struct bmp280_data *data = iio_priv(indio_dev);
431
432 pm_runtime_get_sync(data->dev);
433 mutex_lock(&data->lock);
434
435 switch (mask) {
436 case IIO_CHAN_INFO_PROCESSED:
437 switch (chan->type) {
438 case IIO_HUMIDITYRELATIVE:
439 ret = data->chip_info->read_humid(data, val, val2);
440 break;
441 case IIO_PRESSURE:
442 ret = data->chip_info->read_press(data, val, val2);
443 break;
444 case IIO_TEMP:
445 ret = data->chip_info->read_temp(data, val);
446 break;
447 default:
448 ret = -EINVAL;
449 break;
450 }
451 break;
452 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
453 switch (chan->type) {
454 case IIO_HUMIDITYRELATIVE:
455 *val = 1 << data->oversampling_humid;
456 ret = IIO_VAL_INT;
457 break;
458 case IIO_PRESSURE:
459 *val = 1 << data->oversampling_press;
460 ret = IIO_VAL_INT;
461 break;
462 case IIO_TEMP:
463 *val = 1 << data->oversampling_temp;
464 ret = IIO_VAL_INT;
465 break;
466 default:
467 ret = -EINVAL;
468 break;
469 }
470 break;
471 default:
472 ret = -EINVAL;
473 break;
474 }
475
476 mutex_unlock(&data->lock);
477 pm_runtime_mark_last_busy(data->dev);
478 pm_runtime_put_autosuspend(data->dev);
479
480 return ret;
481 }
482
bmp280_write_oversampling_ratio_humid(struct bmp280_data * data,int val)483 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
484 int val)
485 {
486 int i;
487 const int *avail = data->chip_info->oversampling_humid_avail;
488 const int n = data->chip_info->num_oversampling_humid_avail;
489
490 for (i = 0; i < n; i++) {
491 if (avail[i] == val) {
492 data->oversampling_humid = ilog2(val);
493
494 return data->chip_info->chip_config(data);
495 }
496 }
497 return -EINVAL;
498 }
499
bmp280_write_oversampling_ratio_temp(struct bmp280_data * data,int val)500 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
501 int val)
502 {
503 int i;
504 const int *avail = data->chip_info->oversampling_temp_avail;
505 const int n = data->chip_info->num_oversampling_temp_avail;
506
507 for (i = 0; i < n; i++) {
508 if (avail[i] == val) {
509 data->oversampling_temp = ilog2(val);
510
511 return data->chip_info->chip_config(data);
512 }
513 }
514 return -EINVAL;
515 }
516
bmp280_write_oversampling_ratio_press(struct bmp280_data * data,int val)517 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
518 int val)
519 {
520 int i;
521 const int *avail = data->chip_info->oversampling_press_avail;
522 const int n = data->chip_info->num_oversampling_press_avail;
523
524 for (i = 0; i < n; i++) {
525 if (avail[i] == val) {
526 data->oversampling_press = ilog2(val);
527
528 return data->chip_info->chip_config(data);
529 }
530 }
531 return -EINVAL;
532 }
533
bmp280_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)534 static int bmp280_write_raw(struct iio_dev *indio_dev,
535 struct iio_chan_spec const *chan,
536 int val, int val2, long mask)
537 {
538 int ret = 0;
539 struct bmp280_data *data = iio_priv(indio_dev);
540
541 switch (mask) {
542 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
543 pm_runtime_get_sync(data->dev);
544 mutex_lock(&data->lock);
545 switch (chan->type) {
546 case IIO_HUMIDITYRELATIVE:
547 ret = bmp280_write_oversampling_ratio_humid(data, val);
548 break;
549 case IIO_PRESSURE:
550 ret = bmp280_write_oversampling_ratio_press(data, val);
551 break;
552 case IIO_TEMP:
553 ret = bmp280_write_oversampling_ratio_temp(data, val);
554 break;
555 default:
556 ret = -EINVAL;
557 break;
558 }
559 mutex_unlock(&data->lock);
560 pm_runtime_mark_last_busy(data->dev);
561 pm_runtime_put_autosuspend(data->dev);
562 break;
563 default:
564 return -EINVAL;
565 }
566
567 return ret;
568 }
569
bmp280_show_avail(char * buf,const int * vals,const int n)570 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
571 {
572 size_t len = 0;
573 int i;
574
575 for (i = 0; i < n; i++)
576 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
577
578 buf[len - 1] = '\n';
579
580 return len;
581 }
582
bmp280_show_temp_oversampling_avail(struct device * dev,struct device_attribute * attr,char * buf)583 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
584 struct device_attribute *attr, char *buf)
585 {
586 struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
587
588 return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
589 data->chip_info->num_oversampling_temp_avail);
590 }
591
bmp280_show_press_oversampling_avail(struct device * dev,struct device_attribute * attr,char * buf)592 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
593 struct device_attribute *attr, char *buf)
594 {
595 struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
596
597 return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
598 data->chip_info->num_oversampling_press_avail);
599 }
600
601 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
602 S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
603
604 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
605 S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
606
607 static struct attribute *bmp280_attributes[] = {
608 &iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
609 &iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
610 NULL,
611 };
612
613 static const struct attribute_group bmp280_attrs_group = {
614 .attrs = bmp280_attributes,
615 };
616
617 static const struct iio_info bmp280_info = {
618 .read_raw = &bmp280_read_raw,
619 .write_raw = &bmp280_write_raw,
620 .attrs = &bmp280_attrs_group,
621 };
622
bmp280_chip_config(struct bmp280_data * data)623 static int bmp280_chip_config(struct bmp280_data *data)
624 {
625 int ret;
626 u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
627 BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
628
629 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
630 BMP280_OSRS_TEMP_MASK |
631 BMP280_OSRS_PRESS_MASK |
632 BMP280_MODE_MASK,
633 osrs | BMP280_MODE_NORMAL);
634 if (ret < 0) {
635 dev_err(data->dev,
636 "failed to write ctrl_meas register\n");
637 return ret;
638 }
639
640 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
641 BMP280_FILTER_MASK,
642 BMP280_FILTER_4X);
643 if (ret < 0) {
644 dev_err(data->dev,
645 "failed to write config register\n");
646 return ret;
647 }
648
649 return ret;
650 }
651
652 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
653
654 static const struct bmp280_chip_info bmp280_chip_info = {
655 .oversampling_temp_avail = bmp280_oversampling_avail,
656 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
657
658 .oversampling_press_avail = bmp280_oversampling_avail,
659 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
660
661 .chip_config = bmp280_chip_config,
662 .read_temp = bmp280_read_temp,
663 .read_press = bmp280_read_press,
664 };
665
bme280_chip_config(struct bmp280_data * data)666 static int bme280_chip_config(struct bmp280_data *data)
667 {
668 int ret;
669 u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
670
671 /*
672 * Oversampling of humidity must be set before oversampling of
673 * temperature/pressure is set to become effective.
674 */
675 ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
676 BMP280_OSRS_HUMIDITY_MASK, osrs);
677
678 if (ret < 0)
679 return ret;
680
681 return bmp280_chip_config(data);
682 }
683
684 static const struct bmp280_chip_info bme280_chip_info = {
685 .oversampling_temp_avail = bmp280_oversampling_avail,
686 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
687
688 .oversampling_press_avail = bmp280_oversampling_avail,
689 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
690
691 .oversampling_humid_avail = bmp280_oversampling_avail,
692 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
693
694 .chip_config = bme280_chip_config,
695 .read_temp = bmp280_read_temp,
696 .read_press = bmp280_read_press,
697 .read_humid = bmp280_read_humid,
698 };
699
bmp180_measure(struct bmp280_data * data,u8 ctrl_meas)700 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
701 {
702 int ret;
703 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
704 unsigned int delay_us;
705 unsigned int ctrl;
706
707 if (data->use_eoc)
708 reinit_completion(&data->done);
709
710 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
711 if (ret)
712 return ret;
713
714 if (data->use_eoc) {
715 /*
716 * If we have a completion interrupt, use it, wait up to
717 * 100ms. The longest conversion time listed is 76.5 ms for
718 * advanced resolution mode.
719 */
720 ret = wait_for_completion_timeout(&data->done,
721 1 + msecs_to_jiffies(100));
722 if (!ret)
723 dev_err(data->dev, "timeout waiting for completion\n");
724 } else {
725 if (ctrl_meas == BMP180_MEAS_TEMP)
726 delay_us = 4500;
727 else
728 delay_us =
729 conversion_time_max[data->oversampling_press];
730
731 usleep_range(delay_us, delay_us + 1000);
732 }
733
734 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
735 if (ret)
736 return ret;
737
738 /* The value of this bit reset to "0" after conversion is complete */
739 if (ctrl & BMP180_MEAS_SCO)
740 return -EIO;
741
742 return 0;
743 }
744
bmp180_read_adc_temp(struct bmp280_data * data,int * val)745 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
746 {
747 int ret;
748 __be16 tmp = 0;
749
750 ret = bmp180_measure(data, BMP180_MEAS_TEMP);
751 if (ret)
752 return ret;
753
754 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
755 if (ret)
756 return ret;
757
758 *val = be16_to_cpu(tmp);
759
760 return 0;
761 }
762
bmp180_read_calib(struct bmp280_data * data,struct bmp180_calib * calib)763 static int bmp180_read_calib(struct bmp280_data *data,
764 struct bmp180_calib *calib)
765 {
766 int ret;
767 int i;
768 __be16 buf[BMP180_REG_CALIB_COUNT / 2];
769
770 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
771 sizeof(buf));
772
773 if (ret < 0)
774 return ret;
775
776 /* None of the words has the value 0 or 0xFFFF */
777 for (i = 0; i < ARRAY_SIZE(buf); i++) {
778 if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
779 return -EIO;
780 }
781
782 /* Toss the calibration data into the entropy pool */
783 add_device_randomness(buf, sizeof(buf));
784
785 calib->AC1 = be16_to_cpu(buf[AC1]);
786 calib->AC2 = be16_to_cpu(buf[AC2]);
787 calib->AC3 = be16_to_cpu(buf[AC3]);
788 calib->AC4 = be16_to_cpu(buf[AC4]);
789 calib->AC5 = be16_to_cpu(buf[AC5]);
790 calib->AC6 = be16_to_cpu(buf[AC6]);
791 calib->B1 = be16_to_cpu(buf[B1]);
792 calib->B2 = be16_to_cpu(buf[B2]);
793 calib->MB = be16_to_cpu(buf[MB]);
794 calib->MC = be16_to_cpu(buf[MC]);
795 calib->MD = be16_to_cpu(buf[MD]);
796
797 return 0;
798 }
799
800 /*
801 * Returns temperature in DegC, resolution is 0.1 DegC.
802 * t_fine carries fine temperature as global value.
803 *
804 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
805 */
bmp180_compensate_temp(struct bmp280_data * data,s32 adc_temp)806 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
807 {
808 s32 x1, x2;
809 struct bmp180_calib *calib = &data->calib.bmp180;
810
811 x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
812 x2 = (calib->MC << 11) / (x1 + calib->MD);
813 data->t_fine = x1 + x2;
814
815 return (data->t_fine + 8) >> 4;
816 }
817
bmp180_read_temp(struct bmp280_data * data,int * val)818 static int bmp180_read_temp(struct bmp280_data *data, int *val)
819 {
820 int ret;
821 s32 adc_temp, comp_temp;
822
823 ret = bmp180_read_adc_temp(data, &adc_temp);
824 if (ret)
825 return ret;
826
827 comp_temp = bmp180_compensate_temp(data, adc_temp);
828
829 /*
830 * val might be NULL if we're called by the read_press routine,
831 * who only cares about the carry over t_fine value.
832 */
833 if (val) {
834 *val = comp_temp * 100;
835 return IIO_VAL_INT;
836 }
837
838 return 0;
839 }
840
bmp180_read_adc_press(struct bmp280_data * data,int * val)841 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
842 {
843 int ret;
844 __be32 tmp = 0;
845 u8 oss = data->oversampling_press;
846
847 ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
848 if (ret)
849 return ret;
850
851 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
852 if (ret)
853 return ret;
854
855 *val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
856
857 return 0;
858 }
859
860 /*
861 * Returns pressure in Pa, resolution is 1 Pa.
862 *
863 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
864 */
bmp180_compensate_press(struct bmp280_data * data,s32 adc_press)865 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
866 {
867 s32 x1, x2, x3, p;
868 s32 b3, b6;
869 u32 b4, b7;
870 s32 oss = data->oversampling_press;
871 struct bmp180_calib *calib = &data->calib.bmp180;
872
873 b6 = data->t_fine - 4000;
874 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
875 x2 = calib->AC2 * b6 >> 11;
876 x3 = x1 + x2;
877 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
878 x1 = calib->AC3 * b6 >> 13;
879 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
880 x3 = (x1 + x2 + 2) >> 2;
881 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
882 b7 = ((u32)adc_press - b3) * (50000 >> oss);
883 if (b7 < 0x80000000)
884 p = (b7 * 2) / b4;
885 else
886 p = (b7 / b4) * 2;
887
888 x1 = (p >> 8) * (p >> 8);
889 x1 = (x1 * 3038) >> 16;
890 x2 = (-7357 * p) >> 16;
891
892 return p + ((x1 + x2 + 3791) >> 4);
893 }
894
bmp180_read_press(struct bmp280_data * data,int * val,int * val2)895 static int bmp180_read_press(struct bmp280_data *data,
896 int *val, int *val2)
897 {
898 int ret;
899 s32 adc_press;
900 u32 comp_press;
901
902 /* Read and compensate temperature so we get a reading of t_fine. */
903 ret = bmp180_read_temp(data, NULL);
904 if (ret)
905 return ret;
906
907 ret = bmp180_read_adc_press(data, &adc_press);
908 if (ret)
909 return ret;
910
911 comp_press = bmp180_compensate_press(data, adc_press);
912
913 *val = comp_press;
914 *val2 = 1000;
915
916 return IIO_VAL_FRACTIONAL;
917 }
918
bmp180_chip_config(struct bmp280_data * data)919 static int bmp180_chip_config(struct bmp280_data *data)
920 {
921 return 0;
922 }
923
924 static const int bmp180_oversampling_temp_avail[] = { 1 };
925 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
926
927 static const struct bmp280_chip_info bmp180_chip_info = {
928 .oversampling_temp_avail = bmp180_oversampling_temp_avail,
929 .num_oversampling_temp_avail =
930 ARRAY_SIZE(bmp180_oversampling_temp_avail),
931
932 .oversampling_press_avail = bmp180_oversampling_press_avail,
933 .num_oversampling_press_avail =
934 ARRAY_SIZE(bmp180_oversampling_press_avail),
935
936 .chip_config = bmp180_chip_config,
937 .read_temp = bmp180_read_temp,
938 .read_press = bmp180_read_press,
939 };
940
bmp085_eoc_irq(int irq,void * d)941 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
942 {
943 struct bmp280_data *data = d;
944
945 complete(&data->done);
946
947 return IRQ_HANDLED;
948 }
949
bmp085_fetch_eoc_irq(struct device * dev,const char * name,int irq,struct bmp280_data * data)950 static int bmp085_fetch_eoc_irq(struct device *dev,
951 const char *name,
952 int irq,
953 struct bmp280_data *data)
954 {
955 unsigned long irq_trig;
956 int ret;
957
958 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
959 if (irq_trig != IRQF_TRIGGER_RISING) {
960 dev_err(dev, "non-rising trigger given for EOC interrupt, "
961 "trying to enforce it\n");
962 irq_trig = IRQF_TRIGGER_RISING;
963 }
964
965 init_completion(&data->done);
966
967 ret = devm_request_threaded_irq(dev,
968 irq,
969 bmp085_eoc_irq,
970 NULL,
971 irq_trig,
972 name,
973 data);
974 if (ret) {
975 /* Bail out without IRQ but keep the driver in place */
976 dev_err(dev, "unable to request DRDY IRQ\n");
977 return 0;
978 }
979
980 data->use_eoc = true;
981 return 0;
982 }
983
bmp280_common_probe(struct device * dev,struct regmap * regmap,unsigned int chip,const char * name,int irq)984 int bmp280_common_probe(struct device *dev,
985 struct regmap *regmap,
986 unsigned int chip,
987 const char *name,
988 int irq)
989 {
990 int ret;
991 struct iio_dev *indio_dev;
992 struct bmp280_data *data;
993 unsigned int chip_id;
994 struct gpio_desc *gpiod;
995
996 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
997 if (!indio_dev)
998 return -ENOMEM;
999
1000 data = iio_priv(indio_dev);
1001 mutex_init(&data->lock);
1002 data->dev = dev;
1003
1004 indio_dev->dev.parent = dev;
1005 indio_dev->name = name;
1006 indio_dev->channels = bmp280_channels;
1007 indio_dev->info = &bmp280_info;
1008 indio_dev->modes = INDIO_DIRECT_MODE;
1009
1010 switch (chip) {
1011 case BMP180_CHIP_ID:
1012 indio_dev->num_channels = 2;
1013 data->chip_info = &bmp180_chip_info;
1014 data->oversampling_press = ilog2(8);
1015 data->oversampling_temp = ilog2(1);
1016 data->start_up_time = 10000;
1017 break;
1018 case BMP280_CHIP_ID:
1019 indio_dev->num_channels = 2;
1020 data->chip_info = &bmp280_chip_info;
1021 data->oversampling_press = ilog2(16);
1022 data->oversampling_temp = ilog2(2);
1023 data->start_up_time = 2000;
1024 break;
1025 case BME280_CHIP_ID:
1026 indio_dev->num_channels = 3;
1027 data->chip_info = &bme280_chip_info;
1028 data->oversampling_press = ilog2(16);
1029 data->oversampling_humid = ilog2(16);
1030 data->oversampling_temp = ilog2(2);
1031 data->start_up_time = 2000;
1032 break;
1033 default:
1034 return -EINVAL;
1035 }
1036
1037 /* Bring up regulators */
1038 data->vddd = devm_regulator_get(dev, "vddd");
1039 if (IS_ERR(data->vddd)) {
1040 dev_err(dev, "failed to get VDDD regulator\n");
1041 return PTR_ERR(data->vddd);
1042 }
1043 ret = regulator_enable(data->vddd);
1044 if (ret) {
1045 dev_err(dev, "failed to enable VDDD regulator\n");
1046 return ret;
1047 }
1048 data->vdda = devm_regulator_get(dev, "vdda");
1049 if (IS_ERR(data->vdda)) {
1050 dev_err(dev, "failed to get VDDA regulator\n");
1051 ret = PTR_ERR(data->vdda);
1052 goto out_disable_vddd;
1053 }
1054 ret = regulator_enable(data->vdda);
1055 if (ret) {
1056 dev_err(dev, "failed to enable VDDA regulator\n");
1057 goto out_disable_vddd;
1058 }
1059 /* Wait to make sure we started up properly */
1060 usleep_range(data->start_up_time, data->start_up_time + 100);
1061
1062 /* Bring chip out of reset if there is an assigned GPIO line */
1063 gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
1064 /* Deassert the signal */
1065 if (!IS_ERR(gpiod)) {
1066 dev_info(dev, "release reset\n");
1067 gpiod_set_value(gpiod, 0);
1068 }
1069
1070 data->regmap = regmap;
1071 ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
1072 if (ret < 0)
1073 goto out_disable_vdda;
1074 if (chip_id != chip) {
1075 dev_err(dev, "bad chip id: expected %x got %x\n",
1076 chip, chip_id);
1077 ret = -EINVAL;
1078 goto out_disable_vdda;
1079 }
1080
1081 ret = data->chip_info->chip_config(data);
1082 if (ret < 0)
1083 goto out_disable_vdda;
1084
1085 dev_set_drvdata(dev, indio_dev);
1086
1087 /*
1088 * Some chips have calibration parameters "programmed into the devices'
1089 * non-volatile memory during production". Let's read them out at probe
1090 * time once. They will not change.
1091 */
1092 if (chip_id == BMP180_CHIP_ID) {
1093 ret = bmp180_read_calib(data, &data->calib.bmp180);
1094 if (ret < 0) {
1095 dev_err(data->dev,
1096 "failed to read calibration coefficients\n");
1097 goto out_disable_vdda;
1098 }
1099 } else if (chip_id == BMP280_CHIP_ID || chip_id == BME280_CHIP_ID) {
1100 ret = bmp280_read_calib(data, &data->calib.bmp280, chip_id);
1101 if (ret < 0) {
1102 dev_err(data->dev,
1103 "failed to read calibration coefficients\n");
1104 goto out_disable_vdda;
1105 }
1106 }
1107
1108 /*
1109 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1110 * however as it happens, the BMP085 shares the chip ID of BMP180
1111 * so we look for an IRQ if we have that.
1112 */
1113 if (irq > 0 || (chip_id == BMP180_CHIP_ID)) {
1114 ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1115 if (ret)
1116 goto out_disable_vdda;
1117 }
1118
1119 /* Enable runtime PM */
1120 pm_runtime_get_noresume(dev);
1121 pm_runtime_set_active(dev);
1122 pm_runtime_enable(dev);
1123 /*
1124 * Set autosuspend to two orders of magnitude larger than the
1125 * start-up time.
1126 */
1127 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1128 pm_runtime_use_autosuspend(dev);
1129 pm_runtime_put(dev);
1130
1131 ret = iio_device_register(indio_dev);
1132 if (ret)
1133 goto out_runtime_pm_disable;
1134
1135
1136 return 0;
1137
1138 out_runtime_pm_disable:
1139 pm_runtime_get_sync(data->dev);
1140 pm_runtime_put_noidle(data->dev);
1141 pm_runtime_disable(data->dev);
1142 out_disable_vdda:
1143 regulator_disable(data->vdda);
1144 out_disable_vddd:
1145 regulator_disable(data->vddd);
1146 return ret;
1147 }
1148 EXPORT_SYMBOL(bmp280_common_probe);
1149
bmp280_common_remove(struct device * dev)1150 int bmp280_common_remove(struct device *dev)
1151 {
1152 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1153 struct bmp280_data *data = iio_priv(indio_dev);
1154
1155 iio_device_unregister(indio_dev);
1156 pm_runtime_get_sync(data->dev);
1157 pm_runtime_put_noidle(data->dev);
1158 pm_runtime_disable(data->dev);
1159 regulator_disable(data->vdda);
1160 regulator_disable(data->vddd);
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(bmp280_common_remove);
1164
1165 #ifdef CONFIG_PM
bmp280_runtime_suspend(struct device * dev)1166 static int bmp280_runtime_suspend(struct device *dev)
1167 {
1168 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1169 struct bmp280_data *data = iio_priv(indio_dev);
1170 int ret;
1171
1172 ret = regulator_disable(data->vdda);
1173 if (ret)
1174 return ret;
1175 return regulator_disable(data->vddd);
1176 }
1177
bmp280_runtime_resume(struct device * dev)1178 static int bmp280_runtime_resume(struct device *dev)
1179 {
1180 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1181 struct bmp280_data *data = iio_priv(indio_dev);
1182 int ret;
1183
1184 ret = regulator_enable(data->vddd);
1185 if (ret)
1186 return ret;
1187 ret = regulator_enable(data->vdda);
1188 if (ret)
1189 return ret;
1190 usleep_range(data->start_up_time, data->start_up_time + 100);
1191 return data->chip_info->chip_config(data);
1192 }
1193 #endif /* CONFIG_PM */
1194
1195 const struct dev_pm_ops bmp280_dev_pm_ops = {
1196 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1197 pm_runtime_force_resume)
1198 SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1199 bmp280_runtime_resume, NULL)
1200 };
1201 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1202
1203 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1204 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1205 MODULE_LICENSE("GPL v2");
1206