1 /*
2 * FM Driver for Connectivity chip of Texas Instruments.
3 *
4 * This sub-module of FM driver is common for FM RX and TX
5 * functionality. This module is responsible for:
6 * 1) Forming group of Channel-8 commands to perform particular
7 * functionality (eg., frequency set require more than
8 * one Channel-8 command to be sent to the chip).
9 * 2) Sending each Channel-8 command to the chip and reading
10 * response back over Shared Transport.
11 * 3) Managing TX and RX Queues and Tasklets.
12 * 4) Handling FM Interrupt packet and taking appropriate action.
13 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
14 * firmware files based on mode selection)
15 *
16 * Copyright (C) 2011 Texas Instruments
17 * Author: Raja Mani <raja_mani@ti.com>
18 * Author: Manjunatha Halli <manjunatha_halli@ti.com>
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2 as
22 * published by the Free Software Foundation.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 */
30
31 #include <linux/module.h>
32 #include <linux/firmware.h>
33 #include <linux/delay.h>
34 #include "fmdrv.h"
35 #include "fmdrv_v4l2.h"
36 #include "fmdrv_common.h"
37 #include <linux/ti_wilink_st.h>
38 #include "fmdrv_rx.h"
39 #include "fmdrv_tx.h"
40
41 /* Region info */
42 static struct region_info region_configs[] = {
43 /* Europe/US */
44 {
45 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
46 .bot_freq = 87500, /* 87.5 MHz */
47 .top_freq = 108000, /* 108 MHz */
48 .fm_band = 0,
49 },
50 /* Japan */
51 {
52 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
53 .bot_freq = 76000, /* 76 MHz */
54 .top_freq = 90000, /* 90 MHz */
55 .fm_band = 1,
56 },
57 };
58
59 /* Band selection */
60 static u8 default_radio_region; /* Europe/US */
61 module_param(default_radio_region, byte, 0);
62 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
63
64 /* RDS buffer blocks */
65 static u32 default_rds_buf = 300;
66 module_param(default_rds_buf, uint, 0444);
67 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
68
69 /* Radio Nr */
70 static u32 radio_nr = -1;
71 module_param(radio_nr, int, 0444);
72 MODULE_PARM_DESC(radio_nr, "Radio Nr");
73
74 /* FM irq handlers forward declaration */
75 static void fm_irq_send_flag_getcmd(struct fmdev *);
76 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
77 static void fm_irq_handle_hw_malfunction(struct fmdev *);
78 static void fm_irq_handle_rds_start(struct fmdev *);
79 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
80 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_rds_finish(struct fmdev *);
82 static void fm_irq_handle_tune_op_ended(struct fmdev *);
83 static void fm_irq_handle_power_enb(struct fmdev *);
84 static void fm_irq_handle_low_rssi_start(struct fmdev *);
85 static void fm_irq_afjump_set_pi(struct fmdev *);
86 static void fm_irq_handle_set_pi_resp(struct fmdev *);
87 static void fm_irq_afjump_set_pimask(struct fmdev *);
88 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
89 static void fm_irq_afjump_setfreq(struct fmdev *);
90 static void fm_irq_handle_setfreq_resp(struct fmdev *);
91 static void fm_irq_afjump_enableint(struct fmdev *);
92 static void fm_irq_afjump_enableint_resp(struct fmdev *);
93 static void fm_irq_start_afjump(struct fmdev *);
94 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
95 static void fm_irq_afjump_rd_freq(struct fmdev *);
96 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
97 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
98 static void fm_irq_send_intmsk_cmd(struct fmdev *);
99 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
100
101 /*
102 * When FM common module receives interrupt packet, following handlers
103 * will be executed one after another to service the interrupt(s)
104 */
105 enum fmc_irq_handler_index {
106 FM_SEND_FLAG_GETCMD_IDX,
107 FM_HANDLE_FLAG_GETCMD_RESP_IDX,
108
109 /* HW malfunction irq handler */
110 FM_HW_MAL_FUNC_IDX,
111
112 /* RDS threshold reached irq handler */
113 FM_RDS_START_IDX,
114 FM_RDS_SEND_RDS_GETCMD_IDX,
115 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
116 FM_RDS_FINISH_IDX,
117
118 /* Tune operation ended irq handler */
119 FM_HW_TUNE_OP_ENDED_IDX,
120
121 /* TX power enable irq handler */
122 FM_HW_POWER_ENB_IDX,
123
124 /* Low RSSI irq handler */
125 FM_LOW_RSSI_START_IDX,
126 FM_AF_JUMP_SETPI_IDX,
127 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
128 FM_AF_JUMP_SETPI_MASK_IDX,
129 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
130 FM_AF_JUMP_SET_AF_FREQ_IDX,
131 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
132 FM_AF_JUMP_ENABLE_INT_IDX,
133 FM_AF_JUMP_ENABLE_INT_RESP_IDX,
134 FM_AF_JUMP_START_AFJUMP_IDX,
135 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
136 FM_AF_JUMP_RD_FREQ_IDX,
137 FM_AF_JUMP_RD_FREQ_RESP_IDX,
138 FM_LOW_RSSI_FINISH_IDX,
139
140 /* Interrupt process post action */
141 FM_SEND_INTMSK_CMD_IDX,
142 FM_HANDLE_INTMSK_CMD_RESP_IDX,
143 };
144
145 /* FM interrupt handler table */
146 static int_handler_prototype int_handler_table[] = {
147 fm_irq_send_flag_getcmd,
148 fm_irq_handle_flag_getcmd_resp,
149 fm_irq_handle_hw_malfunction,
150 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
151 fm_irq_send_rdsdata_getcmd,
152 fm_irq_handle_rdsdata_getcmd_resp,
153 fm_irq_handle_rds_finish,
154 fm_irq_handle_tune_op_ended,
155 fm_irq_handle_power_enb, /* TX power enable irq handler */
156 fm_irq_handle_low_rssi_start,
157 fm_irq_afjump_set_pi,
158 fm_irq_handle_set_pi_resp,
159 fm_irq_afjump_set_pimask,
160 fm_irq_handle_set_pimask_resp,
161 fm_irq_afjump_setfreq,
162 fm_irq_handle_setfreq_resp,
163 fm_irq_afjump_enableint,
164 fm_irq_afjump_enableint_resp,
165 fm_irq_start_afjump,
166 fm_irq_handle_start_afjump_resp,
167 fm_irq_afjump_rd_freq,
168 fm_irq_afjump_rd_freq_resp,
169 fm_irq_handle_low_rssi_finish,
170 fm_irq_send_intmsk_cmd, /* Interrupt process post action */
171 fm_irq_handle_intmsk_cmd_resp
172 };
173
174 static long (*g_st_write) (struct sk_buff *skb);
175 static struct completion wait_for_fmdrv_reg_comp;
176
fm_irq_call(struct fmdev * fmdev)177 static inline void fm_irq_call(struct fmdev *fmdev)
178 {
179 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
180 }
181
182 /* Continue next function in interrupt handler table */
fm_irq_call_stage(struct fmdev * fmdev,u8 stage)183 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
184 {
185 fmdev->irq_info.stage = stage;
186 fm_irq_call(fmdev);
187 }
188
fm_irq_timeout_stage(struct fmdev * fmdev,u8 stage)189 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
190 {
191 fmdev->irq_info.stage = stage;
192 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
193 }
194
195 #ifdef FM_DUMP_TXRX_PKT
196 /* To dump outgoing FM Channel-8 packets */
dump_tx_skb_data(struct sk_buff * skb)197 inline void dump_tx_skb_data(struct sk_buff *skb)
198 {
199 int len, len_org;
200 u8 index;
201 struct fm_cmd_msg_hdr *cmd_hdr;
202
203 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
204 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
205 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
206 cmd_hdr->len, cmd_hdr->op,
207 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
208
209 len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
210 if (len_org > 0) {
211 printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen);
212 len = min(len_org, 14);
213 for (index = 0; index < len; index++)
214 printk(KERN_CONT "%x ",
215 skb->data[FM_CMD_MSG_HDR_SIZE + index]);
216 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
217 }
218 printk(KERN_CONT "\n");
219 }
220
221 /* To dump incoming FM Channel-8 packets */
dump_rx_skb_data(struct sk_buff * skb)222 inline void dump_rx_skb_data(struct sk_buff *skb)
223 {
224 int len, len_org;
225 u8 index;
226 struct fm_event_msg_hdr *evt_hdr;
227
228 evt_hdr = (struct fm_event_msg_hdr *)skb->data;
229 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
230 evt_hdr->hdr, evt_hdr->len,
231 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
232 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
233
234 len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
235 if (len_org > 0) {
236 printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen);
237 len = min(len_org, 14);
238 for (index = 0; index < len; index++)
239 printk(KERN_CONT "%x ",
240 skb->data[FM_EVT_MSG_HDR_SIZE + index]);
241 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
242 }
243 printk(KERN_CONT "\n");
244 }
245 #endif
246
fmc_update_region_info(struct fmdev * fmdev,u8 region_to_set)247 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
248 {
249 fmdev->rx.region = region_configs[region_to_set];
250 }
251
252 /*
253 * FM common sub-module will schedule this tasklet whenever it receives
254 * FM packet from ST driver.
255 */
recv_tasklet(unsigned long arg)256 static void recv_tasklet(unsigned long arg)
257 {
258 struct fmdev *fmdev;
259 struct fm_irq *irq_info;
260 struct fm_event_msg_hdr *evt_hdr;
261 struct sk_buff *skb;
262 u8 num_fm_hci_cmds;
263 unsigned long flags;
264
265 fmdev = (struct fmdev *)arg;
266 irq_info = &fmdev->irq_info;
267 /* Process all packets in the RX queue */
268 while ((skb = skb_dequeue(&fmdev->rx_q))) {
269 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
270 fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
271 skb,
272 skb->len, sizeof(struct fm_event_msg_hdr));
273 kfree_skb(skb);
274 continue;
275 }
276
277 evt_hdr = (void *)skb->data;
278 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
279
280 /* FM interrupt packet? */
281 if (evt_hdr->op == FM_INTERRUPT) {
282 /* FM interrupt handler started already? */
283 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
284 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
285 if (irq_info->stage != 0) {
286 fmerr("Inval stage resetting to zero\n");
287 irq_info->stage = 0;
288 }
289
290 /*
291 * Execute first function in interrupt handler
292 * table.
293 */
294 irq_info->handlers[irq_info->stage](fmdev);
295 } else {
296 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
297 }
298 kfree_skb(skb);
299 }
300 /* Anyone waiting for this with completion handler? */
301 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
302
303 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
304 fmdev->resp_skb = skb;
305 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
306 complete(fmdev->resp_comp);
307
308 fmdev->resp_comp = NULL;
309 atomic_set(&fmdev->tx_cnt, 1);
310 }
311 /* Is this for interrupt handler? */
312 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
313 if (fmdev->resp_skb != NULL)
314 fmerr("Response SKB ptr not NULL\n");
315
316 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
317 fmdev->resp_skb = skb;
318 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
319
320 /* Execute interrupt handler where state index points */
321 irq_info->handlers[irq_info->stage](fmdev);
322
323 kfree_skb(skb);
324 atomic_set(&fmdev->tx_cnt, 1);
325 } else {
326 fmerr("Nobody claimed SKB(%p),purging\n", skb);
327 }
328
329 /*
330 * Check flow control field. If Num_FM_HCI_Commands field is
331 * not zero, schedule FM TX tasklet.
332 */
333 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
334 if (!skb_queue_empty(&fmdev->tx_q))
335 tasklet_schedule(&fmdev->tx_task);
336 }
337 }
338
339 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
send_tasklet(unsigned long arg)340 static void send_tasklet(unsigned long arg)
341 {
342 struct fmdev *fmdev;
343 struct sk_buff *skb;
344 int len;
345
346 fmdev = (struct fmdev *)arg;
347
348 if (!atomic_read(&fmdev->tx_cnt))
349 return;
350
351 /* Check, is there any timeout happened to last transmitted packet */
352 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
353 fmerr("TX timeout occurred\n");
354 atomic_set(&fmdev->tx_cnt, 1);
355 }
356
357 /* Send queued FM TX packets */
358 skb = skb_dequeue(&fmdev->tx_q);
359 if (!skb)
360 return;
361
362 atomic_dec(&fmdev->tx_cnt);
363 fmdev->pre_op = fm_cb(skb)->fm_op;
364
365 if (fmdev->resp_comp != NULL)
366 fmerr("Response completion handler is not NULL\n");
367
368 fmdev->resp_comp = fm_cb(skb)->completion;
369
370 /* Write FM packet to ST driver */
371 len = g_st_write(skb);
372 if (len < 0) {
373 kfree_skb(skb);
374 fmdev->resp_comp = NULL;
375 fmerr("TX tasklet failed to send skb(%p)\n", skb);
376 atomic_set(&fmdev->tx_cnt, 1);
377 } else {
378 fmdev->last_tx_jiffies = jiffies;
379 }
380 }
381
382 /*
383 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
384 * transmission
385 */
fm_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,int payload_len,struct completion * wait_completion)386 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
387 int payload_len, struct completion *wait_completion)
388 {
389 struct sk_buff *skb;
390 struct fm_cmd_msg_hdr *hdr;
391 int size;
392
393 if (fm_op >= FM_INTERRUPT) {
394 fmerr("Invalid fm opcode - %d\n", fm_op);
395 return -EINVAL;
396 }
397 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
398 fmerr("Payload data is NULL during fw download\n");
399 return -EINVAL;
400 }
401 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
402 size =
403 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
404 else
405 size = payload_len;
406
407 skb = alloc_skb(size, GFP_ATOMIC);
408 if (!skb) {
409 fmerr("No memory to create new SKB\n");
410 return -ENOMEM;
411 }
412 /*
413 * Don't fill FM header info for the commands which come from
414 * FM firmware file.
415 */
416 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
417 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
418 /* Fill command header info */
419 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
420 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
421
422 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
423 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
424
425 /* FM opcode */
426 hdr->op = fm_op;
427
428 /* read/write type */
429 hdr->rd_wr = type;
430 hdr->dlen = payload_len;
431 fm_cb(skb)->fm_op = fm_op;
432
433 /*
434 * If firmware download has finished and the command is
435 * not a read command then payload is != NULL - a write
436 * command with u16 payload - convert to be16
437 */
438 if (payload != NULL)
439 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
440
441 } else if (payload != NULL) {
442 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
443 }
444 if (payload != NULL)
445 skb_put_data(skb, payload, payload_len);
446
447 fm_cb(skb)->completion = wait_completion;
448 skb_queue_tail(&fmdev->tx_q, skb);
449 tasklet_schedule(&fmdev->tx_task);
450
451 return 0;
452 }
453
454 /* Sends FM Channel-8 command to the chip and waits for the response */
fmc_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,unsigned int payload_len,void * response,int * response_len)455 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
456 unsigned int payload_len, void *response, int *response_len)
457 {
458 struct sk_buff *skb;
459 struct fm_event_msg_hdr *evt_hdr;
460 unsigned long flags;
461 int ret;
462
463 init_completion(&fmdev->maintask_comp);
464 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
465 &fmdev->maintask_comp);
466 if (ret)
467 return ret;
468
469 if (!wait_for_completion_timeout(&fmdev->maintask_comp,
470 FM_DRV_TX_TIMEOUT)) {
471 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
472 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
473 return -ETIMEDOUT;
474 }
475 if (!fmdev->resp_skb) {
476 fmerr("Response SKB is missing\n");
477 return -EFAULT;
478 }
479 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
480 skb = fmdev->resp_skb;
481 fmdev->resp_skb = NULL;
482 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
483
484 evt_hdr = (void *)skb->data;
485 if (evt_hdr->status != 0) {
486 fmerr("Received event pkt status(%d) is not zero\n",
487 evt_hdr->status);
488 kfree_skb(skb);
489 return -EIO;
490 }
491 /* Send response data to caller */
492 if (response != NULL && response_len != NULL && evt_hdr->dlen &&
493 evt_hdr->dlen <= payload_len) {
494 /* Skip header info and copy only response data */
495 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
496 memcpy(response, skb->data, evt_hdr->dlen);
497 *response_len = evt_hdr->dlen;
498 } else if (response_len != NULL && evt_hdr->dlen == 0) {
499 *response_len = 0;
500 }
501 kfree_skb(skb);
502
503 return 0;
504 }
505
506 /* --- Helper functions used in FM interrupt handlers ---*/
check_cmdresp_status(struct fmdev * fmdev,struct sk_buff ** skb)507 static inline int check_cmdresp_status(struct fmdev *fmdev,
508 struct sk_buff **skb)
509 {
510 struct fm_event_msg_hdr *fm_evt_hdr;
511 unsigned long flags;
512
513 del_timer(&fmdev->irq_info.timer);
514
515 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
516 *skb = fmdev->resp_skb;
517 fmdev->resp_skb = NULL;
518 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
519
520 fm_evt_hdr = (void *)(*skb)->data;
521 if (fm_evt_hdr->status != 0) {
522 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
523 fm_evt_hdr->op);
524
525 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
526 return -1;
527 }
528
529 return 0;
530 }
531
fm_irq_common_cmd_resp_helper(struct fmdev * fmdev,u8 stage)532 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
533 {
534 struct sk_buff *skb;
535
536 if (!check_cmdresp_status(fmdev, &skb))
537 fm_irq_call_stage(fmdev, stage);
538 }
539
540 /*
541 * Interrupt process timeout handler.
542 * One of the irq handler did not get proper response from the chip. So take
543 * recovery action here. FM interrupts are disabled in the beginning of
544 * interrupt process. Therefore reset stage index to re-enable default
545 * interrupts. So that next interrupt will be processed as usual.
546 */
int_timeout_handler(struct timer_list * t)547 static void int_timeout_handler(struct timer_list *t)
548 {
549 struct fmdev *fmdev;
550 struct fm_irq *fmirq;
551
552 fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
553 fmdev = from_timer(fmdev, t, irq_info.timer);
554 fmirq = &fmdev->irq_info;
555 fmirq->retry++;
556
557 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
558 /* Stop recovery action (interrupt reenable process) and
559 * reset stage index & retry count values */
560 fmirq->stage = 0;
561 fmirq->retry = 0;
562 fmerr("Recovery action failed duringirq processing, max retry reached\n");
563 return;
564 }
565 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
566 }
567
568 /* --------- FM interrupt handlers ------------*/
fm_irq_send_flag_getcmd(struct fmdev * fmdev)569 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
570 {
571 u16 flag;
572
573 /* Send FLAG_GET command , to know the source of interrupt */
574 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
575 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
576 }
577
fm_irq_handle_flag_getcmd_resp(struct fmdev * fmdev)578 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
579 {
580 struct sk_buff *skb;
581 struct fm_event_msg_hdr *fm_evt_hdr;
582
583 if (check_cmdresp_status(fmdev, &skb))
584 return;
585
586 fm_evt_hdr = (void *)skb->data;
587 if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
588 return;
589
590 /* Skip header info and copy only response data */
591 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
592 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
593
594 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
595 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
596
597 /* Continue next function in interrupt handler table */
598 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
599 }
600
fm_irq_handle_hw_malfunction(struct fmdev * fmdev)601 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
602 {
603 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
604 fmerr("irq: HW MAL int received - do nothing\n");
605
606 /* Continue next function in interrupt handler table */
607 fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
608 }
609
fm_irq_handle_rds_start(struct fmdev * fmdev)610 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
611 {
612 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
613 fmdbg("irq: rds threshold reached\n");
614 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
615 } else {
616 /* Continue next function in interrupt handler table */
617 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
618 }
619
620 fm_irq_call(fmdev);
621 }
622
fm_irq_send_rdsdata_getcmd(struct fmdev * fmdev)623 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
624 {
625 /* Send the command to read RDS data from the chip */
626 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
627 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
628 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
629 }
630
631 /* Keeps track of current RX channel AF (Alternate Frequency) */
fm_rx_update_af_cache(struct fmdev * fmdev,u8 af)632 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
633 {
634 struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
635 u8 reg_idx = fmdev->rx.region.fm_band;
636 u8 index;
637 u32 freq;
638
639 /* First AF indicates the number of AF follows. Reset the list */
640 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
641 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
642 fmdev->rx.stat_info.afcache_size = 0;
643 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
644 return;
645 }
646
647 if (af < FM_RDS_MIN_AF)
648 return;
649 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
650 return;
651 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
652 return;
653
654 freq = fmdev->rx.region.bot_freq + (af * 100);
655 if (freq == fmdev->rx.freq) {
656 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
657 fmdev->rx.freq, freq);
658 return;
659 }
660 /* Do check in AF cache */
661 for (index = 0; index < stat_info->afcache_size; index++) {
662 if (stat_info->af_cache[index] == freq)
663 break;
664 }
665 /* Reached the limit of the list - ignore the next AF */
666 if (index == stat_info->af_list_max) {
667 fmdbg("AF cache is full\n");
668 return;
669 }
670 /*
671 * If we reached the end of the list then this AF is not
672 * in the list - add it.
673 */
674 if (index == stat_info->afcache_size) {
675 fmdbg("Storing AF %d to cache index %d\n", freq, index);
676 stat_info->af_cache[index] = freq;
677 stat_info->afcache_size++;
678 }
679 }
680
681 /*
682 * Converts RDS buffer data from big endian format
683 * to little endian format.
684 */
fm_rdsparse_swapbytes(struct fmdev * fmdev,struct fm_rdsdata_format * rds_format)685 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
686 struct fm_rdsdata_format *rds_format)
687 {
688 u8 index = 0;
689 u8 *rds_buff;
690
691 /*
692 * Since in Orca the 2 RDS Data bytes are in little endian and
693 * in Dolphin they are in big endian, the parsing of the RDS data
694 * is chip dependent
695 */
696 if (fmdev->asci_id != 0x6350) {
697 rds_buff = &rds_format->data.groupdatabuff.buff[0];
698 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
699 swap(rds_buff[index], rds_buff[index + 1]);
700 index += 2;
701 }
702 }
703 }
704
fm_irq_handle_rdsdata_getcmd_resp(struct fmdev * fmdev)705 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
706 {
707 struct sk_buff *skb;
708 struct fm_rdsdata_format rds_fmt;
709 struct fm_rds *rds = &fmdev->rx.rds;
710 unsigned long group_idx, flags;
711 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
712 u8 type, blk_idx;
713 u16 cur_picode;
714 u32 rds_len;
715
716 if (check_cmdresp_status(fmdev, &skb))
717 return;
718
719 /* Skip header info */
720 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
721 rds_data = skb->data;
722 rds_len = skb->len;
723
724 /* Parse the RDS data */
725 while (rds_len >= FM_RDS_BLK_SIZE) {
726 meta_data = rds_data[2];
727 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
728 type = (meta_data & 0x07);
729
730 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
731 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
732 fmdbg("Block index:%d(%s)\n", blk_idx,
733 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
734
735 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
736 break;
737
738 if (blk_idx > FM_RDS_BLK_IDX_D) {
739 fmdbg("Block sequence mismatch\n");
740 rds->last_blk_idx = -1;
741 break;
742 }
743
744 /* Skip checkword (control) byte and copy only data byte */
745 memcpy(&rds_fmt.data.groupdatabuff.
746 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
747 rds_data, (FM_RDS_BLK_SIZE - 1));
748
749 rds->last_blk_idx = blk_idx;
750
751 /* If completed a whole group then handle it */
752 if (blk_idx == FM_RDS_BLK_IDX_D) {
753 fmdbg("Good block received\n");
754 fm_rdsparse_swapbytes(fmdev, &rds_fmt);
755
756 /*
757 * Extract PI code and store in local cache.
758 * We need this during AF switch processing.
759 */
760 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
761 if (fmdev->rx.stat_info.picode != cur_picode)
762 fmdev->rx.stat_info.picode = cur_picode;
763
764 fmdbg("picode:%d\n", cur_picode);
765
766 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
767 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
768 (group_idx % 2) ? "B" : "A");
769
770 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
771 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
772 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
773 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
774 }
775 }
776 rds_len -= FM_RDS_BLK_SIZE;
777 rds_data += FM_RDS_BLK_SIZE;
778 }
779
780 /* Copy raw rds data to internal rds buffer */
781 rds_data = skb->data;
782 rds_len = skb->len;
783
784 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
785 while (rds_len > 0) {
786 /*
787 * Fill RDS buffer as per V4L2 specification.
788 * Store control byte
789 */
790 type = (rds_data[2] & 0x07);
791 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
792 tmpbuf[2] = blk_idx; /* Offset name */
793 tmpbuf[2] |= blk_idx << 3; /* Received offset */
794
795 /* Store data byte */
796 tmpbuf[0] = rds_data[0];
797 tmpbuf[1] = rds_data[1];
798
799 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
800 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
801
802 /* Check for overflow & start over */
803 if (rds->wr_idx == rds->rd_idx) {
804 fmdbg("RDS buffer overflow\n");
805 rds->wr_idx = 0;
806 rds->rd_idx = 0;
807 break;
808 }
809 rds_len -= FM_RDS_BLK_SIZE;
810 rds_data += FM_RDS_BLK_SIZE;
811 }
812 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
813
814 /* Wakeup read queue */
815 if (rds->wr_idx != rds->rd_idx)
816 wake_up_interruptible(&rds->read_queue);
817
818 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
819 }
820
fm_irq_handle_rds_finish(struct fmdev * fmdev)821 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
822 {
823 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
824 }
825
fm_irq_handle_tune_op_ended(struct fmdev * fmdev)826 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
827 {
828 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
829 irq_info.mask) {
830 fmdbg("irq: tune ended/bandlimit reached\n");
831 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
832 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
833 } else {
834 complete(&fmdev->maintask_comp);
835 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
836 }
837 } else
838 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
839
840 fm_irq_call(fmdev);
841 }
842
fm_irq_handle_power_enb(struct fmdev * fmdev)843 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
844 {
845 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
846 fmdbg("irq: Power Enabled/Disabled\n");
847 complete(&fmdev->maintask_comp);
848 }
849
850 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
851 }
852
fm_irq_handle_low_rssi_start(struct fmdev * fmdev)853 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
854 {
855 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
856 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
857 (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
858 (fmdev->rx.stat_info.afcache_size != 0)) {
859 fmdbg("irq: rssi level has fallen below threshold level\n");
860
861 /* Disable further low RSSI interrupts */
862 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
863
864 fmdev->rx.afjump_idx = 0;
865 fmdev->rx.freq_before_jump = fmdev->rx.freq;
866 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
867 } else {
868 /* Continue next function in interrupt handler table */
869 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
870 }
871
872 fm_irq_call(fmdev);
873 }
874
fm_irq_afjump_set_pi(struct fmdev * fmdev)875 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
876 {
877 u16 payload;
878
879 /* Set PI code - must be updated if the AF list is not empty */
880 payload = fmdev->rx.stat_info.picode;
881 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
882 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
883 }
884
fm_irq_handle_set_pi_resp(struct fmdev * fmdev)885 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
886 {
887 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
888 }
889
890 /*
891 * Set PI mask.
892 * 0xFFFF = Enable PI code matching
893 * 0x0000 = Disable PI code matching
894 */
fm_irq_afjump_set_pimask(struct fmdev * fmdev)895 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
896 {
897 u16 payload;
898
899 payload = 0x0000;
900 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
901 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
902 }
903
fm_irq_handle_set_pimask_resp(struct fmdev * fmdev)904 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
905 {
906 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
907 }
908
fm_irq_afjump_setfreq(struct fmdev * fmdev)909 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
910 {
911 u16 frq_index;
912 u16 payload;
913
914 fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
915 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
916 fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
917
918 payload = frq_index;
919 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
920 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
921 }
922
fm_irq_handle_setfreq_resp(struct fmdev * fmdev)923 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
924 {
925 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
926 }
927
fm_irq_afjump_enableint(struct fmdev * fmdev)928 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
929 {
930 u16 payload;
931
932 /* Enable FR (tuning operation ended) interrupt */
933 payload = FM_FR_EVENT;
934 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
935 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
936 }
937
fm_irq_afjump_enableint_resp(struct fmdev * fmdev)938 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
939 {
940 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
941 }
942
fm_irq_start_afjump(struct fmdev * fmdev)943 static void fm_irq_start_afjump(struct fmdev *fmdev)
944 {
945 u16 payload;
946
947 payload = FM_TUNER_AF_JUMP_MODE;
948 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
949 sizeof(payload), NULL))
950 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
951 }
952
fm_irq_handle_start_afjump_resp(struct fmdev * fmdev)953 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
954 {
955 struct sk_buff *skb;
956
957 if (check_cmdresp_status(fmdev, &skb))
958 return;
959
960 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
961 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
962 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
963 }
964
fm_irq_afjump_rd_freq(struct fmdev * fmdev)965 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
966 {
967 u16 payload;
968
969 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
970 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
971 }
972
fm_irq_afjump_rd_freq_resp(struct fmdev * fmdev)973 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
974 {
975 struct sk_buff *skb;
976 u16 read_freq;
977 u32 curr_freq, jumped_freq;
978
979 if (check_cmdresp_status(fmdev, &skb))
980 return;
981
982 /* Skip header info and copy only response data */
983 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
984 memcpy(&read_freq, skb->data, sizeof(read_freq));
985 read_freq = be16_to_cpu((__force __be16)read_freq);
986 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
987
988 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
989
990 /* If the frequency was changed the jump succeeded */
991 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
992 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
993 fmdev->rx.freq = curr_freq;
994 fm_rx_reset_rds_cache(fmdev);
995
996 /* AF feature is on, enable low level RSSI interrupt */
997 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
998 fmdev->irq_info.mask |= FM_LEV_EVENT;
999
1000 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1001 } else { /* jump to the next freq in the AF list */
1002 fmdev->rx.afjump_idx++;
1003
1004 /* If we reached the end of the list - stop searching */
1005 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1006 fmdbg("AF switch processing failed\n");
1007 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008 } else { /* AF List is not over - try next one */
1009
1010 fmdbg("Trying next freq in AF cache\n");
1011 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1012 }
1013 }
1014 fm_irq_call(fmdev);
1015 }
1016
fm_irq_handle_low_rssi_finish(struct fmdev * fmdev)1017 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1018 {
1019 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1020 }
1021
fm_irq_send_intmsk_cmd(struct fmdev * fmdev)1022 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1023 {
1024 u16 payload;
1025
1026 /* Re-enable FM interrupts */
1027 payload = fmdev->irq_info.mask;
1028
1029 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1030 sizeof(payload), NULL))
1031 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1032 }
1033
fm_irq_handle_intmsk_cmd_resp(struct fmdev * fmdev)1034 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1035 {
1036 struct sk_buff *skb;
1037
1038 if (check_cmdresp_status(fmdev, &skb))
1039 return;
1040 /*
1041 * This is last function in interrupt table to be executed.
1042 * So, reset stage index to 0.
1043 */
1044 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1045
1046 /* Start processing any pending interrupt */
1047 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1048 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1049 else
1050 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1051 }
1052
1053 /* Returns availability of RDS data in internel buffer */
fmc_is_rds_data_available(struct fmdev * fmdev,struct file * file,struct poll_table_struct * pts)1054 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1055 struct poll_table_struct *pts)
1056 {
1057 poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1058 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1059 return 0;
1060
1061 return -EAGAIN;
1062 }
1063
1064 /* Copies RDS data from internal buffer to user buffer */
fmc_transfer_rds_from_internal_buff(struct fmdev * fmdev,struct file * file,u8 __user * buf,size_t count)1065 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1066 u8 __user *buf, size_t count)
1067 {
1068 u32 block_count;
1069 u8 tmpbuf[FM_RDS_BLK_SIZE];
1070 unsigned long flags;
1071 int ret;
1072
1073 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1074 if (file->f_flags & O_NONBLOCK)
1075 return -EWOULDBLOCK;
1076
1077 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1078 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1079 if (ret)
1080 return -EINTR;
1081 }
1082
1083 /* Calculate block count from byte count */
1084 count /= FM_RDS_BLK_SIZE;
1085 block_count = 0;
1086 ret = 0;
1087
1088 while (block_count < count) {
1089 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1090
1091 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1092 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1093 break;
1094 }
1095 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1096 FM_RDS_BLK_SIZE);
1097 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1098 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1099 fmdev->rx.rds.rd_idx = 0;
1100
1101 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1102
1103 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1104 break;
1105
1106 block_count++;
1107 buf += FM_RDS_BLK_SIZE;
1108 ret += FM_RDS_BLK_SIZE;
1109 }
1110 return ret;
1111 }
1112
fmc_set_freq(struct fmdev * fmdev,u32 freq_to_set)1113 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1114 {
1115 switch (fmdev->curr_fmmode) {
1116 case FM_MODE_RX:
1117 return fm_rx_set_freq(fmdev, freq_to_set);
1118
1119 case FM_MODE_TX:
1120 return fm_tx_set_freq(fmdev, freq_to_set);
1121
1122 default:
1123 return -EINVAL;
1124 }
1125 }
1126
fmc_get_freq(struct fmdev * fmdev,u32 * cur_tuned_frq)1127 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1128 {
1129 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1130 fmerr("RX frequency is not set\n");
1131 return -EPERM;
1132 }
1133 if (cur_tuned_frq == NULL) {
1134 fmerr("Invalid memory\n");
1135 return -ENOMEM;
1136 }
1137
1138 switch (fmdev->curr_fmmode) {
1139 case FM_MODE_RX:
1140 *cur_tuned_frq = fmdev->rx.freq;
1141 return 0;
1142
1143 case FM_MODE_TX:
1144 *cur_tuned_frq = 0; /* TODO : Change this later */
1145 return 0;
1146
1147 default:
1148 return -EINVAL;
1149 }
1150
1151 }
1152
fmc_set_region(struct fmdev * fmdev,u8 region_to_set)1153 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1154 {
1155 switch (fmdev->curr_fmmode) {
1156 case FM_MODE_RX:
1157 return fm_rx_set_region(fmdev, region_to_set);
1158
1159 case FM_MODE_TX:
1160 return fm_tx_set_region(fmdev, region_to_set);
1161
1162 default:
1163 return -EINVAL;
1164 }
1165 }
1166
fmc_set_mute_mode(struct fmdev * fmdev,u8 mute_mode_toset)1167 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1168 {
1169 switch (fmdev->curr_fmmode) {
1170 case FM_MODE_RX:
1171 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1172
1173 case FM_MODE_TX:
1174 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1175
1176 default:
1177 return -EINVAL;
1178 }
1179 }
1180
fmc_set_stereo_mono(struct fmdev * fmdev,u16 mode)1181 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1182 {
1183 switch (fmdev->curr_fmmode) {
1184 case FM_MODE_RX:
1185 return fm_rx_set_stereo_mono(fmdev, mode);
1186
1187 case FM_MODE_TX:
1188 return fm_tx_set_stereo_mono(fmdev, mode);
1189
1190 default:
1191 return -EINVAL;
1192 }
1193 }
1194
fmc_set_rds_mode(struct fmdev * fmdev,u8 rds_en_dis)1195 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1196 {
1197 switch (fmdev->curr_fmmode) {
1198 case FM_MODE_RX:
1199 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1200
1201 case FM_MODE_TX:
1202 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1203
1204 default:
1205 return -EINVAL;
1206 }
1207 }
1208
1209 /* Sends power off command to the chip */
fm_power_down(struct fmdev * fmdev)1210 static int fm_power_down(struct fmdev *fmdev)
1211 {
1212 u16 payload;
1213 int ret;
1214
1215 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1216 fmerr("FM core is not ready\n");
1217 return -EPERM;
1218 }
1219 if (fmdev->curr_fmmode == FM_MODE_OFF) {
1220 fmdbg("FM chip is already in OFF state\n");
1221 return 0;
1222 }
1223
1224 payload = 0x0;
1225 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1226 sizeof(payload), NULL, NULL);
1227 if (ret < 0)
1228 return ret;
1229
1230 return fmc_release(fmdev);
1231 }
1232
1233 /* Reads init command from FM firmware file and loads to the chip */
fm_download_firmware(struct fmdev * fmdev,const u8 * fw_name)1234 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1235 {
1236 const struct firmware *fw_entry;
1237 struct bts_header *fw_header;
1238 struct bts_action *action;
1239 struct bts_action_delay *delay;
1240 u8 *fw_data;
1241 int ret, fw_len, cmd_cnt;
1242
1243 cmd_cnt = 0;
1244 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1245
1246 ret = request_firmware(&fw_entry, fw_name,
1247 &fmdev->radio_dev->dev);
1248 if (ret < 0) {
1249 fmerr("Unable to read firmware(%s) content\n", fw_name);
1250 return ret;
1251 }
1252 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1253
1254 fw_data = (void *)fw_entry->data;
1255 fw_len = fw_entry->size;
1256
1257 fw_header = (struct bts_header *)fw_data;
1258 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1259 fmerr("%s not a legal TI firmware file\n", fw_name);
1260 ret = -EINVAL;
1261 goto rel_fw;
1262 }
1263 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1264
1265 /* Skip file header info , we already verified it */
1266 fw_data += sizeof(struct bts_header);
1267 fw_len -= sizeof(struct bts_header);
1268
1269 while (fw_data && fw_len > 0) {
1270 action = (struct bts_action *)fw_data;
1271
1272 switch (action->type) {
1273 case ACTION_SEND_COMMAND: /* Send */
1274 ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1275 action->size, NULL, NULL);
1276 if (ret)
1277 goto rel_fw;
1278
1279 cmd_cnt++;
1280 break;
1281
1282 case ACTION_DELAY: /* Delay */
1283 delay = (struct bts_action_delay *)action->data;
1284 mdelay(delay->msec);
1285 break;
1286 }
1287
1288 fw_data += (sizeof(struct bts_action) + (action->size));
1289 fw_len -= (sizeof(struct bts_action) + (action->size));
1290 }
1291 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1292 rel_fw:
1293 release_firmware(fw_entry);
1294 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1295
1296 return ret;
1297 }
1298
1299 /* Loads default RX configuration to the chip */
load_default_rx_configuration(struct fmdev * fmdev)1300 static int load_default_rx_configuration(struct fmdev *fmdev)
1301 {
1302 int ret;
1303
1304 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1305 if (ret < 0)
1306 return ret;
1307
1308 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1309 }
1310
1311 /* Does FM power on sequence */
fm_power_up(struct fmdev * fmdev,u8 mode)1312 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1313 {
1314 u16 payload;
1315 __be16 asic_id = 0, asic_ver = 0;
1316 int resp_len, ret;
1317 u8 fw_name[50];
1318
1319 if (mode >= FM_MODE_ENTRY_MAX) {
1320 fmerr("Invalid firmware download option\n");
1321 return -EINVAL;
1322 }
1323
1324 /*
1325 * Initialize FM common module. FM GPIO toggling is
1326 * taken care in Shared Transport driver.
1327 */
1328 ret = fmc_prepare(fmdev);
1329 if (ret < 0) {
1330 fmerr("Unable to prepare FM Common\n");
1331 return ret;
1332 }
1333
1334 payload = FM_ENABLE;
1335 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1336 sizeof(payload), NULL, NULL))
1337 goto rel;
1338
1339 /* Allow the chip to settle down in Channel-8 mode */
1340 msleep(20);
1341
1342 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1343 sizeof(asic_id), &asic_id, &resp_len))
1344 goto rel;
1345
1346 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1347 sizeof(asic_ver), &asic_ver, &resp_len))
1348 goto rel;
1349
1350 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1351 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1352
1353 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1354 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1355
1356 ret = fm_download_firmware(fmdev, fw_name);
1357 if (ret < 0) {
1358 fmdbg("Failed to download firmware file %s\n", fw_name);
1359 goto rel;
1360 }
1361 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1362 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1363 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1364
1365 ret = fm_download_firmware(fmdev, fw_name);
1366 if (ret < 0) {
1367 fmdbg("Failed to download firmware file %s\n", fw_name);
1368 goto rel;
1369 } else
1370 return ret;
1371 rel:
1372 return fmc_release(fmdev);
1373 }
1374
1375 /* Set FM Modes(TX, RX, OFF) */
fmc_set_mode(struct fmdev * fmdev,u8 fm_mode)1376 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1377 {
1378 int ret = 0;
1379
1380 if (fm_mode >= FM_MODE_ENTRY_MAX) {
1381 fmerr("Invalid FM mode\n");
1382 return -EINVAL;
1383 }
1384 if (fmdev->curr_fmmode == fm_mode) {
1385 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1386 return ret;
1387 }
1388
1389 switch (fm_mode) {
1390 case FM_MODE_OFF: /* OFF Mode */
1391 ret = fm_power_down(fmdev);
1392 if (ret < 0) {
1393 fmerr("Failed to set OFF mode\n");
1394 return ret;
1395 }
1396 break;
1397
1398 case FM_MODE_TX: /* TX Mode */
1399 case FM_MODE_RX: /* RX Mode */
1400 /* Power down before switching to TX or RX mode */
1401 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1402 ret = fm_power_down(fmdev);
1403 if (ret < 0) {
1404 fmerr("Failed to set OFF mode\n");
1405 return ret;
1406 }
1407 msleep(30);
1408 }
1409 ret = fm_power_up(fmdev, fm_mode);
1410 if (ret < 0) {
1411 fmerr("Failed to load firmware\n");
1412 return ret;
1413 }
1414 }
1415 fmdev->curr_fmmode = fm_mode;
1416
1417 /* Set default configuration */
1418 if (fmdev->curr_fmmode == FM_MODE_RX) {
1419 fmdbg("Loading default rx configuration..\n");
1420 ret = load_default_rx_configuration(fmdev);
1421 if (ret < 0)
1422 fmerr("Failed to load default values\n");
1423 }
1424
1425 return ret;
1426 }
1427
1428 /* Returns current FM mode (TX, RX, OFF) */
fmc_get_mode(struct fmdev * fmdev,u8 * fmmode)1429 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1430 {
1431 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1432 fmerr("FM core is not ready\n");
1433 return -EPERM;
1434 }
1435 if (fmmode == NULL) {
1436 fmerr("Invalid memory\n");
1437 return -ENOMEM;
1438 }
1439
1440 *fmmode = fmdev->curr_fmmode;
1441 return 0;
1442 }
1443
1444 /* Called by ST layer when FM packet is available */
fm_st_receive(void * arg,struct sk_buff * skb)1445 static long fm_st_receive(void *arg, struct sk_buff *skb)
1446 {
1447 struct fmdev *fmdev;
1448
1449 fmdev = (struct fmdev *)arg;
1450
1451 if (skb == NULL) {
1452 fmerr("Invalid SKB received from ST\n");
1453 return -EFAULT;
1454 }
1455
1456 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1457 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1458 return -EINVAL;
1459 }
1460
1461 memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1462 skb_queue_tail(&fmdev->rx_q, skb);
1463 tasklet_schedule(&fmdev->rx_task);
1464
1465 return 0;
1466 }
1467
1468 /*
1469 * Called by ST layer to indicate protocol registration completion
1470 * status.
1471 */
fm_st_reg_comp_cb(void * arg,int data)1472 static void fm_st_reg_comp_cb(void *arg, int data)
1473 {
1474 struct fmdev *fmdev;
1475
1476 fmdev = (struct fmdev *)arg;
1477 fmdev->streg_cbdata = data;
1478 complete(&wait_for_fmdrv_reg_comp);
1479 }
1480
1481 /*
1482 * This function will be called from FM V4L2 open function.
1483 * Register with ST driver and initialize driver data.
1484 */
fmc_prepare(struct fmdev * fmdev)1485 int fmc_prepare(struct fmdev *fmdev)
1486 {
1487 static struct st_proto_s fm_st_proto;
1488 int ret;
1489
1490 if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1491 fmdbg("FM Core is already up\n");
1492 return 0;
1493 }
1494
1495 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1496 fm_st_proto.recv = fm_st_receive;
1497 fm_st_proto.match_packet = NULL;
1498 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1499 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1500 fm_st_proto.priv_data = fmdev;
1501 fm_st_proto.chnl_id = 0x08;
1502 fm_st_proto.max_frame_size = 0xff;
1503 fm_st_proto.hdr_len = 1;
1504 fm_st_proto.offset_len_in_hdr = 0;
1505 fm_st_proto.len_size = 1;
1506 fm_st_proto.reserve = 1;
1507
1508 ret = st_register(&fm_st_proto);
1509 if (ret == -EINPROGRESS) {
1510 init_completion(&wait_for_fmdrv_reg_comp);
1511 fmdev->streg_cbdata = -EINPROGRESS;
1512 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1513
1514 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1515 FM_ST_REG_TIMEOUT)) {
1516 fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1517 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1518 return -ETIMEDOUT;
1519 }
1520 if (fmdev->streg_cbdata != 0) {
1521 fmerr("ST reg comp CB called with error status %d\n",
1522 fmdev->streg_cbdata);
1523 return -EAGAIN;
1524 }
1525
1526 ret = 0;
1527 } else if (ret == -1) {
1528 fmerr("st_register failed %d\n", ret);
1529 return -EAGAIN;
1530 }
1531
1532 if (fm_st_proto.write != NULL) {
1533 g_st_write = fm_st_proto.write;
1534 } else {
1535 fmerr("Failed to get ST write func pointer\n");
1536 ret = st_unregister(&fm_st_proto);
1537 if (ret < 0)
1538 fmerr("st_unregister failed %d\n", ret);
1539 return -EAGAIN;
1540 }
1541
1542 spin_lock_init(&fmdev->rds_buff_lock);
1543 spin_lock_init(&fmdev->resp_skb_lock);
1544
1545 /* Initialize TX queue and TX tasklet */
1546 skb_queue_head_init(&fmdev->tx_q);
1547 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1548
1549 /* Initialize RX Queue and RX tasklet */
1550 skb_queue_head_init(&fmdev->rx_q);
1551 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1552
1553 fmdev->irq_info.stage = 0;
1554 atomic_set(&fmdev->tx_cnt, 1);
1555 fmdev->resp_comp = NULL;
1556
1557 timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1558 /*TODO: add FM_STIC_EVENT later */
1559 fmdev->irq_info.mask = FM_MAL_EVENT;
1560
1561 /* Region info */
1562 fmdev->rx.region = region_configs[default_radio_region];
1563
1564 fmdev->rx.mute_mode = FM_MUTE_OFF;
1565 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1566 fmdev->rx.rds.flag = FM_RDS_DISABLE;
1567 fmdev->rx.freq = FM_UNDEFINED_FREQ;
1568 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1569 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1570 fmdev->irq_info.retry = 0;
1571
1572 fm_rx_reset_rds_cache(fmdev);
1573 init_waitqueue_head(&fmdev->rx.rds.read_queue);
1574
1575 fm_rx_reset_station_info(fmdev);
1576 set_bit(FM_CORE_READY, &fmdev->flag);
1577
1578 return ret;
1579 }
1580
1581 /*
1582 * This function will be called from FM V4L2 release function.
1583 * Unregister from ST driver.
1584 */
fmc_release(struct fmdev * fmdev)1585 int fmc_release(struct fmdev *fmdev)
1586 {
1587 static struct st_proto_s fm_st_proto;
1588 int ret;
1589
1590 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1591 fmdbg("FM Core is already down\n");
1592 return 0;
1593 }
1594 /* Service pending read */
1595 wake_up_interruptible(&fmdev->rx.rds.read_queue);
1596
1597 tasklet_kill(&fmdev->tx_task);
1598 tasklet_kill(&fmdev->rx_task);
1599
1600 skb_queue_purge(&fmdev->tx_q);
1601 skb_queue_purge(&fmdev->rx_q);
1602
1603 fmdev->resp_comp = NULL;
1604 fmdev->rx.freq = 0;
1605
1606 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1607 fm_st_proto.chnl_id = 0x08;
1608
1609 ret = st_unregister(&fm_st_proto);
1610
1611 if (ret < 0)
1612 fmerr("Failed to de-register FM from ST %d\n", ret);
1613 else
1614 fmdbg("Successfully unregistered from ST\n");
1615
1616 clear_bit(FM_CORE_READY, &fmdev->flag);
1617 return ret;
1618 }
1619
1620 /*
1621 * Module init function. Ask FM V4L module to register video device.
1622 * Allocate memory for FM driver context and RX RDS buffer.
1623 */
fm_drv_init(void)1624 static int __init fm_drv_init(void)
1625 {
1626 struct fmdev *fmdev = NULL;
1627 int ret = -ENOMEM;
1628
1629 fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1630
1631 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1632 if (NULL == fmdev) {
1633 fmerr("Can't allocate operation structure memory\n");
1634 return ret;
1635 }
1636 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1637 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1638 if (NULL == fmdev->rx.rds.buff) {
1639 fmerr("Can't allocate rds ring buffer\n");
1640 goto rel_dev;
1641 }
1642
1643 ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1644 if (ret < 0)
1645 goto rel_rdsbuf;
1646
1647 fmdev->irq_info.handlers = int_handler_table;
1648 fmdev->curr_fmmode = FM_MODE_OFF;
1649 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1650 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1651 return ret;
1652
1653 rel_rdsbuf:
1654 kfree(fmdev->rx.rds.buff);
1655 rel_dev:
1656 kfree(fmdev);
1657
1658 return ret;
1659 }
1660
1661 /* Module exit function. Ask FM V4L module to unregister video device */
fm_drv_exit(void)1662 static void __exit fm_drv_exit(void)
1663 {
1664 struct fmdev *fmdev = NULL;
1665
1666 fmdev = fm_v4l2_deinit_video_device();
1667 if (fmdev != NULL) {
1668 kfree(fmdev->rx.rds.buff);
1669 kfree(fmdev);
1670 }
1671 }
1672
1673 module_init(fm_drv_init);
1674 module_exit(fm_drv_exit);
1675
1676 /* ------------- Module Info ------------- */
1677 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1678 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1679 MODULE_VERSION(FM_DRV_VERSION);
1680 MODULE_LICENSE("GPL");
1681