1 /*
2 * DDR PHY Front End (DPFE) driver for Broadcom set top box SoCs
3 *
4 * Copyright (c) 2017 Broadcom
5 *
6 * Released under the GPLv2 only.
7 * SPDX-License-Identifier: GPL-2.0
8 */
9
10 /*
11 * This driver provides access to the DPFE interface of Broadcom STB SoCs.
12 * The firmware running on the DCPU inside the DDR PHY can provide current
13 * information about the system's RAM, for instance the DRAM refresh rate.
14 * This can be used as an indirect indicator for the DRAM's temperature.
15 * Slower refresh rate means cooler RAM, higher refresh rate means hotter
16 * RAM.
17 *
18 * Throughout the driver, we use readl_relaxed() and writel_relaxed(), which
19 * already contain the appropriate le32_to_cpu()/cpu_to_le32() calls.
20 *
21 * Note regarding the loading of the firmware image: we use be32_to_cpu()
22 * and le_32_to_cpu(), so we can support the following four cases:
23 * - LE kernel + LE firmware image (the most common case)
24 * - LE kernel + BE firmware image
25 * - BE kernel + LE firmware image
26 * - BE kernel + BE firmware image
27 *
28 * The DPCU always runs in big endian mode. The firwmare image, however, can
29 * be in either format. Also, communication between host CPU and DCPU is
30 * always in little endian.
31 */
32
33 #include <linux/delay.h>
34 #include <linux/firmware.h>
35 #include <linux/io.h>
36 #include <linux/module.h>
37 #include <linux/of_address.h>
38 #include <linux/platform_device.h>
39
40 #define DRVNAME "brcmstb-dpfe"
41 #define FIRMWARE_NAME "dpfe.bin"
42
43 /* DCPU register offsets */
44 #define REG_DCPU_RESET 0x0
45 #define REG_TO_DCPU_MBOX 0x10
46 #define REG_TO_HOST_MBOX 0x14
47
48 /* Macros to process offsets returned by the DCPU */
49 #define DRAM_MSG_ADDR_OFFSET 0x0
50 #define DRAM_MSG_TYPE_OFFSET 0x1c
51 #define DRAM_MSG_ADDR_MASK ((1UL << DRAM_MSG_TYPE_OFFSET) - 1)
52 #define DRAM_MSG_TYPE_MASK ((1UL << \
53 (BITS_PER_LONG - DRAM_MSG_TYPE_OFFSET)) - 1)
54
55 /* Message RAM */
56 #define DCPU_MSG_RAM_START 0x100
57 #define DCPU_MSG_RAM(x) (DCPU_MSG_RAM_START + (x) * sizeof(u32))
58
59 /* DRAM Info Offsets & Masks */
60 #define DRAM_INFO_INTERVAL 0x0
61 #define DRAM_INFO_MR4 0x4
62 #define DRAM_INFO_ERROR 0x8
63 #define DRAM_INFO_MR4_MASK 0xff
64
65 /* DRAM MR4 Offsets & Masks */
66 #define DRAM_MR4_REFRESH 0x0 /* Refresh rate */
67 #define DRAM_MR4_SR_ABORT 0x3 /* Self Refresh Abort */
68 #define DRAM_MR4_PPRE 0x4 /* Post-package repair entry/exit */
69 #define DRAM_MR4_TH_OFFS 0x5 /* Thermal Offset; vendor specific */
70 #define DRAM_MR4_TUF 0x7 /* Temperature Update Flag */
71
72 #define DRAM_MR4_REFRESH_MASK 0x7
73 #define DRAM_MR4_SR_ABORT_MASK 0x1
74 #define DRAM_MR4_PPRE_MASK 0x1
75 #define DRAM_MR4_TH_OFFS_MASK 0x3
76 #define DRAM_MR4_TUF_MASK 0x1
77
78 /* DRAM Vendor Offsets & Masks */
79 #define DRAM_VENDOR_MR5 0x0
80 #define DRAM_VENDOR_MR6 0x4
81 #define DRAM_VENDOR_MR7 0x8
82 #define DRAM_VENDOR_MR8 0xc
83 #define DRAM_VENDOR_ERROR 0x10
84 #define DRAM_VENDOR_MASK 0xff
85
86 /* Reset register bits & masks */
87 #define DCPU_RESET_SHIFT 0x0
88 #define DCPU_RESET_MASK 0x1
89 #define DCPU_CLK_DISABLE_SHIFT 0x2
90
91 /* DCPU return codes */
92 #define DCPU_RET_ERROR_BIT BIT(31)
93 #define DCPU_RET_SUCCESS 0x1
94 #define DCPU_RET_ERR_HEADER (DCPU_RET_ERROR_BIT | BIT(0))
95 #define DCPU_RET_ERR_INVAL (DCPU_RET_ERROR_BIT | BIT(1))
96 #define DCPU_RET_ERR_CHKSUM (DCPU_RET_ERROR_BIT | BIT(2))
97 #define DCPU_RET_ERR_COMMAND (DCPU_RET_ERROR_BIT | BIT(3))
98 /* This error code is not firmware defined and only used in the driver. */
99 #define DCPU_RET_ERR_TIMEDOUT (DCPU_RET_ERROR_BIT | BIT(4))
100
101 /* Firmware magic */
102 #define DPFE_BE_MAGIC 0xfe1010fe
103 #define DPFE_LE_MAGIC 0xfe0101fe
104
105 /* Error codes */
106 #define ERR_INVALID_MAGIC -1
107 #define ERR_INVALID_SIZE -2
108 #define ERR_INVALID_CHKSUM -3
109
110 /* Message types */
111 #define DPFE_MSG_TYPE_COMMAND 1
112 #define DPFE_MSG_TYPE_RESPONSE 2
113
114 #define DELAY_LOOP_MAX 200000
115
116 enum dpfe_msg_fields {
117 MSG_HEADER,
118 MSG_COMMAND,
119 MSG_ARG_COUNT,
120 MSG_ARG0,
121 MSG_CHKSUM,
122 MSG_FIELD_MAX /* Last entry */
123 };
124
125 enum dpfe_commands {
126 DPFE_CMD_GET_INFO,
127 DPFE_CMD_GET_REFRESH,
128 DPFE_CMD_GET_VENDOR,
129 DPFE_CMD_MAX /* Last entry */
130 };
131
132 struct dpfe_msg {
133 u32 header;
134 u32 command;
135 u32 arg_count;
136 u32 arg0;
137 u32 chksum; /* This is the sum of all other entries. */
138 };
139
140 /*
141 * Format of the binary firmware file:
142 *
143 * entry
144 * 0 header
145 * value: 0xfe0101fe <== little endian
146 * 0xfe1010fe <== big endian
147 * 1 sequence:
148 * [31:16] total segments on this build
149 * [15:0] this segment sequence.
150 * 2 FW version
151 * 3 IMEM byte size
152 * 4 DMEM byte size
153 * IMEM
154 * DMEM
155 * last checksum ==> sum of everything
156 */
157 struct dpfe_firmware_header {
158 u32 magic;
159 u32 sequence;
160 u32 version;
161 u32 imem_size;
162 u32 dmem_size;
163 };
164
165 /* Things we only need during initialization. */
166 struct init_data {
167 unsigned int dmem_len;
168 unsigned int imem_len;
169 unsigned int chksum;
170 bool is_big_endian;
171 };
172
173 /* Things we need for as long as we are active. */
174 struct private_data {
175 void __iomem *regs;
176 void __iomem *dmem;
177 void __iomem *imem;
178 struct device *dev;
179 struct mutex lock;
180 };
181
182 static const char *error_text[] = {
183 "Success", "Header code incorrect", "Unknown command or argument",
184 "Incorrect checksum", "Malformed command", "Timed out",
185 };
186
187 /* List of supported firmware commands */
188 static const u32 dpfe_commands[DPFE_CMD_MAX][MSG_FIELD_MAX] = {
189 [DPFE_CMD_GET_INFO] = {
190 [MSG_HEADER] = DPFE_MSG_TYPE_COMMAND,
191 [MSG_COMMAND] = 1,
192 [MSG_ARG_COUNT] = 1,
193 [MSG_ARG0] = 1,
194 [MSG_CHKSUM] = 4,
195 },
196 [DPFE_CMD_GET_REFRESH] = {
197 [MSG_HEADER] = DPFE_MSG_TYPE_COMMAND,
198 [MSG_COMMAND] = 2,
199 [MSG_ARG_COUNT] = 1,
200 [MSG_ARG0] = 1,
201 [MSG_CHKSUM] = 5,
202 },
203 [DPFE_CMD_GET_VENDOR] = {
204 [MSG_HEADER] = DPFE_MSG_TYPE_COMMAND,
205 [MSG_COMMAND] = 2,
206 [MSG_ARG_COUNT] = 1,
207 [MSG_ARG0] = 2,
208 [MSG_CHKSUM] = 6,
209 },
210 };
211
is_dcpu_enabled(void __iomem * regs)212 static bool is_dcpu_enabled(void __iomem *regs)
213 {
214 u32 val;
215
216 val = readl_relaxed(regs + REG_DCPU_RESET);
217
218 return !(val & DCPU_RESET_MASK);
219 }
220
__disable_dcpu(void __iomem * regs)221 static void __disable_dcpu(void __iomem *regs)
222 {
223 u32 val;
224
225 if (!is_dcpu_enabled(regs))
226 return;
227
228 /* Put DCPU in reset if it's running. */
229 val = readl_relaxed(regs + REG_DCPU_RESET);
230 val |= (1 << DCPU_RESET_SHIFT);
231 writel_relaxed(val, regs + REG_DCPU_RESET);
232 }
233
__enable_dcpu(void __iomem * regs)234 static void __enable_dcpu(void __iomem *regs)
235 {
236 u32 val;
237
238 /* Clear mailbox registers. */
239 writel_relaxed(0, regs + REG_TO_DCPU_MBOX);
240 writel_relaxed(0, regs + REG_TO_HOST_MBOX);
241
242 /* Disable DCPU clock gating */
243 val = readl_relaxed(regs + REG_DCPU_RESET);
244 val &= ~(1 << DCPU_CLK_DISABLE_SHIFT);
245 writel_relaxed(val, regs + REG_DCPU_RESET);
246
247 /* Take DCPU out of reset */
248 val = readl_relaxed(regs + REG_DCPU_RESET);
249 val &= ~(1 << DCPU_RESET_SHIFT);
250 writel_relaxed(val, regs + REG_DCPU_RESET);
251 }
252
get_msg_chksum(const u32 msg[])253 static unsigned int get_msg_chksum(const u32 msg[])
254 {
255 unsigned int sum = 0;
256 unsigned int i;
257
258 /* Don't include the last field in the checksum. */
259 for (i = 0; i < MSG_FIELD_MAX - 1; i++)
260 sum += msg[i];
261
262 return sum;
263 }
264
get_msg_ptr(struct private_data * priv,u32 response,char * buf,ssize_t * size)265 static void __iomem *get_msg_ptr(struct private_data *priv, u32 response,
266 char *buf, ssize_t *size)
267 {
268 unsigned int msg_type;
269 unsigned int offset;
270 void __iomem *ptr = NULL;
271
272 msg_type = (response >> DRAM_MSG_TYPE_OFFSET) & DRAM_MSG_TYPE_MASK;
273 offset = (response >> DRAM_MSG_ADDR_OFFSET) & DRAM_MSG_ADDR_MASK;
274
275 /*
276 * msg_type == 1: the offset is relative to the message RAM
277 * msg_type == 0: the offset is relative to the data RAM (this is the
278 * previous way of passing data)
279 * msg_type is anything else: there's critical hardware problem
280 */
281 switch (msg_type) {
282 case 1:
283 ptr = priv->regs + DCPU_MSG_RAM_START + offset;
284 break;
285 case 0:
286 ptr = priv->dmem + offset;
287 break;
288 default:
289 dev_emerg(priv->dev, "invalid message reply from DCPU: %#x\n",
290 response);
291 if (buf && size)
292 *size = sprintf(buf,
293 "FATAL: communication error with DCPU\n");
294 }
295
296 return ptr;
297 }
298
__send_command(struct private_data * priv,unsigned int cmd,u32 result[])299 static int __send_command(struct private_data *priv, unsigned int cmd,
300 u32 result[])
301 {
302 const u32 *msg = dpfe_commands[cmd];
303 void __iomem *regs = priv->regs;
304 unsigned int i, chksum;
305 int ret = 0;
306 u32 resp;
307
308 if (cmd >= DPFE_CMD_MAX)
309 return -1;
310
311 mutex_lock(&priv->lock);
312
313 /* Write command and arguments to message area */
314 for (i = 0; i < MSG_FIELD_MAX; i++)
315 writel_relaxed(msg[i], regs + DCPU_MSG_RAM(i));
316
317 /* Tell DCPU there is a command waiting */
318 writel_relaxed(1, regs + REG_TO_DCPU_MBOX);
319
320 /* Wait for DCPU to process the command */
321 for (i = 0; i < DELAY_LOOP_MAX; i++) {
322 /* Read response code */
323 resp = readl_relaxed(regs + REG_TO_HOST_MBOX);
324 if (resp > 0)
325 break;
326 udelay(5);
327 }
328
329 if (i == DELAY_LOOP_MAX) {
330 resp = (DCPU_RET_ERR_TIMEDOUT & ~DCPU_RET_ERROR_BIT);
331 ret = -ffs(resp);
332 } else {
333 /* Read response data */
334 for (i = 0; i < MSG_FIELD_MAX; i++)
335 result[i] = readl_relaxed(regs + DCPU_MSG_RAM(i));
336 }
337
338 /* Tell DCPU we are done */
339 writel_relaxed(0, regs + REG_TO_HOST_MBOX);
340
341 mutex_unlock(&priv->lock);
342
343 if (ret)
344 return ret;
345
346 /* Verify response */
347 chksum = get_msg_chksum(result);
348 if (chksum != result[MSG_CHKSUM])
349 resp = DCPU_RET_ERR_CHKSUM;
350
351 if (resp != DCPU_RET_SUCCESS) {
352 resp &= ~DCPU_RET_ERROR_BIT;
353 ret = -ffs(resp);
354 }
355
356 return ret;
357 }
358
359 /* Ensure that the firmware file loaded meets all the requirements. */
__verify_firmware(struct init_data * init,const struct firmware * fw)360 static int __verify_firmware(struct init_data *init,
361 const struct firmware *fw)
362 {
363 const struct dpfe_firmware_header *header = (void *)fw->data;
364 unsigned int dmem_size, imem_size, total_size;
365 bool is_big_endian = false;
366 const u32 *chksum_ptr;
367
368 if (header->magic == DPFE_BE_MAGIC)
369 is_big_endian = true;
370 else if (header->magic != DPFE_LE_MAGIC)
371 return ERR_INVALID_MAGIC;
372
373 if (is_big_endian) {
374 dmem_size = be32_to_cpu(header->dmem_size);
375 imem_size = be32_to_cpu(header->imem_size);
376 } else {
377 dmem_size = le32_to_cpu(header->dmem_size);
378 imem_size = le32_to_cpu(header->imem_size);
379 }
380
381 /* Data and instruction sections are 32 bit words. */
382 if ((dmem_size % sizeof(u32)) != 0 || (imem_size % sizeof(u32)) != 0)
383 return ERR_INVALID_SIZE;
384
385 /*
386 * The header + the data section + the instruction section + the
387 * checksum must be equal to the total firmware size.
388 */
389 total_size = dmem_size + imem_size + sizeof(*header) +
390 sizeof(*chksum_ptr);
391 if (total_size != fw->size)
392 return ERR_INVALID_SIZE;
393
394 /* The checksum comes at the very end. */
395 chksum_ptr = (void *)fw->data + sizeof(*header) + dmem_size + imem_size;
396
397 init->is_big_endian = is_big_endian;
398 init->dmem_len = dmem_size;
399 init->imem_len = imem_size;
400 init->chksum = (is_big_endian)
401 ? be32_to_cpu(*chksum_ptr) : le32_to_cpu(*chksum_ptr);
402
403 return 0;
404 }
405
406 /* Verify checksum by reading back the firmware from co-processor RAM. */
__verify_fw_checksum(struct init_data * init,struct private_data * priv,const struct dpfe_firmware_header * header,u32 checksum)407 static int __verify_fw_checksum(struct init_data *init,
408 struct private_data *priv,
409 const struct dpfe_firmware_header *header,
410 u32 checksum)
411 {
412 u32 magic, sequence, version, sum;
413 u32 __iomem *dmem = priv->dmem;
414 u32 __iomem *imem = priv->imem;
415 unsigned int i;
416
417 if (init->is_big_endian) {
418 magic = be32_to_cpu(header->magic);
419 sequence = be32_to_cpu(header->sequence);
420 version = be32_to_cpu(header->version);
421 } else {
422 magic = le32_to_cpu(header->magic);
423 sequence = le32_to_cpu(header->sequence);
424 version = le32_to_cpu(header->version);
425 }
426
427 sum = magic + sequence + version + init->dmem_len + init->imem_len;
428
429 for (i = 0; i < init->dmem_len / sizeof(u32); i++)
430 sum += readl_relaxed(dmem + i);
431
432 for (i = 0; i < init->imem_len / sizeof(u32); i++)
433 sum += readl_relaxed(imem + i);
434
435 return (sum == checksum) ? 0 : -1;
436 }
437
__write_firmware(u32 __iomem * mem,const u32 * fw,unsigned int size,bool is_big_endian)438 static int __write_firmware(u32 __iomem *mem, const u32 *fw,
439 unsigned int size, bool is_big_endian)
440 {
441 unsigned int i;
442
443 /* Convert size to 32-bit words. */
444 size /= sizeof(u32);
445
446 /* It is recommended to clear the firmware area first. */
447 for (i = 0; i < size; i++)
448 writel_relaxed(0, mem + i);
449
450 /* Now copy it. */
451 if (is_big_endian) {
452 for (i = 0; i < size; i++)
453 writel_relaxed(be32_to_cpu(fw[i]), mem + i);
454 } else {
455 for (i = 0; i < size; i++)
456 writel_relaxed(le32_to_cpu(fw[i]), mem + i);
457 }
458
459 return 0;
460 }
461
brcmstb_dpfe_download_firmware(struct platform_device * pdev,struct init_data * init)462 static int brcmstb_dpfe_download_firmware(struct platform_device *pdev,
463 struct init_data *init)
464 {
465 const struct dpfe_firmware_header *header;
466 unsigned int dmem_size, imem_size;
467 struct device *dev = &pdev->dev;
468 bool is_big_endian = false;
469 struct private_data *priv;
470 const struct firmware *fw;
471 const u32 *dmem, *imem;
472 const void *fw_blob;
473 int ret;
474
475 priv = platform_get_drvdata(pdev);
476
477 /*
478 * Skip downloading the firmware if the DCPU is already running and
479 * responding to commands.
480 */
481 if (is_dcpu_enabled(priv->regs)) {
482 u32 response[MSG_FIELD_MAX];
483
484 ret = __send_command(priv, DPFE_CMD_GET_INFO, response);
485 if (!ret)
486 return 0;
487 }
488
489 ret = request_firmware(&fw, FIRMWARE_NAME, dev);
490 /* request_firmware() prints its own error messages. */
491 if (ret)
492 return ret;
493
494 ret = __verify_firmware(init, fw);
495 if (ret)
496 return -EFAULT;
497
498 __disable_dcpu(priv->regs);
499
500 is_big_endian = init->is_big_endian;
501 dmem_size = init->dmem_len;
502 imem_size = init->imem_len;
503
504 /* At the beginning of the firmware blob is a header. */
505 header = (struct dpfe_firmware_header *)fw->data;
506 /* Void pointer to the beginning of the actual firmware. */
507 fw_blob = fw->data + sizeof(*header);
508 /* IMEM comes right after the header. */
509 imem = fw_blob;
510 /* DMEM follows after IMEM. */
511 dmem = fw_blob + imem_size;
512
513 ret = __write_firmware(priv->dmem, dmem, dmem_size, is_big_endian);
514 if (ret)
515 return ret;
516 ret = __write_firmware(priv->imem, imem, imem_size, is_big_endian);
517 if (ret)
518 return ret;
519
520 ret = __verify_fw_checksum(init, priv, header, init->chksum);
521 if (ret)
522 return ret;
523
524 __enable_dcpu(priv->regs);
525
526 return 0;
527 }
528
generic_show(unsigned int command,u32 response[],struct device * dev,char * buf)529 static ssize_t generic_show(unsigned int command, u32 response[],
530 struct device *dev, char *buf)
531 {
532 struct private_data *priv;
533 int ret;
534
535 priv = dev_get_drvdata(dev);
536 if (!priv)
537 return sprintf(buf, "ERROR: driver private data not set\n");
538
539 ret = __send_command(priv, command, response);
540 if (ret < 0)
541 return sprintf(buf, "ERROR: %s\n", error_text[-ret]);
542
543 return 0;
544 }
545
show_info(struct device * dev,struct device_attribute * devattr,char * buf)546 static ssize_t show_info(struct device *dev, struct device_attribute *devattr,
547 char *buf)
548 {
549 u32 response[MSG_FIELD_MAX];
550 unsigned int info;
551 ssize_t ret;
552
553 ret = generic_show(DPFE_CMD_GET_INFO, response, dev, buf);
554 if (ret)
555 return ret;
556
557 info = response[MSG_ARG0];
558
559 return sprintf(buf, "%u.%u.%u.%u\n",
560 (info >> 24) & 0xff,
561 (info >> 16) & 0xff,
562 (info >> 8) & 0xff,
563 info & 0xff);
564 }
565
show_refresh(struct device * dev,struct device_attribute * devattr,char * buf)566 static ssize_t show_refresh(struct device *dev,
567 struct device_attribute *devattr, char *buf)
568 {
569 u32 response[MSG_FIELD_MAX];
570 void __iomem *info;
571 struct private_data *priv;
572 u8 refresh, sr_abort, ppre, thermal_offs, tuf;
573 u32 mr4;
574 ssize_t ret;
575
576 ret = generic_show(DPFE_CMD_GET_REFRESH, response, dev, buf);
577 if (ret)
578 return ret;
579
580 priv = dev_get_drvdata(dev);
581
582 info = get_msg_ptr(priv, response[MSG_ARG0], buf, &ret);
583 if (!info)
584 return ret;
585
586 mr4 = readl_relaxed(info + DRAM_INFO_MR4) & DRAM_INFO_MR4_MASK;
587
588 refresh = (mr4 >> DRAM_MR4_REFRESH) & DRAM_MR4_REFRESH_MASK;
589 sr_abort = (mr4 >> DRAM_MR4_SR_ABORT) & DRAM_MR4_SR_ABORT_MASK;
590 ppre = (mr4 >> DRAM_MR4_PPRE) & DRAM_MR4_PPRE_MASK;
591 thermal_offs = (mr4 >> DRAM_MR4_TH_OFFS) & DRAM_MR4_TH_OFFS_MASK;
592 tuf = (mr4 >> DRAM_MR4_TUF) & DRAM_MR4_TUF_MASK;
593
594 return sprintf(buf, "%#x %#x %#x %#x %#x %#x %#x\n",
595 readl_relaxed(info + DRAM_INFO_INTERVAL),
596 refresh, sr_abort, ppre, thermal_offs, tuf,
597 readl_relaxed(info + DRAM_INFO_ERROR));
598 }
599
store_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)600 static ssize_t store_refresh(struct device *dev, struct device_attribute *attr,
601 const char *buf, size_t count)
602 {
603 u32 response[MSG_FIELD_MAX];
604 struct private_data *priv;
605 void __iomem *info;
606 unsigned long val;
607 int ret;
608
609 if (kstrtoul(buf, 0, &val) < 0)
610 return -EINVAL;
611
612 priv = dev_get_drvdata(dev);
613
614 ret = __send_command(priv, DPFE_CMD_GET_REFRESH, response);
615 if (ret)
616 return ret;
617
618 info = get_msg_ptr(priv, response[MSG_ARG0], NULL, NULL);
619 if (!info)
620 return -EIO;
621
622 writel_relaxed(val, info + DRAM_INFO_INTERVAL);
623
624 return count;
625 }
626
show_vendor(struct device * dev,struct device_attribute * devattr,char * buf)627 static ssize_t show_vendor(struct device *dev, struct device_attribute *devattr,
628 char *buf)
629 {
630 u32 response[MSG_FIELD_MAX];
631 struct private_data *priv;
632 void __iomem *info;
633 ssize_t ret;
634
635 ret = generic_show(DPFE_CMD_GET_VENDOR, response, dev, buf);
636 if (ret)
637 return ret;
638
639 priv = dev_get_drvdata(dev);
640
641 info = get_msg_ptr(priv, response[MSG_ARG0], buf, &ret);
642 if (!info)
643 return ret;
644
645 return sprintf(buf, "%#x %#x %#x %#x %#x\n",
646 readl_relaxed(info + DRAM_VENDOR_MR5) & DRAM_VENDOR_MASK,
647 readl_relaxed(info + DRAM_VENDOR_MR6) & DRAM_VENDOR_MASK,
648 readl_relaxed(info + DRAM_VENDOR_MR7) & DRAM_VENDOR_MASK,
649 readl_relaxed(info + DRAM_VENDOR_MR8) & DRAM_VENDOR_MASK,
650 readl_relaxed(info + DRAM_VENDOR_ERROR) &
651 DRAM_VENDOR_MASK);
652 }
653
brcmstb_dpfe_resume(struct platform_device * pdev)654 static int brcmstb_dpfe_resume(struct platform_device *pdev)
655 {
656 struct init_data init;
657
658 return brcmstb_dpfe_download_firmware(pdev, &init);
659 }
660
661 static DEVICE_ATTR(dpfe_info, 0444, show_info, NULL);
662 static DEVICE_ATTR(dpfe_refresh, 0644, show_refresh, store_refresh);
663 static DEVICE_ATTR(dpfe_vendor, 0444, show_vendor, NULL);
664 static struct attribute *dpfe_attrs[] = {
665 &dev_attr_dpfe_info.attr,
666 &dev_attr_dpfe_refresh.attr,
667 &dev_attr_dpfe_vendor.attr,
668 NULL
669 };
670 ATTRIBUTE_GROUPS(dpfe);
671
brcmstb_dpfe_probe(struct platform_device * pdev)672 static int brcmstb_dpfe_probe(struct platform_device *pdev)
673 {
674 struct device *dev = &pdev->dev;
675 struct private_data *priv;
676 struct init_data init;
677 struct resource *res;
678 int ret;
679
680 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
681 if (!priv)
682 return -ENOMEM;
683
684 mutex_init(&priv->lock);
685 platform_set_drvdata(pdev, priv);
686
687 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dpfe-cpu");
688 priv->regs = devm_ioremap_resource(dev, res);
689 if (IS_ERR(priv->regs)) {
690 dev_err(dev, "couldn't map DCPU registers\n");
691 return -ENODEV;
692 }
693
694 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dpfe-dmem");
695 priv->dmem = devm_ioremap_resource(dev, res);
696 if (IS_ERR(priv->dmem)) {
697 dev_err(dev, "Couldn't map DCPU data memory\n");
698 return -ENOENT;
699 }
700
701 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dpfe-imem");
702 priv->imem = devm_ioremap_resource(dev, res);
703 if (IS_ERR(priv->imem)) {
704 dev_err(dev, "Couldn't map DCPU instruction memory\n");
705 return -ENOENT;
706 }
707
708 ret = brcmstb_dpfe_download_firmware(pdev, &init);
709 if (ret)
710 return ret;
711
712 ret = sysfs_create_groups(&pdev->dev.kobj, dpfe_groups);
713 if (!ret)
714 dev_info(dev, "registered.\n");
715
716 return ret;
717 }
718
brcmstb_dpfe_remove(struct platform_device * pdev)719 static int brcmstb_dpfe_remove(struct platform_device *pdev)
720 {
721 sysfs_remove_groups(&pdev->dev.kobj, dpfe_groups);
722
723 return 0;
724 }
725
726 static const struct of_device_id brcmstb_dpfe_of_match[] = {
727 { .compatible = "brcm,dpfe-cpu", },
728 {}
729 };
730 MODULE_DEVICE_TABLE(of, brcmstb_dpfe_of_match);
731
732 static struct platform_driver brcmstb_dpfe_driver = {
733 .driver = {
734 .name = DRVNAME,
735 .of_match_table = brcmstb_dpfe_of_match,
736 },
737 .probe = brcmstb_dpfe_probe,
738 .remove = brcmstb_dpfe_remove,
739 .resume = brcmstb_dpfe_resume,
740 };
741
742 module_platform_driver(brcmstb_dpfe_driver);
743
744 MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
745 MODULE_DESCRIPTION("BRCMSTB DDR PHY Front End Driver");
746 MODULE_LICENSE("GPL");
747