1 /*
2  *  pti.c - PTI driver for cJTAG data extration
3  *
4  *  Copyright (C) Intel 2010
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16  *
17  * The PTI (Parallel Trace Interface) driver directs trace data routed from
18  * various parts in the system out through the Intel Penwell PTI port and
19  * out of the mobile device for analysis with a debugging tool
20  * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
21  * compact JTAG, standard.
22  */
23 
24 #include <linux/init.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/console.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/tty.h>
31 #include <linux/tty_driver.h>
32 #include <linux/pci.h>
33 #include <linux/mutex.h>
34 #include <linux/miscdevice.h>
35 #include <linux/intel-pti.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 
39 #define DRIVERNAME		"pti"
40 #define PCINAME			"pciPTI"
41 #define TTYNAME			"ttyPTI"
42 #define CHARNAME		"pti"
43 #define PTITTY_MINOR_START	0
44 #define PTITTY_MINOR_NUM	2
45 #define MAX_APP_IDS		16   /* 128 channel ids / u8 bit size */
46 #define MAX_OS_IDS		16   /* 128 channel ids / u8 bit size */
47 #define MAX_MODEM_IDS		16   /* 128 channel ids / u8 bit size */
48 #define MODEM_BASE_ID		71   /* modem master ID address    */
49 #define CONTROL_ID		72   /* control master ID address  */
50 #define CONSOLE_ID		73   /* console master ID address  */
51 #define OS_BASE_ID		74   /* base OS master ID address  */
52 #define APP_BASE_ID		80   /* base App master ID address */
53 #define CONTROL_FRAME_LEN	32   /* PTI control frame maximum size */
54 #define USER_COPY_SIZE		8192 /* 8Kb buffer for user space copy */
55 #define APERTURE_14		0x3800000 /* offset to first OS write addr */
56 #define APERTURE_LEN		0x400000  /* address length */
57 
58 struct pti_tty {
59 	struct pti_masterchannel *mc;
60 };
61 
62 struct pti_dev {
63 	struct tty_port port[PTITTY_MINOR_NUM];
64 	unsigned long pti_addr;
65 	unsigned long aperture_base;
66 	void __iomem *pti_ioaddr;
67 	u8 ia_app[MAX_APP_IDS];
68 	u8 ia_os[MAX_OS_IDS];
69 	u8 ia_modem[MAX_MODEM_IDS];
70 };
71 
72 /*
73  * This protects access to ia_app, ia_os, and ia_modem,
74  * which keeps track of channels allocated in
75  * an aperture write id.
76  */
77 static DEFINE_MUTEX(alloclock);
78 
79 static const struct pci_device_id pci_ids[] = {
80 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
81 		{0}
82 };
83 
84 static struct tty_driver *pti_tty_driver;
85 static struct pti_dev *drv_data;
86 
87 static unsigned int pti_console_channel;
88 static unsigned int pti_control_channel;
89 
90 /**
91  *  pti_write_to_aperture()- The private write function to PTI HW.
92  *
93  *  @mc: The 'aperture'. It's part of a write address that holds
94  *       a master and channel ID.
95  *  @buf: Data being written to the HW that will ultimately be seen
96  *        in a debugging tool (Fido, Lauterbach).
97  *  @len: Size of buffer.
98  *
99  *  Since each aperture is specified by a unique
100  *  master/channel ID, no two processes will be writing
101  *  to the same aperture at the same time so no lock is required. The
102  *  PTI-Output agent will send these out in the order that they arrived, and
103  *  thus, it will intermix these messages. The debug tool can then later
104  *  regroup the appropriate message segments together reconstituting each
105  *  message.
106  */
pti_write_to_aperture(struct pti_masterchannel * mc,u8 * buf,int len)107 static void pti_write_to_aperture(struct pti_masterchannel *mc,
108 				  u8 *buf,
109 				  int len)
110 {
111 	int dwordcnt;
112 	int final;
113 	int i;
114 	u32 ptiword;
115 	u32 __iomem *aperture;
116 	u8 *p = buf;
117 
118 	/*
119 	 * calculate the aperture offset from the base using the master and
120 	 * channel id's.
121 	 */
122 	aperture = drv_data->pti_ioaddr + (mc->master << 15)
123 		+ (mc->channel << 8);
124 
125 	dwordcnt = len >> 2;
126 	final = len - (dwordcnt << 2);	    /* final = trailing bytes    */
127 	if (final == 0 && dwordcnt != 0) {  /* always need a final dword */
128 		final += 4;
129 		dwordcnt--;
130 	}
131 
132 	for (i = 0; i < dwordcnt; i++) {
133 		ptiword = be32_to_cpu(*(u32 *)p);
134 		p += 4;
135 		iowrite32(ptiword, aperture);
136 	}
137 
138 	aperture += PTI_LASTDWORD_DTS;	/* adding DTS signals that is EOM */
139 
140 	ptiword = 0;
141 	for (i = 0; i < final; i++)
142 		ptiword |= *p++ << (24-(8*i));
143 
144 	iowrite32(ptiword, aperture);
145 	return;
146 }
147 
148 /**
149  *  pti_control_frame_built_and_sent()- control frame build and send function.
150  *
151  *  @mc:          The master / channel structure on which the function
152  *                built a control frame.
153  *  @thread_name: The thread name associated with the master / channel or
154  *                'NULL' if using the 'current' global variable.
155  *
156  *  To be able to post process the PTI contents on host side, a control frame
157  *  is added before sending any PTI content. So the host side knows on
158  *  each PTI frame the name of the thread using a dedicated master / channel.
159  *  The thread name is retrieved from 'current' global variable if 'thread_name'
160  *  is 'NULL', else it is retrieved from 'thread_name' parameter.
161  *  This function builds this frame and sends it to a master ID CONTROL_ID.
162  *  The overhead is only 32 bytes since the driver only writes to HW
163  *  in 32 byte chunks.
164  */
pti_control_frame_built_and_sent(struct pti_masterchannel * mc,const char * thread_name)165 static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc,
166 					     const char *thread_name)
167 {
168 	/*
169 	 * Since we access the comm member in current's task_struct, we only
170 	 * need to be as large as what 'comm' in that structure is.
171 	 */
172 	char comm[TASK_COMM_LEN];
173 	struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
174 					      .channel = 0};
175 	const char *thread_name_p;
176 	const char *control_format = "%3d %3d %s";
177 	u8 control_frame[CONTROL_FRAME_LEN];
178 
179 	if (!thread_name) {
180 		if (!in_interrupt())
181 			get_task_comm(comm, current);
182 		else
183 			strncpy(comm, "Interrupt", TASK_COMM_LEN);
184 
185 		/* Absolutely ensure our buffer is zero terminated. */
186 		comm[TASK_COMM_LEN-1] = 0;
187 		thread_name_p = comm;
188 	} else {
189 		thread_name_p = thread_name;
190 	}
191 
192 	mccontrol.channel = pti_control_channel;
193 	pti_control_channel = (pti_control_channel + 1) & 0x7f;
194 
195 	snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
196 		mc->channel, thread_name_p);
197 	pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
198 }
199 
200 /**
201  *  pti_write_full_frame_to_aperture()- high level function to
202  *					write to PTI.
203  *
204  *  @mc:  The 'aperture'. It's part of a write address that holds
205  *        a master and channel ID.
206  *  @buf: Data being written to the HW that will ultimately be seen
207  *        in a debugging tool (Fido, Lauterbach).
208  *  @len: Size of buffer.
209  *
210  *  All threads sending data (either console, user space application, ...)
211  *  are calling the high level function to write to PTI meaning that it is
212  *  possible to add a control frame before sending the content.
213  */
pti_write_full_frame_to_aperture(struct pti_masterchannel * mc,const unsigned char * buf,int len)214 static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
215 						const unsigned char *buf,
216 						int len)
217 {
218 	pti_control_frame_built_and_sent(mc, NULL);
219 	pti_write_to_aperture(mc, (u8 *)buf, len);
220 }
221 
222 /**
223  * get_id()- Allocate a master and channel ID.
224  *
225  * @id_array:    an array of bits representing what channel
226  *               id's are allocated for writing.
227  * @max_ids:     The max amount of available write IDs to use.
228  * @base_id:     The starting SW channel ID, based on the Intel
229  *               PTI arch.
230  * @thread_name: The thread name associated with the master / channel or
231  *               'NULL' if using the 'current' global variable.
232  *
233  * Returns:
234  *	pti_masterchannel struct with master, channel ID address
235  *	0 for error
236  *
237  * Each bit in the arrays ia_app and ia_os correspond to a master and
238  * channel id. The bit is one if the id is taken and 0 if free. For
239  * every master there are 128 channel id's.
240  */
get_id(u8 * id_array,int max_ids,int base_id,const char * thread_name)241 static struct pti_masterchannel *get_id(u8 *id_array,
242 					int max_ids,
243 					int base_id,
244 					const char *thread_name)
245 {
246 	struct pti_masterchannel *mc;
247 	int i, j, mask;
248 
249 	mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
250 	if (mc == NULL)
251 		return NULL;
252 
253 	/* look for a byte with a free bit */
254 	for (i = 0; i < max_ids; i++)
255 		if (id_array[i] != 0xff)
256 			break;
257 	if (i == max_ids) {
258 		kfree(mc);
259 		return NULL;
260 	}
261 	/* find the bit in the 128 possible channel opportunities */
262 	mask = 0x80;
263 	for (j = 0; j < 8; j++) {
264 		if ((id_array[i] & mask) == 0)
265 			break;
266 		mask >>= 1;
267 	}
268 
269 	/* grab it */
270 	id_array[i] |= mask;
271 	mc->master  = base_id;
272 	mc->channel = ((i & 0xf)<<3) + j;
273 	/* write new master Id / channel Id allocation to channel control */
274 	pti_control_frame_built_and_sent(mc, thread_name);
275 	return mc;
276 }
277 
278 /*
279  * The following three functions:
280  * pti_request_mastercahannel(), mipi_release_masterchannel()
281  * and pti_writedata() are an API for other kernel drivers to
282  * access PTI.
283  */
284 
285 /**
286  * pti_request_masterchannel()- Kernel API function used to allocate
287  *				a master, channel ID address
288  *				to write to PTI HW.
289  *
290  * @type:        0- request Application  master, channel aperture ID
291  *                  write address.
292  *               1- request OS master, channel aperture ID write
293  *                  address.
294  *               2- request Modem master, channel aperture ID
295  *                  write address.
296  *               Other values, error.
297  * @thread_name: The thread name associated with the master / channel or
298  *               'NULL' if using the 'current' global variable.
299  *
300  * Returns:
301  *	pti_masterchannel struct
302  *	0 for error
303  */
pti_request_masterchannel(u8 type,const char * thread_name)304 struct pti_masterchannel *pti_request_masterchannel(u8 type,
305 						    const char *thread_name)
306 {
307 	struct pti_masterchannel *mc;
308 
309 	mutex_lock(&alloclock);
310 
311 	switch (type) {
312 
313 	case 0:
314 		mc = get_id(drv_data->ia_app, MAX_APP_IDS,
315 			    APP_BASE_ID, thread_name);
316 		break;
317 
318 	case 1:
319 		mc = get_id(drv_data->ia_os, MAX_OS_IDS,
320 			    OS_BASE_ID, thread_name);
321 		break;
322 
323 	case 2:
324 		mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS,
325 			    MODEM_BASE_ID, thread_name);
326 		break;
327 	default:
328 		mc = NULL;
329 	}
330 
331 	mutex_unlock(&alloclock);
332 	return mc;
333 }
334 EXPORT_SYMBOL_GPL(pti_request_masterchannel);
335 
336 /**
337  * pti_release_masterchannel()- Kernel API function used to release
338  *				a master, channel ID address
339  *				used to write to PTI HW.
340  *
341  * @mc: master, channel apeture ID address to be released.  This
342  *      will de-allocate the structure via kfree().
343  */
pti_release_masterchannel(struct pti_masterchannel * mc)344 void pti_release_masterchannel(struct pti_masterchannel *mc)
345 {
346 	u8 master, channel, i;
347 
348 	mutex_lock(&alloclock);
349 
350 	if (mc) {
351 		master = mc->master;
352 		channel = mc->channel;
353 
354 		if (master == APP_BASE_ID) {
355 			i = channel >> 3;
356 			drv_data->ia_app[i] &=  ~(0x80>>(channel & 0x7));
357 		} else if (master == OS_BASE_ID) {
358 			i = channel >> 3;
359 			drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
360 		} else {
361 			i = channel >> 3;
362 			drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
363 		}
364 
365 		kfree(mc);
366 	}
367 
368 	mutex_unlock(&alloclock);
369 }
370 EXPORT_SYMBOL_GPL(pti_release_masterchannel);
371 
372 /**
373  * pti_writedata()- Kernel API function used to write trace
374  *                  debugging data to PTI HW.
375  *
376  * @mc:    Master, channel aperture ID address to write to.
377  *         Null value will return with no write occurring.
378  * @buf:   Trace debuging data to write to the PTI HW.
379  *         Null value will return with no write occurring.
380  * @count: Size of buf. Value of 0 or a negative number will
381  *         return with no write occuring.
382  */
pti_writedata(struct pti_masterchannel * mc,u8 * buf,int count)383 void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
384 {
385 	/*
386 	 * since this function is exported, this is treated like an
387 	 * API function, thus, all parameters should
388 	 * be checked for validity.
389 	 */
390 	if ((mc != NULL) && (buf != NULL) && (count > 0))
391 		pti_write_to_aperture(mc, buf, count);
392 	return;
393 }
394 EXPORT_SYMBOL_GPL(pti_writedata);
395 
396 /*
397  * for the tty_driver_*() basic function descriptions, see tty_driver.h.
398  * Specific header comments made for PTI-related specifics.
399  */
400 
401 /**
402  * pti_tty_driver_open()- Open an Application master, channel aperture
403  * ID to the PTI device via tty device.
404  *
405  * @tty: tty interface.
406  * @filp: filp interface pased to tty_port_open() call.
407  *
408  * Returns:
409  *	int, 0 for success
410  *	otherwise, fail value
411  *
412  * The main purpose of using the tty device interface is for
413  * each tty port to have a unique PTI write aperture.  In an
414  * example use case, ttyPTI0 gets syslogd and an APP aperture
415  * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
416  * modem messages into PTI.  Modem trace data does not have to
417  * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
418  * master IDs.  These messages go through the PTI HW and out of
419  * the handheld platform and to the Fido/Lauterbach device.
420  */
pti_tty_driver_open(struct tty_struct * tty,struct file * filp)421 static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
422 {
423 	/*
424 	 * we actually want to allocate a new channel per open, per
425 	 * system arch.  HW gives more than plenty channels for a single
426 	 * system task to have its own channel to write trace data. This
427 	 * also removes a locking requirement for the actual write
428 	 * procedure.
429 	 */
430 	return tty_port_open(tty->port, tty, filp);
431 }
432 
433 /**
434  * pti_tty_driver_close()- close tty device and release Application
435  * master, channel aperture ID to the PTI device via tty device.
436  *
437  * @tty: tty interface.
438  * @filp: filp interface pased to tty_port_close() call.
439  *
440  * The main purpose of using the tty device interface is to route
441  * syslog daemon messages to the PTI HW and out of the handheld platform
442  * and to the Fido/Lauterbach device.
443  */
pti_tty_driver_close(struct tty_struct * tty,struct file * filp)444 static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
445 {
446 	tty_port_close(tty->port, tty, filp);
447 }
448 
449 /**
450  * pti_tty_install()- Used to set up specific master-channels
451  *		      to tty ports for organizational purposes when
452  *		      tracing viewed from debuging tools.
453  *
454  * @driver: tty driver information.
455  * @tty: tty struct containing pti information.
456  *
457  * Returns:
458  *	0 for success
459  *	otherwise, error
460  */
pti_tty_install(struct tty_driver * driver,struct tty_struct * tty)461 static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
462 {
463 	int idx = tty->index;
464 	struct pti_tty *pti_tty_data;
465 	int ret = tty_standard_install(driver, tty);
466 
467 	if (ret == 0) {
468 		pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
469 		if (pti_tty_data == NULL)
470 			return -ENOMEM;
471 
472 		if (idx == PTITTY_MINOR_START)
473 			pti_tty_data->mc = pti_request_masterchannel(0, NULL);
474 		else
475 			pti_tty_data->mc = pti_request_masterchannel(2, NULL);
476 
477 		if (pti_tty_data->mc == NULL) {
478 			kfree(pti_tty_data);
479 			return -ENXIO;
480 		}
481 		tty->driver_data = pti_tty_data;
482 	}
483 
484 	return ret;
485 }
486 
487 /**
488  * pti_tty_cleanup()- Used to de-allocate master-channel resources
489  *		      tied to tty's of this driver.
490  *
491  * @tty: tty struct containing pti information.
492  */
pti_tty_cleanup(struct tty_struct * tty)493 static void pti_tty_cleanup(struct tty_struct *tty)
494 {
495 	struct pti_tty *pti_tty_data = tty->driver_data;
496 	if (pti_tty_data == NULL)
497 		return;
498 	pti_release_masterchannel(pti_tty_data->mc);
499 	kfree(pti_tty_data);
500 	tty->driver_data = NULL;
501 }
502 
503 /**
504  * pti_tty_driver_write()-  Write trace debugging data through the char
505  * interface to the PTI HW.  Part of the misc device implementation.
506  *
507  * @filp: Contains private data which is used to obtain
508  *        master, channel write ID.
509  * @data: trace data to be written.
510  * @len:  # of byte to write.
511  *
512  * Returns:
513  *	int, # of bytes written
514  *	otherwise, error
515  */
pti_tty_driver_write(struct tty_struct * tty,const unsigned char * buf,int len)516 static int pti_tty_driver_write(struct tty_struct *tty,
517 	const unsigned char *buf, int len)
518 {
519 	struct pti_tty *pti_tty_data = tty->driver_data;
520 	if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
521 		pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
522 		return len;
523 	}
524 	/*
525 	 * we can't write to the pti hardware if the private driver_data
526 	 * and the mc address is not there.
527 	 */
528 	else
529 		return -EFAULT;
530 }
531 
532 /**
533  * pti_tty_write_room()- Always returns 2048.
534  *
535  * @tty: contains tty info of the pti driver.
536  */
pti_tty_write_room(struct tty_struct * tty)537 static int pti_tty_write_room(struct tty_struct *tty)
538 {
539 	return 2048;
540 }
541 
542 /**
543  * pti_char_open()- Open an Application master, channel aperture
544  * ID to the PTI device. Part of the misc device implementation.
545  *
546  * @inode: not used.
547  * @filp:  Output- will have a masterchannel struct set containing
548  *                 the allocated application PTI aperture write address.
549  *
550  * Returns:
551  *	int, 0 for success
552  *	otherwise, a fail value
553  */
pti_char_open(struct inode * inode,struct file * filp)554 static int pti_char_open(struct inode *inode, struct file *filp)
555 {
556 	struct pti_masterchannel *mc;
557 
558 	/*
559 	 * We really do want to fail immediately if
560 	 * pti_request_masterchannel() fails,
561 	 * before assigning the value to filp->private_data.
562 	 * Slightly easier to debug if this driver needs debugging.
563 	 */
564 	mc = pti_request_masterchannel(0, NULL);
565 	if (mc == NULL)
566 		return -ENOMEM;
567 	filp->private_data = mc;
568 	return 0;
569 }
570 
571 /**
572  * pti_char_release()-  Close a char channel to the PTI device. Part
573  * of the misc device implementation.
574  *
575  * @inode: Not used in this implementaiton.
576  * @filp:  Contains private_data that contains the master, channel
577  *         ID to be released by the PTI device.
578  *
579  * Returns:
580  *	always 0
581  */
pti_char_release(struct inode * inode,struct file * filp)582 static int pti_char_release(struct inode *inode, struct file *filp)
583 {
584 	pti_release_masterchannel(filp->private_data);
585 	filp->private_data = NULL;
586 	return 0;
587 }
588 
589 /**
590  * pti_char_write()-  Write trace debugging data through the char
591  * interface to the PTI HW.  Part of the misc device implementation.
592  *
593  * @filp:  Contains private data which is used to obtain
594  *         master, channel write ID.
595  * @data:  trace data to be written.
596  * @len:   # of byte to write.
597  * @ppose: Not used in this function implementation.
598  *
599  * Returns:
600  *	int, # of bytes written
601  *	otherwise, error value
602  *
603  * Notes: From side discussions with Alan Cox and experimenting
604  * with PTI debug HW like Nokia's Fido box and Lauterbach
605  * devices, 8192 byte write buffer used by USER_COPY_SIZE was
606  * deemed an appropriate size for this type of usage with
607  * debugging HW.
608  */
pti_char_write(struct file * filp,const char __user * data,size_t len,loff_t * ppose)609 static ssize_t pti_char_write(struct file *filp, const char __user *data,
610 			      size_t len, loff_t *ppose)
611 {
612 	struct pti_masterchannel *mc;
613 	void *kbuf;
614 	const char __user *tmp;
615 	size_t size = USER_COPY_SIZE;
616 	size_t n = 0;
617 
618 	tmp = data;
619 	mc = filp->private_data;
620 
621 	kbuf = kmalloc(size, GFP_KERNEL);
622 	if (kbuf == NULL)  {
623 		pr_err("%s(%d): buf allocation failed\n",
624 			__func__, __LINE__);
625 		return -ENOMEM;
626 	}
627 
628 	do {
629 		if (len - n > USER_COPY_SIZE)
630 			size = USER_COPY_SIZE;
631 		else
632 			size = len - n;
633 
634 		if (copy_from_user(kbuf, tmp, size)) {
635 			kfree(kbuf);
636 			return n ? n : -EFAULT;
637 		}
638 
639 		pti_write_to_aperture(mc, kbuf, size);
640 		n  += size;
641 		tmp += size;
642 
643 	} while (len > n);
644 
645 	kfree(kbuf);
646 	return len;
647 }
648 
649 static const struct tty_operations pti_tty_driver_ops = {
650 	.open		= pti_tty_driver_open,
651 	.close		= pti_tty_driver_close,
652 	.write		= pti_tty_driver_write,
653 	.write_room	= pti_tty_write_room,
654 	.install	= pti_tty_install,
655 	.cleanup	= pti_tty_cleanup
656 };
657 
658 static const struct file_operations pti_char_driver_ops = {
659 	.owner		= THIS_MODULE,
660 	.write		= pti_char_write,
661 	.open		= pti_char_open,
662 	.release	= pti_char_release,
663 };
664 
665 static struct miscdevice pti_char_driver = {
666 	.minor		= MISC_DYNAMIC_MINOR,
667 	.name		= CHARNAME,
668 	.fops		= &pti_char_driver_ops
669 };
670 
671 /**
672  * pti_console_write()-  Write to the console that has been acquired.
673  *
674  * @c:   Not used in this implementaiton.
675  * @buf: Data to be written.
676  * @len: Length of buf.
677  */
pti_console_write(struct console * c,const char * buf,unsigned len)678 static void pti_console_write(struct console *c, const char *buf, unsigned len)
679 {
680 	static struct pti_masterchannel mc = {.master  = CONSOLE_ID,
681 					      .channel = 0};
682 
683 	mc.channel = pti_console_channel;
684 	pti_console_channel = (pti_console_channel + 1) & 0x7f;
685 
686 	pti_write_full_frame_to_aperture(&mc, buf, len);
687 }
688 
689 /**
690  * pti_console_device()-  Return the driver tty structure and set the
691  *			  associated index implementation.
692  *
693  * @c:     Console device of the driver.
694  * @index: index associated with c.
695  *
696  * Returns:
697  *	always value of pti_tty_driver structure when this function
698  *	is called.
699  */
pti_console_device(struct console * c,int * index)700 static struct tty_driver *pti_console_device(struct console *c, int *index)
701 {
702 	*index = c->index;
703 	return pti_tty_driver;
704 }
705 
706 /**
707  * pti_console_setup()-  Initialize console variables used by the driver.
708  *
709  * @c:     Not used.
710  * @opts:  Not used.
711  *
712  * Returns:
713  *	always 0.
714  */
pti_console_setup(struct console * c,char * opts)715 static int pti_console_setup(struct console *c, char *opts)
716 {
717 	pti_console_channel = 0;
718 	pti_control_channel = 0;
719 	return 0;
720 }
721 
722 /*
723  * pti_console struct, used to capture OS printk()'s and shift
724  * out to the PTI device for debugging.  This cannot be
725  * enabled upon boot because of the possibility of eating
726  * any serial console printk's (race condition discovered).
727  * The console should be enabled upon when the tty port is
728  * used for the first time.  Since the primary purpose for
729  * the tty port is to hook up syslog to it, the tty port
730  * will be open for a really long time.
731  */
732 static struct console pti_console = {
733 	.name		= TTYNAME,
734 	.write		= pti_console_write,
735 	.device		= pti_console_device,
736 	.setup		= pti_console_setup,
737 	.flags		= CON_PRINTBUFFER,
738 	.index		= 0,
739 };
740 
741 /**
742  * pti_port_activate()- Used to start/initialize any items upon
743  * first opening of tty_port().
744  *
745  * @port- The tty port number of the PTI device.
746  * @tty-  The tty struct associated with this device.
747  *
748  * Returns:
749  *	always returns 0
750  *
751  * Notes: The primary purpose of the PTI tty port 0 is to hook
752  * the syslog daemon to it; thus this port will be open for a
753  * very long time.
754  */
pti_port_activate(struct tty_port * port,struct tty_struct * tty)755 static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
756 {
757 	if (port->tty->index == PTITTY_MINOR_START)
758 		console_start(&pti_console);
759 	return 0;
760 }
761 
762 /**
763  * pti_port_shutdown()- Used to stop/shutdown any items upon the
764  * last tty port close.
765  *
766  * @port- The tty port number of the PTI device.
767  *
768  * Notes: The primary purpose of the PTI tty port 0 is to hook
769  * the syslog daemon to it; thus this port will be open for a
770  * very long time.
771  */
pti_port_shutdown(struct tty_port * port)772 static void pti_port_shutdown(struct tty_port *port)
773 {
774 	if (port->tty->index == PTITTY_MINOR_START)
775 		console_stop(&pti_console);
776 }
777 
778 static const struct tty_port_operations tty_port_ops = {
779 	.activate = pti_port_activate,
780 	.shutdown = pti_port_shutdown,
781 };
782 
783 /*
784  * Note the _probe() call sets everything up and ties the char and tty
785  * to successfully detecting the PTI device on the pci bus.
786  */
787 
788 /**
789  * pti_pci_probe()- Used to detect pti on the pci bus and set
790  *		    things up in the driver.
791  *
792  * @pdev- pci_dev struct values for pti.
793  * @ent-  pci_device_id struct for pti driver.
794  *
795  * Returns:
796  *	0 for success
797  *	otherwise, error
798  */
pti_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)799 static int pti_pci_probe(struct pci_dev *pdev,
800 		const struct pci_device_id *ent)
801 {
802 	unsigned int a;
803 	int retval = -EINVAL;
804 	int pci_bar = 1;
805 
806 	dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
807 			__func__, __LINE__, pdev->vendor, pdev->device);
808 
809 	retval = misc_register(&pti_char_driver);
810 	if (retval) {
811 		pr_err("%s(%d): CHAR registration failed of pti driver\n",
812 			__func__, __LINE__);
813 		pr_err("%s(%d): Error value returned: %d\n",
814 			__func__, __LINE__, retval);
815 		goto err;
816 	}
817 
818 	retval = pci_enable_device(pdev);
819 	if (retval != 0) {
820 		dev_err(&pdev->dev,
821 			"%s: pci_enable_device() returned error %d\n",
822 			__func__, retval);
823 		goto err_unreg_misc;
824 	}
825 
826 	drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
827 	if (drv_data == NULL) {
828 		retval = -ENOMEM;
829 		dev_err(&pdev->dev,
830 			"%s(%d): kmalloc() returned NULL memory.\n",
831 			__func__, __LINE__);
832 		goto err_disable_pci;
833 	}
834 	drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
835 
836 	retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
837 	if (retval != 0) {
838 		dev_err(&pdev->dev,
839 			"%s(%d): pci_request_region() returned error %d\n",
840 			__func__, __LINE__, retval);
841 		goto err_free_dd;
842 	}
843 	drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
844 	drv_data->pti_ioaddr =
845 		ioremap_nocache((u32)drv_data->aperture_base,
846 		APERTURE_LEN);
847 	if (!drv_data->pti_ioaddr) {
848 		retval = -ENOMEM;
849 		goto err_rel_reg;
850 	}
851 
852 	pci_set_drvdata(pdev, drv_data);
853 
854 	for (a = 0; a < PTITTY_MINOR_NUM; a++) {
855 		struct tty_port *port = &drv_data->port[a];
856 		tty_port_init(port);
857 		port->ops = &tty_port_ops;
858 
859 		tty_port_register_device(port, pti_tty_driver, a, &pdev->dev);
860 	}
861 
862 	register_console(&pti_console);
863 
864 	return 0;
865 err_rel_reg:
866 	pci_release_region(pdev, pci_bar);
867 err_free_dd:
868 	kfree(drv_data);
869 err_disable_pci:
870 	pci_disable_device(pdev);
871 err_unreg_misc:
872 	misc_deregister(&pti_char_driver);
873 err:
874 	return retval;
875 }
876 
877 /**
878  * pti_pci_remove()- Driver exit method to remove PTI from
879  *		   PCI bus.
880  * @pdev: variable containing pci info of PTI.
881  */
pti_pci_remove(struct pci_dev * pdev)882 static void pti_pci_remove(struct pci_dev *pdev)
883 {
884 	struct pti_dev *drv_data = pci_get_drvdata(pdev);
885 	unsigned int a;
886 
887 	unregister_console(&pti_console);
888 
889 	for (a = 0; a < PTITTY_MINOR_NUM; a++) {
890 		tty_unregister_device(pti_tty_driver, a);
891 		tty_port_destroy(&drv_data->port[a]);
892 	}
893 
894 	iounmap(drv_data->pti_ioaddr);
895 	kfree(drv_data);
896 	pci_release_region(pdev, 1);
897 	pci_disable_device(pdev);
898 
899 	misc_deregister(&pti_char_driver);
900 }
901 
902 static struct pci_driver pti_pci_driver = {
903 	.name		= PCINAME,
904 	.id_table	= pci_ids,
905 	.probe		= pti_pci_probe,
906 	.remove		= pti_pci_remove,
907 };
908 
909 /**
910  *
911  * pti_init()- Overall entry/init call to the pti driver.
912  *             It starts the registration process with the kernel.
913  *
914  * Returns:
915  *	int __init, 0 for success
916  *	otherwise value is an error
917  *
918  */
pti_init(void)919 static int __init pti_init(void)
920 {
921 	int retval = -EINVAL;
922 
923 	/* First register module as tty device */
924 
925 	pti_tty_driver = alloc_tty_driver(PTITTY_MINOR_NUM);
926 	if (pti_tty_driver == NULL) {
927 		pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
928 			__func__, __LINE__);
929 		return -ENOMEM;
930 	}
931 
932 	pti_tty_driver->driver_name		= DRIVERNAME;
933 	pti_tty_driver->name			= TTYNAME;
934 	pti_tty_driver->major			= 0;
935 	pti_tty_driver->minor_start		= PTITTY_MINOR_START;
936 	pti_tty_driver->type			= TTY_DRIVER_TYPE_SYSTEM;
937 	pti_tty_driver->subtype			= SYSTEM_TYPE_SYSCONS;
938 	pti_tty_driver->flags			= TTY_DRIVER_REAL_RAW |
939 						  TTY_DRIVER_DYNAMIC_DEV;
940 	pti_tty_driver->init_termios		= tty_std_termios;
941 
942 	tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
943 
944 	retval = tty_register_driver(pti_tty_driver);
945 	if (retval) {
946 		pr_err("%s(%d): TTY registration failed of pti driver\n",
947 			__func__, __LINE__);
948 		pr_err("%s(%d): Error value returned: %d\n",
949 			__func__, __LINE__, retval);
950 
951 		goto put_tty;
952 	}
953 
954 	retval = pci_register_driver(&pti_pci_driver);
955 	if (retval) {
956 		pr_err("%s(%d): PCI registration failed of pti driver\n",
957 			__func__, __LINE__);
958 		pr_err("%s(%d): Error value returned: %d\n",
959 			__func__, __LINE__, retval);
960 		goto unreg_tty;
961 	}
962 
963 	return 0;
964 unreg_tty:
965 	tty_unregister_driver(pti_tty_driver);
966 put_tty:
967 	put_tty_driver(pti_tty_driver);
968 	pti_tty_driver = NULL;
969 	return retval;
970 }
971 
972 /**
973  * pti_exit()- Unregisters this module as a tty and pci driver.
974  */
pti_exit(void)975 static void __exit pti_exit(void)
976 {
977 	tty_unregister_driver(pti_tty_driver);
978 	pci_unregister_driver(&pti_pci_driver);
979 	put_tty_driver(pti_tty_driver);
980 }
981 
982 module_init(pti_init);
983 module_exit(pti_exit);
984 
985 MODULE_LICENSE("GPL");
986 MODULE_AUTHOR("Ken Mills, Jay Freyensee");
987 MODULE_DESCRIPTION("PTI Driver");
988 
989