1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCIe driver for Marvell Armada 370 and Armada XP SoCs
4 *
5 * Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/pci.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/gpio.h>
13 #include <linux/init.h>
14 #include <linux/mbus.h>
15 #include <linux/msi.h>
16 #include <linux/slab.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_gpio.h>
21 #include <linux/of_pci.h>
22 #include <linux/of_platform.h>
23
24 #include "../pci.h"
25
26 /*
27 * PCIe unit register offsets.
28 */
29 #define PCIE_DEV_ID_OFF 0x0000
30 #define PCIE_CMD_OFF 0x0004
31 #define PCIE_DEV_REV_OFF 0x0008
32 #define PCIE_BAR_LO_OFF(n) (0x0010 + ((n) << 3))
33 #define PCIE_BAR_HI_OFF(n) (0x0014 + ((n) << 3))
34 #define PCIE_CAP_PCIEXP 0x0060
35 #define PCIE_HEADER_LOG_4_OFF 0x0128
36 #define PCIE_BAR_CTRL_OFF(n) (0x1804 + (((n) - 1) * 4))
37 #define PCIE_WIN04_CTRL_OFF(n) (0x1820 + ((n) << 4))
38 #define PCIE_WIN04_BASE_OFF(n) (0x1824 + ((n) << 4))
39 #define PCIE_WIN04_REMAP_OFF(n) (0x182c + ((n) << 4))
40 #define PCIE_WIN5_CTRL_OFF 0x1880
41 #define PCIE_WIN5_BASE_OFF 0x1884
42 #define PCIE_WIN5_REMAP_OFF 0x188c
43 #define PCIE_CONF_ADDR_OFF 0x18f8
44 #define PCIE_CONF_ADDR_EN 0x80000000
45 #define PCIE_CONF_REG(r) ((((r) & 0xf00) << 16) | ((r) & 0xfc))
46 #define PCIE_CONF_BUS(b) (((b) & 0xff) << 16)
47 #define PCIE_CONF_DEV(d) (((d) & 0x1f) << 11)
48 #define PCIE_CONF_FUNC(f) (((f) & 0x7) << 8)
49 #define PCIE_CONF_ADDR(bus, devfn, where) \
50 (PCIE_CONF_BUS(bus) | PCIE_CONF_DEV(PCI_SLOT(devfn)) | \
51 PCIE_CONF_FUNC(PCI_FUNC(devfn)) | PCIE_CONF_REG(where) | \
52 PCIE_CONF_ADDR_EN)
53 #define PCIE_CONF_DATA_OFF 0x18fc
54 #define PCIE_MASK_OFF 0x1910
55 #define PCIE_MASK_ENABLE_INTS 0x0f000000
56 #define PCIE_CTRL_OFF 0x1a00
57 #define PCIE_CTRL_X1_MODE 0x0001
58 #define PCIE_STAT_OFF 0x1a04
59 #define PCIE_STAT_BUS 0xff00
60 #define PCIE_STAT_DEV 0x1f0000
61 #define PCIE_STAT_LINK_DOWN BIT(0)
62 #define PCIE_RC_RTSTA 0x1a14
63 #define PCIE_DEBUG_CTRL 0x1a60
64 #define PCIE_DEBUG_SOFT_RESET BIT(20)
65
66 enum {
67 PCISWCAP = PCI_BRIDGE_CONTROL + 2,
68 PCISWCAP_EXP_LIST_ID = PCISWCAP + PCI_CAP_LIST_ID,
69 PCISWCAP_EXP_DEVCAP = PCISWCAP + PCI_EXP_DEVCAP,
70 PCISWCAP_EXP_DEVCTL = PCISWCAP + PCI_EXP_DEVCTL,
71 PCISWCAP_EXP_LNKCAP = PCISWCAP + PCI_EXP_LNKCAP,
72 PCISWCAP_EXP_LNKCTL = PCISWCAP + PCI_EXP_LNKCTL,
73 PCISWCAP_EXP_SLTCAP = PCISWCAP + PCI_EXP_SLTCAP,
74 PCISWCAP_EXP_SLTCTL = PCISWCAP + PCI_EXP_SLTCTL,
75 PCISWCAP_EXP_RTCTL = PCISWCAP + PCI_EXP_RTCTL,
76 PCISWCAP_EXP_RTSTA = PCISWCAP + PCI_EXP_RTSTA,
77 PCISWCAP_EXP_DEVCAP2 = PCISWCAP + PCI_EXP_DEVCAP2,
78 PCISWCAP_EXP_DEVCTL2 = PCISWCAP + PCI_EXP_DEVCTL2,
79 PCISWCAP_EXP_LNKCAP2 = PCISWCAP + PCI_EXP_LNKCAP2,
80 PCISWCAP_EXP_LNKCTL2 = PCISWCAP + PCI_EXP_LNKCTL2,
81 PCISWCAP_EXP_SLTCAP2 = PCISWCAP + PCI_EXP_SLTCAP2,
82 PCISWCAP_EXP_SLTCTL2 = PCISWCAP + PCI_EXP_SLTCTL2,
83 };
84
85 /* PCI configuration space of a PCI-to-PCI bridge */
86 struct mvebu_sw_pci_bridge {
87 u16 vendor;
88 u16 device;
89 u16 command;
90 u16 status;
91 u16 class;
92 u8 interface;
93 u8 revision;
94 u8 bist;
95 u8 header_type;
96 u8 latency_timer;
97 u8 cache_line_size;
98 u32 bar[2];
99 u8 primary_bus;
100 u8 secondary_bus;
101 u8 subordinate_bus;
102 u8 secondary_latency_timer;
103 u8 iobase;
104 u8 iolimit;
105 u16 secondary_status;
106 u16 membase;
107 u16 memlimit;
108 u16 iobaseupper;
109 u16 iolimitupper;
110 u32 romaddr;
111 u8 intline;
112 u8 intpin;
113 u16 bridgectrl;
114
115 /* PCI express capability */
116 u32 pcie_sltcap;
117 u16 pcie_devctl;
118 u16 pcie_rtctl;
119 };
120
121 struct mvebu_pcie_port;
122
123 /* Structure representing all PCIe interfaces */
124 struct mvebu_pcie {
125 struct platform_device *pdev;
126 struct mvebu_pcie_port *ports;
127 struct msi_controller *msi;
128 struct list_head resources;
129 struct resource io;
130 struct resource realio;
131 struct resource mem;
132 struct resource busn;
133 int nports;
134 };
135
136 struct mvebu_pcie_window {
137 phys_addr_t base;
138 phys_addr_t remap;
139 size_t size;
140 };
141
142 /* Structure representing one PCIe interface */
143 struct mvebu_pcie_port {
144 char *name;
145 void __iomem *base;
146 u32 port;
147 u32 lane;
148 int devfn;
149 unsigned int mem_target;
150 unsigned int mem_attr;
151 unsigned int io_target;
152 unsigned int io_attr;
153 struct clk *clk;
154 struct gpio_desc *reset_gpio;
155 char *reset_name;
156 struct mvebu_sw_pci_bridge bridge;
157 struct device_node *dn;
158 struct mvebu_pcie *pcie;
159 struct mvebu_pcie_window memwin;
160 struct mvebu_pcie_window iowin;
161 u32 saved_pcie_stat;
162 };
163
mvebu_writel(struct mvebu_pcie_port * port,u32 val,u32 reg)164 static inline void mvebu_writel(struct mvebu_pcie_port *port, u32 val, u32 reg)
165 {
166 writel(val, port->base + reg);
167 }
168
mvebu_readl(struct mvebu_pcie_port * port,u32 reg)169 static inline u32 mvebu_readl(struct mvebu_pcie_port *port, u32 reg)
170 {
171 return readl(port->base + reg);
172 }
173
mvebu_has_ioport(struct mvebu_pcie_port * port)174 static inline bool mvebu_has_ioport(struct mvebu_pcie_port *port)
175 {
176 return port->io_target != -1 && port->io_attr != -1;
177 }
178
mvebu_pcie_link_up(struct mvebu_pcie_port * port)179 static bool mvebu_pcie_link_up(struct mvebu_pcie_port *port)
180 {
181 return !(mvebu_readl(port, PCIE_STAT_OFF) & PCIE_STAT_LINK_DOWN);
182 }
183
mvebu_pcie_set_local_bus_nr(struct mvebu_pcie_port * port,int nr)184 static void mvebu_pcie_set_local_bus_nr(struct mvebu_pcie_port *port, int nr)
185 {
186 u32 stat;
187
188 stat = mvebu_readl(port, PCIE_STAT_OFF);
189 stat &= ~PCIE_STAT_BUS;
190 stat |= nr << 8;
191 mvebu_writel(port, stat, PCIE_STAT_OFF);
192 }
193
mvebu_pcie_set_local_dev_nr(struct mvebu_pcie_port * port,int nr)194 static void mvebu_pcie_set_local_dev_nr(struct mvebu_pcie_port *port, int nr)
195 {
196 u32 stat;
197
198 stat = mvebu_readl(port, PCIE_STAT_OFF);
199 stat &= ~PCIE_STAT_DEV;
200 stat |= nr << 16;
201 mvebu_writel(port, stat, PCIE_STAT_OFF);
202 }
203
204 /*
205 * Setup PCIE BARs and Address Decode Wins:
206 * BAR[0,2] -> disabled, BAR[1] -> covers all DRAM banks
207 * WIN[0-3] -> DRAM bank[0-3]
208 */
mvebu_pcie_setup_wins(struct mvebu_pcie_port * port)209 static void mvebu_pcie_setup_wins(struct mvebu_pcie_port *port)
210 {
211 const struct mbus_dram_target_info *dram;
212 u32 size;
213 int i;
214
215 dram = mv_mbus_dram_info();
216
217 /* First, disable and clear BARs and windows. */
218 for (i = 1; i < 3; i++) {
219 mvebu_writel(port, 0, PCIE_BAR_CTRL_OFF(i));
220 mvebu_writel(port, 0, PCIE_BAR_LO_OFF(i));
221 mvebu_writel(port, 0, PCIE_BAR_HI_OFF(i));
222 }
223
224 for (i = 0; i < 5; i++) {
225 mvebu_writel(port, 0, PCIE_WIN04_CTRL_OFF(i));
226 mvebu_writel(port, 0, PCIE_WIN04_BASE_OFF(i));
227 mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i));
228 }
229
230 mvebu_writel(port, 0, PCIE_WIN5_CTRL_OFF);
231 mvebu_writel(port, 0, PCIE_WIN5_BASE_OFF);
232 mvebu_writel(port, 0, PCIE_WIN5_REMAP_OFF);
233
234 /* Setup windows for DDR banks. Count total DDR size on the fly. */
235 size = 0;
236 for (i = 0; i < dram->num_cs; i++) {
237 const struct mbus_dram_window *cs = dram->cs + i;
238
239 mvebu_writel(port, cs->base & 0xffff0000,
240 PCIE_WIN04_BASE_OFF(i));
241 mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i));
242 mvebu_writel(port,
243 ((cs->size - 1) & 0xffff0000) |
244 (cs->mbus_attr << 8) |
245 (dram->mbus_dram_target_id << 4) | 1,
246 PCIE_WIN04_CTRL_OFF(i));
247
248 size += cs->size;
249 }
250
251 /* Round up 'size' to the nearest power of two. */
252 if ((size & (size - 1)) != 0)
253 size = 1 << fls(size);
254
255 /* Setup BAR[1] to all DRAM banks. */
256 mvebu_writel(port, dram->cs[0].base, PCIE_BAR_LO_OFF(1));
257 mvebu_writel(port, 0, PCIE_BAR_HI_OFF(1));
258 mvebu_writel(port, ((size - 1) & 0xffff0000) | 1,
259 PCIE_BAR_CTRL_OFF(1));
260 }
261
mvebu_pcie_setup_hw(struct mvebu_pcie_port * port)262 static void mvebu_pcie_setup_hw(struct mvebu_pcie_port *port)
263 {
264 u32 cmd, mask;
265
266 /* Point PCIe unit MBUS decode windows to DRAM space. */
267 mvebu_pcie_setup_wins(port);
268
269 /* Master + slave enable. */
270 cmd = mvebu_readl(port, PCIE_CMD_OFF);
271 cmd |= PCI_COMMAND_IO;
272 cmd |= PCI_COMMAND_MEMORY;
273 cmd |= PCI_COMMAND_MASTER;
274 mvebu_writel(port, cmd, PCIE_CMD_OFF);
275
276 /* Enable interrupt lines A-D. */
277 mask = mvebu_readl(port, PCIE_MASK_OFF);
278 mask |= PCIE_MASK_ENABLE_INTS;
279 mvebu_writel(port, mask, PCIE_MASK_OFF);
280 }
281
mvebu_pcie_hw_rd_conf(struct mvebu_pcie_port * port,struct pci_bus * bus,u32 devfn,int where,int size,u32 * val)282 static int mvebu_pcie_hw_rd_conf(struct mvebu_pcie_port *port,
283 struct pci_bus *bus,
284 u32 devfn, int where, int size, u32 *val)
285 {
286 void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF;
287
288 mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where),
289 PCIE_CONF_ADDR_OFF);
290
291 switch (size) {
292 case 1:
293 *val = readb_relaxed(conf_data + (where & 3));
294 break;
295 case 2:
296 *val = readw_relaxed(conf_data + (where & 2));
297 break;
298 case 4:
299 *val = readl_relaxed(conf_data);
300 break;
301 }
302
303 return PCIBIOS_SUCCESSFUL;
304 }
305
mvebu_pcie_hw_wr_conf(struct mvebu_pcie_port * port,struct pci_bus * bus,u32 devfn,int where,int size,u32 val)306 static int mvebu_pcie_hw_wr_conf(struct mvebu_pcie_port *port,
307 struct pci_bus *bus,
308 u32 devfn, int where, int size, u32 val)
309 {
310 void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF;
311
312 mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where),
313 PCIE_CONF_ADDR_OFF);
314
315 switch (size) {
316 case 1:
317 writeb(val, conf_data + (where & 3));
318 break;
319 case 2:
320 writew(val, conf_data + (where & 2));
321 break;
322 case 4:
323 writel(val, conf_data);
324 break;
325 default:
326 return PCIBIOS_BAD_REGISTER_NUMBER;
327 }
328
329 return PCIBIOS_SUCCESSFUL;
330 }
331
332 /*
333 * Remove windows, starting from the largest ones to the smallest
334 * ones.
335 */
mvebu_pcie_del_windows(struct mvebu_pcie_port * port,phys_addr_t base,size_t size)336 static void mvebu_pcie_del_windows(struct mvebu_pcie_port *port,
337 phys_addr_t base, size_t size)
338 {
339 while (size) {
340 size_t sz = 1 << (fls(size) - 1);
341
342 mvebu_mbus_del_window(base, sz);
343 base += sz;
344 size -= sz;
345 }
346 }
347
348 /*
349 * MBus windows can only have a power of two size, but PCI BARs do not
350 * have this constraint. Therefore, we have to split the PCI BAR into
351 * areas each having a power of two size. We start from the largest
352 * one (i.e highest order bit set in the size).
353 */
mvebu_pcie_add_windows(struct mvebu_pcie_port * port,unsigned int target,unsigned int attribute,phys_addr_t base,size_t size,phys_addr_t remap)354 static void mvebu_pcie_add_windows(struct mvebu_pcie_port *port,
355 unsigned int target, unsigned int attribute,
356 phys_addr_t base, size_t size,
357 phys_addr_t remap)
358 {
359 size_t size_mapped = 0;
360
361 while (size) {
362 size_t sz = 1 << (fls(size) - 1);
363 int ret;
364
365 ret = mvebu_mbus_add_window_remap_by_id(target, attribute, base,
366 sz, remap);
367 if (ret) {
368 phys_addr_t end = base + sz - 1;
369
370 dev_err(&port->pcie->pdev->dev,
371 "Could not create MBus window at [mem %pa-%pa]: %d\n",
372 &base, &end, ret);
373 mvebu_pcie_del_windows(port, base - size_mapped,
374 size_mapped);
375 return;
376 }
377
378 size -= sz;
379 size_mapped += sz;
380 base += sz;
381 if (remap != MVEBU_MBUS_NO_REMAP)
382 remap += sz;
383 }
384 }
385
mvebu_pcie_set_window(struct mvebu_pcie_port * port,unsigned int target,unsigned int attribute,const struct mvebu_pcie_window * desired,struct mvebu_pcie_window * cur)386 static void mvebu_pcie_set_window(struct mvebu_pcie_port *port,
387 unsigned int target, unsigned int attribute,
388 const struct mvebu_pcie_window *desired,
389 struct mvebu_pcie_window *cur)
390 {
391 if (desired->base == cur->base && desired->remap == cur->remap &&
392 desired->size == cur->size)
393 return;
394
395 if (cur->size != 0) {
396 mvebu_pcie_del_windows(port, cur->base, cur->size);
397 cur->size = 0;
398 cur->base = 0;
399
400 /*
401 * If something tries to change the window while it is enabled
402 * the change will not be done atomically. That would be
403 * difficult to do in the general case.
404 */
405 }
406
407 if (desired->size == 0)
408 return;
409
410 mvebu_pcie_add_windows(port, target, attribute, desired->base,
411 desired->size, desired->remap);
412 *cur = *desired;
413 }
414
mvebu_pcie_handle_iobase_change(struct mvebu_pcie_port * port)415 static void mvebu_pcie_handle_iobase_change(struct mvebu_pcie_port *port)
416 {
417 struct mvebu_pcie_window desired = {};
418
419 /* Are the new iobase/iolimit values invalid? */
420 if (port->bridge.iolimit < port->bridge.iobase ||
421 port->bridge.iolimitupper < port->bridge.iobaseupper ||
422 !(port->bridge.command & PCI_COMMAND_IO)) {
423 mvebu_pcie_set_window(port, port->io_target, port->io_attr,
424 &desired, &port->iowin);
425 return;
426 }
427
428 if (!mvebu_has_ioport(port)) {
429 dev_WARN(&port->pcie->pdev->dev,
430 "Attempt to set IO when IO is disabled\n");
431 return;
432 }
433
434 /*
435 * We read the PCI-to-PCI bridge emulated registers, and
436 * calculate the base address and size of the address decoding
437 * window to setup, according to the PCI-to-PCI bridge
438 * specifications. iobase is the bus address, port->iowin_base
439 * is the CPU address.
440 */
441 desired.remap = ((port->bridge.iobase & 0xF0) << 8) |
442 (port->bridge.iobaseupper << 16);
443 desired.base = port->pcie->io.start + desired.remap;
444 desired.size = ((0xFFF | ((port->bridge.iolimit & 0xF0) << 8) |
445 (port->bridge.iolimitupper << 16)) -
446 desired.remap) +
447 1;
448
449 mvebu_pcie_set_window(port, port->io_target, port->io_attr, &desired,
450 &port->iowin);
451 }
452
mvebu_pcie_handle_membase_change(struct mvebu_pcie_port * port)453 static void mvebu_pcie_handle_membase_change(struct mvebu_pcie_port *port)
454 {
455 struct mvebu_pcie_window desired = {.remap = MVEBU_MBUS_NO_REMAP};
456
457 /* Are the new membase/memlimit values invalid? */
458 if (port->bridge.memlimit < port->bridge.membase ||
459 !(port->bridge.command & PCI_COMMAND_MEMORY)) {
460 mvebu_pcie_set_window(port, port->mem_target, port->mem_attr,
461 &desired, &port->memwin);
462 return;
463 }
464
465 /*
466 * We read the PCI-to-PCI bridge emulated registers, and
467 * calculate the base address and size of the address decoding
468 * window to setup, according to the PCI-to-PCI bridge
469 * specifications.
470 */
471 desired.base = ((port->bridge.membase & 0xFFF0) << 16);
472 desired.size = (((port->bridge.memlimit & 0xFFF0) << 16) | 0xFFFFF) -
473 desired.base + 1;
474
475 mvebu_pcie_set_window(port, port->mem_target, port->mem_attr, &desired,
476 &port->memwin);
477 }
478
479 /*
480 * Initialize the configuration space of the PCI-to-PCI bridge
481 * associated with the given PCIe interface.
482 */
mvebu_sw_pci_bridge_init(struct mvebu_pcie_port * port)483 static void mvebu_sw_pci_bridge_init(struct mvebu_pcie_port *port)
484 {
485 struct mvebu_sw_pci_bridge *bridge = &port->bridge;
486
487 memset(bridge, 0, sizeof(struct mvebu_sw_pci_bridge));
488
489 bridge->class = PCI_CLASS_BRIDGE_PCI;
490 bridge->vendor = PCI_VENDOR_ID_MARVELL;
491 bridge->device = mvebu_readl(port, PCIE_DEV_ID_OFF) >> 16;
492 bridge->revision = mvebu_readl(port, PCIE_DEV_REV_OFF) & 0xff;
493 bridge->header_type = PCI_HEADER_TYPE_BRIDGE;
494 bridge->cache_line_size = 0x10;
495
496 /* We support 32 bits I/O addressing */
497 bridge->iobase = PCI_IO_RANGE_TYPE_32;
498 bridge->iolimit = PCI_IO_RANGE_TYPE_32;
499
500 /* Add capabilities */
501 bridge->status = PCI_STATUS_CAP_LIST;
502 }
503
504 /*
505 * Read the configuration space of the PCI-to-PCI bridge associated to
506 * the given PCIe interface.
507 */
mvebu_sw_pci_bridge_read(struct mvebu_pcie_port * port,unsigned int where,int size,u32 * value)508 static int mvebu_sw_pci_bridge_read(struct mvebu_pcie_port *port,
509 unsigned int where, int size, u32 *value)
510 {
511 struct mvebu_sw_pci_bridge *bridge = &port->bridge;
512
513 switch (where & ~3) {
514 case PCI_VENDOR_ID:
515 *value = bridge->device << 16 | bridge->vendor;
516 break;
517
518 case PCI_COMMAND:
519 *value = bridge->command | bridge->status << 16;
520 break;
521
522 case PCI_CLASS_REVISION:
523 *value = bridge->class << 16 | bridge->interface << 8 |
524 bridge->revision;
525 break;
526
527 case PCI_CACHE_LINE_SIZE:
528 *value = bridge->bist << 24 | bridge->header_type << 16 |
529 bridge->latency_timer << 8 | bridge->cache_line_size;
530 break;
531
532 case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1:
533 *value = bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4];
534 break;
535
536 case PCI_PRIMARY_BUS:
537 *value = (bridge->secondary_latency_timer << 24 |
538 bridge->subordinate_bus << 16 |
539 bridge->secondary_bus << 8 |
540 bridge->primary_bus);
541 break;
542
543 case PCI_IO_BASE:
544 if (!mvebu_has_ioport(port))
545 *value = bridge->secondary_status << 16;
546 else
547 *value = (bridge->secondary_status << 16 |
548 bridge->iolimit << 8 |
549 bridge->iobase);
550 break;
551
552 case PCI_MEMORY_BASE:
553 *value = (bridge->memlimit << 16 | bridge->membase);
554 break;
555
556 case PCI_PREF_MEMORY_BASE:
557 *value = 0;
558 break;
559
560 case PCI_IO_BASE_UPPER16:
561 *value = (bridge->iolimitupper << 16 | bridge->iobaseupper);
562 break;
563
564 case PCI_CAPABILITY_LIST:
565 *value = PCISWCAP;
566 break;
567
568 case PCI_ROM_ADDRESS1:
569 *value = 0;
570 break;
571
572 case PCI_INTERRUPT_LINE:
573 /* LINE PIN MIN_GNT MAX_LAT */
574 *value = 0;
575 break;
576
577 case PCISWCAP_EXP_LIST_ID:
578 /* Set PCIe v2, root port, slot support */
579 *value = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2 |
580 PCI_EXP_FLAGS_SLOT) << 16 | PCI_CAP_ID_EXP;
581 break;
582
583 case PCISWCAP_EXP_DEVCAP:
584 *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_DEVCAP);
585 break;
586
587 case PCISWCAP_EXP_DEVCTL:
588 *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_DEVCTL) &
589 ~(PCI_EXP_DEVCTL_URRE | PCI_EXP_DEVCTL_FERE |
590 PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_CERE);
591 *value |= bridge->pcie_devctl;
592 break;
593
594 case PCISWCAP_EXP_LNKCAP:
595 /*
596 * PCIe requires the clock power management capability to be
597 * hard-wired to zero for downstream ports
598 */
599 *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_LNKCAP) &
600 ~PCI_EXP_LNKCAP_CLKPM;
601 break;
602
603 case PCISWCAP_EXP_LNKCTL:
604 *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_LNKCTL);
605 break;
606
607 case PCISWCAP_EXP_SLTCAP:
608 *value = bridge->pcie_sltcap;
609 break;
610
611 case PCISWCAP_EXP_SLTCTL:
612 *value = PCI_EXP_SLTSTA_PDS << 16;
613 break;
614
615 case PCISWCAP_EXP_RTCTL:
616 *value = bridge->pcie_rtctl;
617 break;
618
619 case PCISWCAP_EXP_RTSTA:
620 *value = mvebu_readl(port, PCIE_RC_RTSTA);
621 break;
622
623 /* PCIe requires the v2 fields to be hard-wired to zero */
624 case PCISWCAP_EXP_DEVCAP2:
625 case PCISWCAP_EXP_DEVCTL2:
626 case PCISWCAP_EXP_LNKCAP2:
627 case PCISWCAP_EXP_LNKCTL2:
628 case PCISWCAP_EXP_SLTCAP2:
629 case PCISWCAP_EXP_SLTCTL2:
630 default:
631 /*
632 * PCI defines configuration read accesses to reserved or
633 * unimplemented registers to read as zero and complete
634 * normally.
635 */
636 *value = 0;
637 return PCIBIOS_SUCCESSFUL;
638 }
639
640 if (size == 2)
641 *value = (*value >> (8 * (where & 3))) & 0xffff;
642 else if (size == 1)
643 *value = (*value >> (8 * (where & 3))) & 0xff;
644
645 return PCIBIOS_SUCCESSFUL;
646 }
647
648 /* Write to the PCI-to-PCI bridge configuration space */
mvebu_sw_pci_bridge_write(struct mvebu_pcie_port * port,unsigned int where,int size,u32 value)649 static int mvebu_sw_pci_bridge_write(struct mvebu_pcie_port *port,
650 unsigned int where, int size, u32 value)
651 {
652 struct mvebu_sw_pci_bridge *bridge = &port->bridge;
653 u32 mask, reg;
654 int err;
655
656 if (size == 4)
657 mask = 0x0;
658 else if (size == 2)
659 mask = ~(0xffff << ((where & 3) * 8));
660 else if (size == 1)
661 mask = ~(0xff << ((where & 3) * 8));
662 else
663 return PCIBIOS_BAD_REGISTER_NUMBER;
664
665 err = mvebu_sw_pci_bridge_read(port, where & ~3, 4, ®);
666 if (err)
667 return err;
668
669 value = (reg & mask) | value << ((where & 3) * 8);
670
671 switch (where & ~3) {
672 case PCI_COMMAND:
673 {
674 u32 old = bridge->command;
675
676 if (!mvebu_has_ioport(port))
677 value &= ~PCI_COMMAND_IO;
678
679 bridge->command = value & 0xffff;
680 if ((old ^ bridge->command) & PCI_COMMAND_IO)
681 mvebu_pcie_handle_iobase_change(port);
682 if ((old ^ bridge->command) & PCI_COMMAND_MEMORY)
683 mvebu_pcie_handle_membase_change(port);
684 break;
685 }
686
687 case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1:
688 bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4] = value;
689 break;
690
691 case PCI_IO_BASE:
692 /*
693 * We also keep bit 1 set, it is a read-only bit that
694 * indicates we support 32 bits addressing for the
695 * I/O
696 */
697 bridge->iobase = (value & 0xff) | PCI_IO_RANGE_TYPE_32;
698 bridge->iolimit = ((value >> 8) & 0xff) | PCI_IO_RANGE_TYPE_32;
699 mvebu_pcie_handle_iobase_change(port);
700 break;
701
702 case PCI_MEMORY_BASE:
703 bridge->membase = value & 0xffff;
704 bridge->memlimit = value >> 16;
705 mvebu_pcie_handle_membase_change(port);
706 break;
707
708 case PCI_IO_BASE_UPPER16:
709 bridge->iobaseupper = value & 0xffff;
710 bridge->iolimitupper = value >> 16;
711 mvebu_pcie_handle_iobase_change(port);
712 break;
713
714 case PCI_PRIMARY_BUS:
715 bridge->primary_bus = value & 0xff;
716 bridge->secondary_bus = (value >> 8) & 0xff;
717 bridge->subordinate_bus = (value >> 16) & 0xff;
718 bridge->secondary_latency_timer = (value >> 24) & 0xff;
719 mvebu_pcie_set_local_bus_nr(port, bridge->secondary_bus);
720 break;
721
722 case PCISWCAP_EXP_DEVCTL:
723 /*
724 * Armada370 data says these bits must always
725 * be zero when in root complex mode.
726 */
727 value &= ~(PCI_EXP_DEVCTL_URRE | PCI_EXP_DEVCTL_FERE |
728 PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_CERE);
729
730 /*
731 * If the mask is 0xffff0000, then we only want to write
732 * the device control register, rather than clearing the
733 * RW1C bits in the device status register. Mask out the
734 * status register bits.
735 */
736 if (mask == 0xffff0000)
737 value &= 0xffff;
738
739 mvebu_writel(port, value, PCIE_CAP_PCIEXP + PCI_EXP_DEVCTL);
740 break;
741
742 case PCISWCAP_EXP_LNKCTL:
743 /*
744 * If we don't support CLKREQ, we must ensure that the
745 * CLKREQ enable bit always reads zero. Since we haven't
746 * had this capability, and it's dependent on board wiring,
747 * disable it for the time being.
748 */
749 value &= ~PCI_EXP_LNKCTL_CLKREQ_EN;
750
751 /*
752 * If the mask is 0xffff0000, then we only want to write
753 * the link control register, rather than clearing the
754 * RW1C bits in the link status register. Mask out the
755 * RW1C status register bits.
756 */
757 if (mask == 0xffff0000)
758 value &= ~((PCI_EXP_LNKSTA_LABS |
759 PCI_EXP_LNKSTA_LBMS) << 16);
760
761 mvebu_writel(port, value, PCIE_CAP_PCIEXP + PCI_EXP_LNKCTL);
762 break;
763
764 case PCISWCAP_EXP_RTSTA:
765 mvebu_writel(port, value, PCIE_RC_RTSTA);
766 break;
767
768 default:
769 break;
770 }
771
772 return PCIBIOS_SUCCESSFUL;
773 }
774
sys_to_pcie(struct pci_sys_data * sys)775 static inline struct mvebu_pcie *sys_to_pcie(struct pci_sys_data *sys)
776 {
777 return sys->private_data;
778 }
779
mvebu_pcie_find_port(struct mvebu_pcie * pcie,struct pci_bus * bus,int devfn)780 static struct mvebu_pcie_port *mvebu_pcie_find_port(struct mvebu_pcie *pcie,
781 struct pci_bus *bus,
782 int devfn)
783 {
784 int i;
785
786 for (i = 0; i < pcie->nports; i++) {
787 struct mvebu_pcie_port *port = &pcie->ports[i];
788
789 if (bus->number == 0 && port->devfn == devfn)
790 return port;
791 if (bus->number != 0 &&
792 bus->number >= port->bridge.secondary_bus &&
793 bus->number <= port->bridge.subordinate_bus)
794 return port;
795 }
796
797 return NULL;
798 }
799
800 /* PCI configuration space write function */
mvebu_pcie_wr_conf(struct pci_bus * bus,u32 devfn,int where,int size,u32 val)801 static int mvebu_pcie_wr_conf(struct pci_bus *bus, u32 devfn,
802 int where, int size, u32 val)
803 {
804 struct mvebu_pcie *pcie = bus->sysdata;
805 struct mvebu_pcie_port *port;
806 int ret;
807
808 port = mvebu_pcie_find_port(pcie, bus, devfn);
809 if (!port)
810 return PCIBIOS_DEVICE_NOT_FOUND;
811
812 /* Access the emulated PCI-to-PCI bridge */
813 if (bus->number == 0)
814 return mvebu_sw_pci_bridge_write(port, where, size, val);
815
816 if (!mvebu_pcie_link_up(port))
817 return PCIBIOS_DEVICE_NOT_FOUND;
818
819 /* Access the real PCIe interface */
820 ret = mvebu_pcie_hw_wr_conf(port, bus, devfn,
821 where, size, val);
822
823 return ret;
824 }
825
826 /* PCI configuration space read function */
mvebu_pcie_rd_conf(struct pci_bus * bus,u32 devfn,int where,int size,u32 * val)827 static int mvebu_pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where,
828 int size, u32 *val)
829 {
830 struct mvebu_pcie *pcie = bus->sysdata;
831 struct mvebu_pcie_port *port;
832 int ret;
833
834 port = mvebu_pcie_find_port(pcie, bus, devfn);
835 if (!port) {
836 *val = 0xffffffff;
837 return PCIBIOS_DEVICE_NOT_FOUND;
838 }
839
840 /* Access the emulated PCI-to-PCI bridge */
841 if (bus->number == 0)
842 return mvebu_sw_pci_bridge_read(port, where, size, val);
843
844 if (!mvebu_pcie_link_up(port)) {
845 *val = 0xffffffff;
846 return PCIBIOS_DEVICE_NOT_FOUND;
847 }
848
849 /* Access the real PCIe interface */
850 ret = mvebu_pcie_hw_rd_conf(port, bus, devfn,
851 where, size, val);
852
853 return ret;
854 }
855
856 static struct pci_ops mvebu_pcie_ops = {
857 .read = mvebu_pcie_rd_conf,
858 .write = mvebu_pcie_wr_conf,
859 };
860
mvebu_pcie_align_resource(struct pci_dev * dev,const struct resource * res,resource_size_t start,resource_size_t size,resource_size_t align)861 static resource_size_t mvebu_pcie_align_resource(struct pci_dev *dev,
862 const struct resource *res,
863 resource_size_t start,
864 resource_size_t size,
865 resource_size_t align)
866 {
867 if (dev->bus->number != 0)
868 return start;
869
870 /*
871 * On the PCI-to-PCI bridge side, the I/O windows must have at
872 * least a 64 KB size and the memory windows must have at
873 * least a 1 MB size. Moreover, MBus windows need to have a
874 * base address aligned on their size, and their size must be
875 * a power of two. This means that if the BAR doesn't have a
876 * power of two size, several MBus windows will actually be
877 * created. We need to ensure that the biggest MBus window
878 * (which will be the first one) is aligned on its size, which
879 * explains the rounddown_pow_of_two() being done here.
880 */
881 if (res->flags & IORESOURCE_IO)
882 return round_up(start, max_t(resource_size_t, SZ_64K,
883 rounddown_pow_of_two(size)));
884 else if (res->flags & IORESOURCE_MEM)
885 return round_up(start, max_t(resource_size_t, SZ_1M,
886 rounddown_pow_of_two(size)));
887 else
888 return start;
889 }
890
mvebu_pcie_map_registers(struct platform_device * pdev,struct device_node * np,struct mvebu_pcie_port * port)891 static void __iomem *mvebu_pcie_map_registers(struct platform_device *pdev,
892 struct device_node *np,
893 struct mvebu_pcie_port *port)
894 {
895 struct resource regs;
896 int ret = 0;
897
898 ret = of_address_to_resource(np, 0, ®s);
899 if (ret)
900 return ERR_PTR(ret);
901
902 return devm_ioremap_resource(&pdev->dev, ®s);
903 }
904
905 #define DT_FLAGS_TO_TYPE(flags) (((flags) >> 24) & 0x03)
906 #define DT_TYPE_IO 0x1
907 #define DT_TYPE_MEM32 0x2
908 #define DT_CPUADDR_TO_TARGET(cpuaddr) (((cpuaddr) >> 56) & 0xFF)
909 #define DT_CPUADDR_TO_ATTR(cpuaddr) (((cpuaddr) >> 48) & 0xFF)
910
mvebu_get_tgt_attr(struct device_node * np,int devfn,unsigned long type,unsigned int * tgt,unsigned int * attr)911 static int mvebu_get_tgt_attr(struct device_node *np, int devfn,
912 unsigned long type,
913 unsigned int *tgt,
914 unsigned int *attr)
915 {
916 const int na = 3, ns = 2;
917 const __be32 *range;
918 int rlen, nranges, rangesz, pna, i;
919
920 *tgt = -1;
921 *attr = -1;
922
923 range = of_get_property(np, "ranges", &rlen);
924 if (!range)
925 return -EINVAL;
926
927 pna = of_n_addr_cells(np);
928 rangesz = pna + na + ns;
929 nranges = rlen / sizeof(__be32) / rangesz;
930
931 for (i = 0; i < nranges; i++, range += rangesz) {
932 u32 flags = of_read_number(range, 1);
933 u32 slot = of_read_number(range + 1, 1);
934 u64 cpuaddr = of_read_number(range + na, pna);
935 unsigned long rtype;
936
937 if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_IO)
938 rtype = IORESOURCE_IO;
939 else if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_MEM32)
940 rtype = IORESOURCE_MEM;
941 else
942 continue;
943
944 if (slot == PCI_SLOT(devfn) && type == rtype) {
945 *tgt = DT_CPUADDR_TO_TARGET(cpuaddr);
946 *attr = DT_CPUADDR_TO_ATTR(cpuaddr);
947 return 0;
948 }
949 }
950
951 return -ENOENT;
952 }
953
954 #ifdef CONFIG_PM_SLEEP
mvebu_pcie_suspend(struct device * dev)955 static int mvebu_pcie_suspend(struct device *dev)
956 {
957 struct mvebu_pcie *pcie;
958 int i;
959
960 pcie = dev_get_drvdata(dev);
961 for (i = 0; i < pcie->nports; i++) {
962 struct mvebu_pcie_port *port = pcie->ports + i;
963 port->saved_pcie_stat = mvebu_readl(port, PCIE_STAT_OFF);
964 }
965
966 return 0;
967 }
968
mvebu_pcie_resume(struct device * dev)969 static int mvebu_pcie_resume(struct device *dev)
970 {
971 struct mvebu_pcie *pcie;
972 int i;
973
974 pcie = dev_get_drvdata(dev);
975 for (i = 0; i < pcie->nports; i++) {
976 struct mvebu_pcie_port *port = pcie->ports + i;
977 mvebu_writel(port, port->saved_pcie_stat, PCIE_STAT_OFF);
978 mvebu_pcie_setup_hw(port);
979 }
980
981 return 0;
982 }
983 #endif
984
mvebu_pcie_port_clk_put(void * data)985 static void mvebu_pcie_port_clk_put(void *data)
986 {
987 struct mvebu_pcie_port *port = data;
988
989 clk_put(port->clk);
990 }
991
mvebu_pcie_parse_port(struct mvebu_pcie * pcie,struct mvebu_pcie_port * port,struct device_node * child)992 static int mvebu_pcie_parse_port(struct mvebu_pcie *pcie,
993 struct mvebu_pcie_port *port, struct device_node *child)
994 {
995 struct device *dev = &pcie->pdev->dev;
996 enum of_gpio_flags flags;
997 int reset_gpio, ret;
998
999 port->pcie = pcie;
1000
1001 if (of_property_read_u32(child, "marvell,pcie-port", &port->port)) {
1002 dev_warn(dev, "ignoring %pOF, missing pcie-port property\n",
1003 child);
1004 goto skip;
1005 }
1006
1007 if (of_property_read_u32(child, "marvell,pcie-lane", &port->lane))
1008 port->lane = 0;
1009
1010 port->name = devm_kasprintf(dev, GFP_KERNEL, "pcie%d.%d", port->port,
1011 port->lane);
1012 if (!port->name) {
1013 ret = -ENOMEM;
1014 goto err;
1015 }
1016
1017 port->devfn = of_pci_get_devfn(child);
1018 if (port->devfn < 0)
1019 goto skip;
1020
1021 ret = mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_MEM,
1022 &port->mem_target, &port->mem_attr);
1023 if (ret < 0) {
1024 dev_err(dev, "%s: cannot get tgt/attr for mem window\n",
1025 port->name);
1026 goto skip;
1027 }
1028
1029 if (resource_size(&pcie->io) != 0) {
1030 mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_IO,
1031 &port->io_target, &port->io_attr);
1032 } else {
1033 port->io_target = -1;
1034 port->io_attr = -1;
1035 }
1036
1037 reset_gpio = of_get_named_gpio_flags(child, "reset-gpios", 0, &flags);
1038 if (reset_gpio == -EPROBE_DEFER) {
1039 ret = reset_gpio;
1040 goto err;
1041 }
1042
1043 if (gpio_is_valid(reset_gpio)) {
1044 unsigned long gpio_flags;
1045
1046 port->reset_name = devm_kasprintf(dev, GFP_KERNEL, "%s-reset",
1047 port->name);
1048 if (!port->reset_name) {
1049 ret = -ENOMEM;
1050 goto err;
1051 }
1052
1053 if (flags & OF_GPIO_ACTIVE_LOW) {
1054 dev_info(dev, "%pOF: reset gpio is active low\n",
1055 child);
1056 gpio_flags = GPIOF_ACTIVE_LOW |
1057 GPIOF_OUT_INIT_LOW;
1058 } else {
1059 gpio_flags = GPIOF_OUT_INIT_HIGH;
1060 }
1061
1062 ret = devm_gpio_request_one(dev, reset_gpio, gpio_flags,
1063 port->reset_name);
1064 if (ret) {
1065 if (ret == -EPROBE_DEFER)
1066 goto err;
1067 goto skip;
1068 }
1069
1070 port->reset_gpio = gpio_to_desc(reset_gpio);
1071 }
1072
1073 port->clk = of_clk_get_by_name(child, NULL);
1074 if (IS_ERR(port->clk)) {
1075 dev_err(dev, "%s: cannot get clock\n", port->name);
1076 goto skip;
1077 }
1078
1079 ret = devm_add_action(dev, mvebu_pcie_port_clk_put, port);
1080 if (ret < 0) {
1081 clk_put(port->clk);
1082 goto err;
1083 }
1084
1085 return 1;
1086
1087 skip:
1088 ret = 0;
1089
1090 /* In the case of skipping, we need to free these */
1091 devm_kfree(dev, port->reset_name);
1092 port->reset_name = NULL;
1093 devm_kfree(dev, port->name);
1094 port->name = NULL;
1095
1096 err:
1097 return ret;
1098 }
1099
1100 /*
1101 * Power up a PCIe port. PCIe requires the refclk to be stable for 100µs
1102 * prior to releasing PERST. See table 2-4 in section 2.6.2 AC Specifications
1103 * of the PCI Express Card Electromechanical Specification, 1.1.
1104 */
mvebu_pcie_powerup(struct mvebu_pcie_port * port)1105 static int mvebu_pcie_powerup(struct mvebu_pcie_port *port)
1106 {
1107 int ret;
1108
1109 ret = clk_prepare_enable(port->clk);
1110 if (ret < 0)
1111 return ret;
1112
1113 if (port->reset_gpio) {
1114 u32 reset_udelay = PCI_PM_D3COLD_WAIT * 1000;
1115
1116 of_property_read_u32(port->dn, "reset-delay-us",
1117 &reset_udelay);
1118
1119 udelay(100);
1120
1121 gpiod_set_value_cansleep(port->reset_gpio, 0);
1122 msleep(reset_udelay / 1000);
1123 }
1124
1125 return 0;
1126 }
1127
1128 /*
1129 * Power down a PCIe port. Strictly, PCIe requires us to place the card
1130 * in D3hot state before asserting PERST#.
1131 */
mvebu_pcie_powerdown(struct mvebu_pcie_port * port)1132 static void mvebu_pcie_powerdown(struct mvebu_pcie_port *port)
1133 {
1134 gpiod_set_value_cansleep(port->reset_gpio, 1);
1135
1136 clk_disable_unprepare(port->clk);
1137 }
1138
1139 /*
1140 * We can't use devm_of_pci_get_host_bridge_resources() because we
1141 * need to parse our special DT properties encoding the MEM and IO
1142 * apertures.
1143 */
mvebu_pcie_parse_request_resources(struct mvebu_pcie * pcie)1144 static int mvebu_pcie_parse_request_resources(struct mvebu_pcie *pcie)
1145 {
1146 struct device *dev = &pcie->pdev->dev;
1147 struct device_node *np = dev->of_node;
1148 int ret;
1149
1150 INIT_LIST_HEAD(&pcie->resources);
1151
1152 /* Get the bus range */
1153 ret = of_pci_parse_bus_range(np, &pcie->busn);
1154 if (ret) {
1155 dev_err(dev, "failed to parse bus-range property: %d\n", ret);
1156 return ret;
1157 }
1158 pci_add_resource(&pcie->resources, &pcie->busn);
1159
1160 /* Get the PCIe memory aperture */
1161 mvebu_mbus_get_pcie_mem_aperture(&pcie->mem);
1162 if (resource_size(&pcie->mem) == 0) {
1163 dev_err(dev, "invalid memory aperture size\n");
1164 return -EINVAL;
1165 }
1166
1167 pcie->mem.name = "PCI MEM";
1168 pci_add_resource(&pcie->resources, &pcie->mem);
1169
1170 /* Get the PCIe IO aperture */
1171 mvebu_mbus_get_pcie_io_aperture(&pcie->io);
1172
1173 if (resource_size(&pcie->io) != 0) {
1174 pcie->realio.flags = pcie->io.flags;
1175 pcie->realio.start = PCIBIOS_MIN_IO;
1176 pcie->realio.end = min_t(resource_size_t,
1177 IO_SPACE_LIMIT - SZ_64K,
1178 resource_size(&pcie->io) - 1);
1179 pcie->realio.name = "PCI I/O";
1180
1181 pci_add_resource(&pcie->resources, &pcie->realio);
1182 }
1183
1184 return devm_request_pci_bus_resources(dev, &pcie->resources);
1185 }
1186
1187 /*
1188 * This is a copy of pci_host_probe(), except that it does the I/O
1189 * remap as the last step, once we are sure we won't fail.
1190 *
1191 * It should be removed once the I/O remap error handling issue has
1192 * been sorted out.
1193 */
mvebu_pci_host_probe(struct pci_host_bridge * bridge)1194 static int mvebu_pci_host_probe(struct pci_host_bridge *bridge)
1195 {
1196 struct mvebu_pcie *pcie;
1197 struct pci_bus *bus, *child;
1198 int ret;
1199
1200 ret = pci_scan_root_bus_bridge(bridge);
1201 if (ret < 0) {
1202 dev_err(bridge->dev.parent, "Scanning root bridge failed");
1203 return ret;
1204 }
1205
1206 pcie = pci_host_bridge_priv(bridge);
1207 if (resource_size(&pcie->io) != 0) {
1208 unsigned int i;
1209
1210 for (i = 0; i < resource_size(&pcie->realio); i += SZ_64K)
1211 pci_ioremap_io(i, pcie->io.start + i);
1212 }
1213
1214 bus = bridge->bus;
1215
1216 /*
1217 * We insert PCI resources into the iomem_resource and
1218 * ioport_resource trees in either pci_bus_claim_resources()
1219 * or pci_bus_assign_resources().
1220 */
1221 if (pci_has_flag(PCI_PROBE_ONLY)) {
1222 pci_bus_claim_resources(bus);
1223 } else {
1224 pci_bus_size_bridges(bus);
1225 pci_bus_assign_resources(bus);
1226
1227 list_for_each_entry(child, &bus->children, node)
1228 pcie_bus_configure_settings(child);
1229 }
1230
1231 pci_bus_add_devices(bus);
1232 return 0;
1233 }
1234
mvebu_pcie_probe(struct platform_device * pdev)1235 static int mvebu_pcie_probe(struct platform_device *pdev)
1236 {
1237 struct device *dev = &pdev->dev;
1238 struct mvebu_pcie *pcie;
1239 struct pci_host_bridge *bridge;
1240 struct device_node *np = dev->of_node;
1241 struct device_node *child;
1242 int num, i, ret;
1243
1244 bridge = devm_pci_alloc_host_bridge(dev, sizeof(struct mvebu_pcie));
1245 if (!bridge)
1246 return -ENOMEM;
1247
1248 pcie = pci_host_bridge_priv(bridge);
1249 pcie->pdev = pdev;
1250 platform_set_drvdata(pdev, pcie);
1251
1252 ret = mvebu_pcie_parse_request_resources(pcie);
1253 if (ret)
1254 return ret;
1255
1256 num = of_get_available_child_count(np);
1257
1258 pcie->ports = devm_kcalloc(dev, num, sizeof(*pcie->ports), GFP_KERNEL);
1259 if (!pcie->ports)
1260 return -ENOMEM;
1261
1262 i = 0;
1263 for_each_available_child_of_node(np, child) {
1264 struct mvebu_pcie_port *port = &pcie->ports[i];
1265
1266 ret = mvebu_pcie_parse_port(pcie, port, child);
1267 if (ret < 0) {
1268 of_node_put(child);
1269 return ret;
1270 } else if (ret == 0) {
1271 continue;
1272 }
1273
1274 port->dn = child;
1275 i++;
1276 }
1277 pcie->nports = i;
1278
1279 for (i = 0; i < pcie->nports; i++) {
1280 struct mvebu_pcie_port *port = &pcie->ports[i];
1281
1282 child = port->dn;
1283 if (!child)
1284 continue;
1285
1286 ret = mvebu_pcie_powerup(port);
1287 if (ret < 0)
1288 continue;
1289
1290 port->base = mvebu_pcie_map_registers(pdev, child, port);
1291 if (IS_ERR(port->base)) {
1292 dev_err(dev, "%s: cannot map registers\n", port->name);
1293 port->base = NULL;
1294 mvebu_pcie_powerdown(port);
1295 continue;
1296 }
1297
1298 mvebu_pcie_setup_hw(port);
1299 mvebu_pcie_set_local_dev_nr(port, 1);
1300 mvebu_sw_pci_bridge_init(port);
1301 }
1302
1303 pcie->nports = i;
1304
1305 list_splice_init(&pcie->resources, &bridge->windows);
1306 bridge->dev.parent = dev;
1307 bridge->sysdata = pcie;
1308 bridge->busnr = 0;
1309 bridge->ops = &mvebu_pcie_ops;
1310 bridge->map_irq = of_irq_parse_and_map_pci;
1311 bridge->swizzle_irq = pci_common_swizzle;
1312 bridge->align_resource = mvebu_pcie_align_resource;
1313 bridge->msi = pcie->msi;
1314
1315 return mvebu_pci_host_probe(bridge);
1316 }
1317
1318 static const struct of_device_id mvebu_pcie_of_match_table[] = {
1319 { .compatible = "marvell,armada-xp-pcie", },
1320 { .compatible = "marvell,armada-370-pcie", },
1321 { .compatible = "marvell,dove-pcie", },
1322 { .compatible = "marvell,kirkwood-pcie", },
1323 {},
1324 };
1325
1326 static const struct dev_pm_ops mvebu_pcie_pm_ops = {
1327 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(mvebu_pcie_suspend, mvebu_pcie_resume)
1328 };
1329
1330 static struct platform_driver mvebu_pcie_driver = {
1331 .driver = {
1332 .name = "mvebu-pcie",
1333 .of_match_table = mvebu_pcie_of_match_table,
1334 /* driver unloading/unbinding currently not supported */
1335 .suppress_bind_attrs = true,
1336 .pm = &mvebu_pcie_pm_ops,
1337 },
1338 .probe = mvebu_pcie_probe,
1339 };
1340 builtin_platform_driver(mvebu_pcie_driver);
1341